An Unsupervised Learning Approach to Content-Based Image Retrieval

Yixin Chen & James Z. Wang The Pennsylvania State University

IEEE Int'l Symposium on Signal Processing and its Applications

Image Retrieval

The driving forces
Internet
Storage devices
Computing power
Two approaches
Text-based approach

Content-based approach

Text-Based Approach

 Index images using keywords (Google, Lycos, etc.)

- Easy to implement
- Fast retrieval
- Web image search (surrounding text)
- Manual annotation is not always available
- A picture is worth a thousand words
- Surrounding text may not describe the image

A Data-Flow Diagram

Open Problem

- Nature of digital images: arrays of numbers
- Descriptions of images: high-level concepts
 - Sunset, mountain, dogs,
- Semantic gap
 - Discrepancy between low-level features and highlevel concepts
 - High feature similarity may not always correspond to semantic similarity

CLUE: CLUsters-based rEtrieval of images by unsupervised learning

Hypothesis

In the "vicinity" of a query image, images tend to be semantically clustered

 CLUE attempts to capture high-level semantic concepts by learning the way that images of the same semantics are similar

IEEE Int'l Symposium on Signal Processing and its Applications

System Overview

A general diagram of a CBIR system using CLUE

Neighboring Images Selection

- Nearest neighbors method
 - Pick k nearest neighbors of the query as seeds
 - Find *r* nearest neighbors for each seed
 - Take all distinct images as neighboring images

PENNSTATE

Weighted Graph Representation

- Graph representation
 - Vertices denote image
 - Edges are formed between vertices
 - Nonnegative weight of an edge indicates the similarity between two vertices

IEEE Int'l Symposium on Signal Processing and its Applications

Clustering

 Graph partitioning and cut

$$cut(\mathbf{A}, \mathbf{B}) = \sum_{i \in \mathbf{A}, j \in \mathbf{B}} w_{ij}$$

• Normalized cut (Ncut) [Shi et al., IEEE Trans. PAMI 22(8)]

$$Ncut(\mathbf{A}, \mathbf{B}) = \frac{cut(\mathbf{A}, \mathbf{B})}{assoc(\mathbf{A}, \mathbf{V})} + \frac{cut(\mathbf{A}, \mathbf{B})}{assoc(\mathbf{B}, \mathbf{V})}$$

Recursive Ncut

PENNSTATE

IEEE Int'l Symposium on Signal Processing and its Applications

An Experimental System

User Interface

Query Examples

Query Examples from 60,000-image COREL Database

Bird, car, food, historical buildings, and soccer game

CLUE

UFM

Query Examples

UFM CLUE 15553 : 1 15519 : 1 15571 1.00 4 15549 0.94 Car, 8 out of 11 Car, 4 out of 11 45209 0.92 Food, 8 out of 11 Food, 4 out of 11 PENNSTATE IEEE Int'l Symposium on Signal 20 📢 Processing and its Applications

Query Examples

CLUE

45974 : 1

Historical buildings, 10 out of 11

47421

UFM

7915 0.95 1

25150 0.9

Historical buildings, 8 out of 11

Clustering WWW Images

Top 18 images within each cluster

Clustering WWW Images

Clustering WWW Images

Retrieval Accuracy

Conclusions

- Retrieving image clusters by unsupervised learning
- Tested using 60,000 images from COREL and images from WWW

IEEE Int'l Symposium on Signal Processing and its Applications

Future Work

PENNSTATE

- Recursive Ncut
- Representative image
- Other graph theoretic clustering techniques

Nonlinear dimensionality reduction

Thank You!

IEEE Int'l Symposium on Signal Processing and its Applications

