## Multiple-Instance Learning via Embedded Instance Selection

Yixin Chen Department of Computer Science University of New Orleans http://www.cs.uno.edu/~yixin



## Outline

#### An overview

MIL via embedded instance selection

#### Applications

- Drug activity prediction
- Human histological image classification

#### Discussions



## Supervised Learning

Fixed-length vector of attribute values

(usually called a "feature vector")

$$Sample_i, Result, Process Result_i$$

#### Result = f(Sample)

Classification problem: if *Result* is discrete or categorical

Regression problem: if *Result* is continuous



## Multiple-Instance Learning Problem





## **Drug Activity Prediction**

- Bægdiatn**wollett**udea
- Frestdidete alsugape
   Frestdidete alsugape
   Fredidete alsugape
  - protein Whether a molecule
- Binding strongthis
   Binding strong
   Binding stron



Different conformations a Butane molecule  $(C_4H_{10})$  can take on. The molecule can rotate about the bond between the two central carbon atoms. (© 1998 by Oded Maron)



## **Object Recognition**





#### A bag is positive if and only if it contains at least one positive instance

<sup>x</sup>Atxis-Parallel Rectangles Algorithm (APR) [Dietterich, et al., AI 1997]



 But there may not exist an APR that contains at least one instance from each positive bag and no instance from any negative bags



Diverse Density Algorithm (DD) [Maron and Lozano-Pérez, NIPS 1998]



- The diverse density at a location is high if the location is close to instances from different positive bags and is far way from all instances in negative bags
- Searching for an "axis-parallel ellipse" with high diverse density
  - Sensitive to noise
    - High computational cost



EM-DD Algorithm [Zhang and Goldman, NIPS 2001]



- The diverse density is approximated by the "most likely" instance in each bag
- Finding an "axis-parallel ellipse" with high diverse density
- Sensitive to noise
- Cannot learn complex concepts



DD-SVM Algorithm [Chen and Wang, JMLR 2004]





## Outline

#### An overview

#### MIL via embedded instance selection



## Motivation



$$N_1 \sim \mathcal{N}\left([5,5]^T,I\right)$$

$$N_2 \sim \mathcal{N}\left([5,-5]^T,I\right)$$

$$N_3 \sim \mathcal{N}\left([-5,5]^T,I\right)$$

$$N_4 \sim \mathcal{N}\left([-5,-5]^T,I\right)$$

$$N_5 \sim \mathcal{N}\left([0,0]^T,I\right)$$

A bag is positive if it contains instances from at least two different distributions among  $N_1$ ,  $N_2$ , and  $N_3$ 

$$egin{aligned} &(\mathbf{x}^k, \mathbf{B}_i) = \ && \max_j \; \exp\left(-rac{\|\mathbf{x}_{ij} - \mathbf{x}^k\|^2}{\sigma^2}
ight) \end{aligned}$$



## Motivation





# MILES: Multiple-Instance Learning via Embedded Instance Selection

- Instance-based feature mapping  $s(\mathbf{x}^k, \mathbf{B}_i) = \max_j \exp\left(-\frac{\|\mathbf{x}_{ij} - \mathbf{x}^k\|^2}{\sigma^2}\right)$  $\mathbf{m}(\mathbf{B}_i) = \left[s(\mathbf{x}^1, \mathbf{B}_i), s(\mathbf{x}^2, \mathbf{B}_i), \cdots, s(\mathbf{x}^n, \mathbf{B}_i)\right]^T$
- Joint feature selection and classification  $y = \operatorname{sign} (\mathbf{w}^T \mathbf{m} + b)$

Minimizing a regularized training error

 $\lambda P[\cdot] + er\underline{r}or$ 

1-norm of w Hinge loss function

1-norm SVM

## Outline

#### An overview

- MIL via embedded instance selection
- Applications
  - Drug activity prediction
  - Human histological image classification



## **Drug Activity Prediction**

- MUSK1 and MUSK2 benchmark data sets
  - A bag represents a molecule
  - An instance represents a low-energy conformation of the molecule (166 features)

|        | # of bags | # of instances/ bag | # of positive bags |
|--------|-----------|---------------------|--------------------|
| Musk 1 | 92        | 5.17                | 47                 |
| Musk 2 | 102       | 64.69               | 39                 |



