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Introduction

e Building a fuzzy system
Structure identification
Parameter estimation
Model validation

e Do we get a good fuzzy model”
How capable can a fuzzy mode
How well can the model genera
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Introduction (continued)

e Several types of fuzzy models are
“universal approximators”

e Generalization performance
Structural risk minimization

Bias variance dilemma
Overfitting phenomena

=A “right” tradeoff between training
accuracy and model complexity
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Introduction (continued)

e Two approaches to find a “right” tradeoff
Cross-validation for model selection
Model reduction to simplify the model

e Vapnik-Chervonenkis (VC) theory
A general measure of model set complexity

Bounds on generalization
Support Vector Machines (SVM)
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VC Theory and Support Vector
Machines

e One result from VC Theory

Binary classification: given a set of training
samples {(zZ1.y1), . (F.y)} CR" x {+1, -1}
drawn independently from some unknown
distribution P(Z,y), with probability 1 —n, the
probabllity of misclassification for any decision
function r ¢ | Is bounded above by

h(l + In 2—5) —In 4
,y)(f) < Remp(f) + \/ Zh 1
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VC Theory and Support Vector
Machines (continued

e Support Vector Machines (SVMSs)
Optimal separating hyperplane
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VC Theory and Support Vector
Machines (continued

Kernel trick
A Mercer kernel is a function,
K:R"xR" - R ,
satisfying
K(Z,Z) = (2(2), 2(2))p
where ®(7) is sometimes referred to as the
Mercer features
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VC Theory and Support Vector
Machines (continued

Quadratic programming

[ [
1
maximize W(a) = E @ — 5 E a;a; Yy K(Z;, ;)

i=1 ij=1

[
subject to C' > a; >0, 1 =1,---,[, and Zaiyi:()
i=1

Decision function

[
f(Z) = sgn (Z Yo K (2, 2;) + b)

1=1
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Additive Fuzzy Systems and Kernel
Machines

e Kernel Machines

[
F(@) =) o, K(T,3)+b
1=1

e A class of additive fuzzy systems is
functionally equivalent to a class of
kernel machines
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Additive Fuzzy Systems and Kernel
Machines (continued

e Additive Fuzzy System (AFS)
m fuzzy rules of the form
Rule j: IF A} AND AZ AND --- AND A" THEN b,
Product as fuzzy conjunction operator
Addition for fuzzy rule aggregation
-irst order moment defuzzification
Reference function

Kernel is the product of reference functions
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Additive Fuzzy Systems and Kernel
Machines (continued

e Positive definite fuzzy systems (PDFS)

Reference functions are positive definite
functions = Mercer kernels

Examples:
Gaussian Symmetric triangle
Cauchy Hyperbolic secant
Laplace Squared sinc
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Support Vector Learning for a Class
of Additive Fuzzy Systems

SVM PDFS
Kernel @Reference functions

Support vectors @IF-part of fuzzy rules

Lagrange muItipIier@THEN-part of fuzzy rules
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Experimental Results (continued)

Reference Function | r£STD

Gaussian 95.2% + 0.3%
Cauchy 95.2% + 0.3%
Laplace 94.7% + 0.4%
Symmetric Triangle | 95.0% 4 0.3%
Hyperbolic Secant | 95.0% =+ 0.3%
Squared Sinc 95.2% + 0.2%

Linear SVM: 91.3%
k-nearest neighbor:  94.3%
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Conclusions and Future Work

Kernel
Machines
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