Kernel Machines and Additive Fuzzy Systems: Classification and Function Approximation

Yixin Chen and *James Z. Wang* The Pennsylvania State University http://www.cse.psu.edu/~yixchen

PENNSTATE

- VC theory and Support Vector Machines
- Additive fuzzy systems and kernel machines
- Support vector learning for a class of additive fuzzy systems
- **Experimental results**
- Conclusions and future work

Introduction

PENNSTATE

Building a fuzzy system

- **Structure identification**
- **Parameter estimation**
- Model validation
- Do we get a good fuzzy model?
	- How capable can a fuzzy model be?
	- How well can the model generalize?

Introduction (continued)

- Several types of fuzzy models are "universal approximators"
- **Generalization performance**
	- Structural risk minimization
	- \bullet Bias variance dilemma
	- **Overfitting phenomena**

[⇒]A "right" tradeoff between training accuracy and model complexity

Introduction (continued)

- Two approaches to find a "right" tradeoff
	- Cross-validation for model selection
	- Model reduction to simplify the model
- Vapnik-Chervonenkis (VC) theory
	- A general measure of model set complexity
	- \bullet Bounds on generalization

PENNSTATE

 \bullet Support Vector Machines (SVM)

PENNSTATE

- VC theory and Support Vector Machines
- Additive fuzzy systems and kernel machines
- Support vector learning for a class of additive fuzzy systems
- **Experimental results**
- Conclusions and future work

VC Theory and Support Vector **Machines**

• One result from VC Theory Binary classification: given a set of training **samples** $\{(\vec{x}_1, y_1), \cdots, (\vec{x}_l, y_l)\} \subset \mathbb{R}^n \times \{+1, -1\}$ drawn independently from some unknown distribution $P(\vec{x}, y)$, with probability $1 - \eta$, the probability of misclassification for any decision function $f \in \mathbb{H}$ is bounded above by

$$
R_{P(\vec{x},y)}(f) \le R_{emp}(f) + \sqrt{\frac{h(1 + \ln \frac{2l}{h}) - \ln \frac{\eta}{4}}{l}}
$$

PENNSTATE

VC Theory and Support Vector Machines (continued)

- Support Vector Machines (SVMs)
	- Optimal separating hyperplane

PENNSTATE

FUZZ-IEEE 2003 8

VC Theory and Support Vector Machines (continued)

• Kernel trick A Mercer kernel is a function, $K: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, satisfying $K(\vec{x}, \vec{z}) = \langle \Phi(\vec{x}), \Phi(\vec{z}) \rangle_{\mathbb{R}}$ where $\Phi(\vec{x})$ is sometimes referred to as the Mercer features

PENNSTATE

VC Theory and Support Vector Machines (continued)

 \bullet

PENNSTATE

 Quadratic programming \bullet maximize $W(\vec{\alpha}) = \sum_{i=1}^{l} \alpha_i - \frac{1}{2} \sum_{i=1}^{l} \alpha_i \alpha_j y_i y_j K(\vec{x}_i, \vec{x}_j)$ subject to $C \ge \alpha_i \ge 0$, $i = 1, \dots, l$, and $\sum \alpha_i y_i = 0$ Decision function

$$
f(\vec{x}) = \text{sgn}\left(\sum_{i=1}^{l} y_i \alpha_i K(\vec{x}, \vec{x}_i) + b\right)
$$

FUZZ-IEEE 2003 10

PENNSTATE

- VC theory and Support Vector Machines
- Additive fuzzy systems and kernel machines
- Support vector learning for a class of additive fuzzy systems
- **Experimental results**
- Conclusions and future work

Additive Fuzzy Systems and Kernel **Machines**

• Kernel Machines $f(\vec{x}) = \sum \alpha_i K(\vec{x}, \vec{x}_i) + b$ $i=1$

PENNSTATE

• A class of additive fuzzy systems is functionally equivalent to a class of kernel machines

Additive Fuzzy Systems and Kernel Machines (continued)

- Additive Fuzzy System (AFS)
	- *^m* fuzzy rules of the form
		- Rule j: IF \mathbf{A}_i^1 AND \mathbf{A}_i^2 AND \cdots AND \mathbf{A}_i^n THEN b_j
	- **Product as fuzzy conjunction operator**
	- Addition for fuzzy rule aggregation
	- First order moment defuzzification
	- Reference function

PENNSTATE

• Kernel is the product of reference functions

Additive Fuzzy Systems and Kernel Machines (continued)

 Positive definite fuzzy systems (PDFS) • Reference functions are positive definite functions \rightarrow Mercer kernels Examples: Gaussian Symmetric triangle Cauchy Hyperbolic secant Laplace Squared sinc

PENNSTATE

PENNSTATE

- VC theory and Support Vector Machines
- Additive fuzzy systems and kernel machines
- Support vector learning for a class of additive fuzzy systems
- **Experimental results**
- Conclusions and future work

Support Vector Learning for a Class of Additive Fuzzy Systems

PENNSTATE

- VC theory and Support Vector Machines
- Additive fuzzy systems and kernel machines
- Support vector learning for a class of additive fuzzy systems
- Experimental results
- Conclusions and future work

Experimental Results

 USPS data set • Training data (7291), testing data (2007) ● 5-fold crossvalidation to determine parameters

PENNSTATE

40209

Experimental Results (continued)

PENNSTATE $\frac{V_{1}}{18.5.5}$

PENNSTATE

- VC theory and Support Vector Machines
- Additive fuzzy systems and kernel machines
- Support vector learning for a class of additive fuzzy systems
- **Experimental results**
- Conclusions and future work