## **Prediction Accuracy**

| Algorithms        | MUSK1             | MUSK2               | Type of Testing          |
|-------------------|-------------------|---------------------|--------------------------|
| MILES             | 86.3:[84.9, 87.7] | 87.7:[86.3, 89.1]   | 10-fold cross-validation |
|                   | 87.0              | 93.1                | Leave-one-out test       |
| APR [18]          | 92.4              | 89.2                | 10-fold cross-validation |
| Bagging-APR [57]  | 92.8              | 93.1                | 10-fold cross-validation |
| Bayesian-kNN [49] | 90.2              | 82.4                | Leave-one-out Test       |
| Citation-kNN [49] | 92.4              | 86.3                | Leave-one-out Test       |
| DD [33]           | 88.9              | 82.5                | 10-fold cross-validation |
| DD-SVM [16]       | 85.8              | 91.3                | 10-fold cross-validation |
| EM-DD [56]        | 84.8              | 84.9                | 10-fold cross-validation |
| mi-SVM [2]        | 87.4              | 83.6                | 10-fold cross-validation |
| MI-SVM [2]        | 77.9              | 84.3                | 10-fold cross-validation |
| MI-NN [42]        | 88.0              | 82.0                | 10-fold cross-validation |
| Multinst [4]      | 76.7:[73.6,79.8]  | 84.0 : [81.4, 86.6] | 10-fold cross-validation |
| RELIC [44]        | 83.7              | 87.3                | 10-fold cross-validation |



## **Computation Time**

#### Training time

- SunFire V800z, Solaris, P4 1.9GHz CPU
- 10 fold cross-validation
- MILES: 6 seconds (MUSK1), 72 seconds (MUSK2)
- DD-SVM: 500 minutes (MUSK1), 1500 minutes (MUSK2)



## Histological Image Classification

- Why do we choose histological images
- Automatic interpretation of histological images





### Overview





#### What features to look for?





Arizona State University, 4/28/2006

#### Gabor filter bank













#### Color or grayscale?





#### • Texture inhomogeneity







## **Experimental Evaluation**

| H&E | stained, | 40x |
|-----|----------|-----|
|     | •        |     |

- 3112 images
- Size 1536x1920
- Block size 64x64
   720 blocks

• Gabor filter bank

| Category<br>ID | Category<br>Name | Number of<br>Images |
|----------------|------------------|---------------------|
| C1             | Adrenals         | 100                 |
| C2             | Heart            | 465                 |
| C3             | Kidney           | 80                  |
| C4             | Liver            | 428                 |
| C5             | Lung             | 1152                |
| C6             | Pancreas         | 480                 |
| C7             | Spleen           | 72                  |
| C8             | Testis           | 100                 |
| C9             | Thyroid          | 156                 |
| C10            | Uterus           | 88                  |



## **Multiple-Instance Problem**





## Performance of MILES

- 5-fold cross validation
  - MILES: 77.8%
  - A simple generative model: 71.5%
- Training time
  - SunFire V800z, Solaris, P4 1.9GHz CPU
  - Generative model: ≈ 5~6 hours per class
  - MILES: ≈ 0.5 hour per class



## Outline

#### An overview

MIL via embedded instance selection

#### Applications

- Drug activity prediction
- Human histological image classification

#### Discussions







- Bag generators
  - Affine invariant regions
  - Image segmentation









• Storage requirement

• A data matrix of size  $(\ell^+ + \ell^-) \times n$ 

Sparseness

# MIL in a 1-class setting Protein interaction inference



## Supported by

- Louisiana Board of Regents RCS Grant
- NSF EPSCoR Pilot Fund
- The Research Institute for Children
- University of New Orleans



## Acknowledgement

- Hernan Correa, LSUHSC
- Dehua Zhao, University of New Orleans
- Jinbo Bi, Siemens Medical Solutions
- James Z. Wang, The Pennsylvania State University
- Ya Zhang, The University of Kansas



## More Information

## Papers in PDF, demonstrations, data sets, etc.

http://www.cs.uno.edu/~yixin

yixin@cs.uno.edu

