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Supervised Learning

Samplei Resulti
Unknown
Process, Resulti

Fixed-length vector of attribute values

(usually called a “feature vector”)

Result = f (Sample)
Classification problem: if Result is discrete or categorical

Regression problem: if Result is continuous
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Multiple-Instance Learning Problem

Samplei , Resulti

Instance2

Instance1

Instancen

Instance3

M

= Resulti
Unknown
Process

Each instance is a fixed-length feature vector

discrete or continuous

Labeli

A label is associated with a bag, not the instances in the bag

Bagi
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Drug Activity Prediction

Predict whether a 
candidate drug 
molecule will bind 
strongly to a target 
protein
Binding strength is 
largely determined 
by the shape of drug 
molecules Different conformations a Butane molecule 

(C4H10) can take on. The molecule can rotate 
about the bond between the two central carbon 
atoms. (© 1998 by Oded Maron)

Bag: a molecule
Instance: a shape 
conformation
Goal: predict 
whether a molecule 
binds to a protein of 
interest, and find the 
conformation that 
binds
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Object Recognition

Bag: an image

Instance: a salient region in an image

Goal: predict whether an image contains 
an object, and identify the regions 
corresponding to the object
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Multiple-Instance Learning Models

A bag is positive if and only if it contains 
at least one positive instance
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Axis-Parallel Rectangles Algorithm (APR) 
[Dietterich, et al., AI 1997]
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But there may not exist an 
APR that contains at least 
one instance from each 
positive bag and no instance 
from any negative bags
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Multiple-Instance Learning Models
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Diverse Density Algorithm (DD) [Maron and Lozano-Pérez, NIPS 1998]
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The diverse density at a 
location is high if the location 
is close to instances from 
different positive bags and is 
far way from all instances in 
negative bags
Searching for an “axis-parallel 
ellipse” with high diverse 
density
Sensitive to noise
High computational cost

.
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Multiple-Instance Learning Models
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EM-DD Algorithm [Zhang and Goldman, NIPS 2001]
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The diverse density is 
approximated by the “most 
likely” instance in each bag
Finding an “axis-parallel 
ellipse” with high diverse 
density
Sensitive to noise
Cannot learn complex 
concepts

..
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Multiple-Instance Learning Models
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DD-SVM Algorithm [Chen and Wang, JMLR 2004]
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Sensitive to noise
Computational cost
Instance classification

Instance Prototype 1

Instance Prototype 2
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Outline

An overview

MIL via embedded instance selection
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Motivation

A bag is positive if it 
contains instances from 
at least two different 
distributions among N1, 
N2, and N3

xk

xi
xj

N1N3

N2

20 positive bags, 20 negative bags
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Motivation

Embedding of bags

Bags can be 
separated by a 
hyperplane

Find the “right” 
embedding and the 
classifier

20 positive bags and 20 negative bags in the new feature space
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MILES: Multiple-Instance Learning 
via Embedded Instance Selection

Instance-based feature mapping

Joint feature selection and classification

Minimizing a regularized training error

1-norm of w Hinge loss function

1-norm SVM
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Outline

An overview

MIL via embedded instance selection

Applications
Drug activity prediction
Human histological image classification
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Drug Activity Prediction

MUSK1 and MUSK2 benchmark data 
sets

A bag represents a molecule
An instance represents a low-energy 
conformation of the molecule (166 features)

Musk 1

Musk 2

# of bags # of instances/ bag # of positive bags

92

102

5.17

64.69

47

39
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Prediction Accuracy
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Computation Time

Training time
SunFire V800z, Solaris, P4 1.9GHz CPU
10 fold cross-validation
MILES: 6 seconds (MUSK1), 72 seconds
(MUSK2)
DD-SVM: 500 minutes (MUSK1), 1500 
minutes (MUSK2)
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Histological Image Classification

Why do we choose histological images
Automatic interpretation of histological 
images

Computer
Program

Lung
Alveolar pores
Blood vessels
Lymph vessels
:
:
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Overview

Two research problems
Classification

Identifying the organ or part of the body
Annotation

Challenges
Variations of colors
Interpretations at different magnifications
Substantial in size
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Extracting Imagery Features

What features to look for?

Adrenals Heart Kidney Liver Lung

Pancreas Spleen Testis Thyroid Uterus
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Extracting Imagery Features

Gabor filter bank scale

large
sm

all
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Extracting Imagery Features

Example
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Extracting Imagery Features

Color or grayscale?

Adrenal (H&E staining) Pancreas (H&E staining)
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Extracting Imagery Features

Texture inhomogeneity

Lung Thyroid
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Extracting Imagery Features

6x7 blocks

3x6

Gabor

Filter

Bank
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Experimental Evaluation

H&E stained, 40x

3112 images

Size 1536x1920

Block size 64x64
720 blocks

Gabor filter bank
88UterusC10

156ThyroidC9
100TestisC8
72SpleenC7

480PancreasC6
1152LungC5
428LiverC4
80KidneyC3

465HeartC2
100AdrenalsC1

Number of 
Images

Category 
Name 

Category 
ID
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Multiple-Instance Problem

Lung

Thyroid
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Performance of MILES

5-fold cross validation
MILES: 77.8%
A simple generative model: 71.5%

Training time
SunFire V800z, Solaris, P4 1.9GHz CPU
Generative model: ≈ 5~6 hours per class
MILES: ≈ 0.5 hour per class
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Future Work

Spatial information
Two-dimensional
Hidden Markov Model
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Future Work

Bag generators

Affine invariant 
regions
Image 
segmentation
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Future Work

A larger scale
Annotation

Pathology images
Content-based image retrieval
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Future Work

Storage requirement
A data matrix of size 
Sparseness

MIL in a 1-class setting
Protein interaction inference
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More Information

Papers in PDF, demonstrations, data 
sets, etc.

http://www.cs.uno.edu/~yixin

yixin@cs.uno.edu


