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The joint space mass-inertia matrix plays a very important role in the vibration

isolation and pointing control of the hexapod. Although it can be calculated from the

system parameters of the hexapod, in practice the calculation is laborious and can intro-

duce errors. However, it can also be estimated using the measurements of the payload

accelerations and base forces. The estimation problem is equivalent to solving an overde-

termined set of linear equations AX = B where A, B are matrices of measurements.

The main subtlety here is that X must be symmetric and positive de�nite. The least

squares based symmetric procrustes method employs the symmetry constraint. But the

de�niteness of the estimate is not guaranteed. And one of the data matrices A or B

should be \error" free. The Total Least Squares method can handle the case when

\errors" exists in both A and B. But neither the symmetry nor the positive de�nite

constraints can be embedded into the algorithm. A new method is proposed which can

directly take into account both the symmetry and the positive de�nite constraints. The

new method is experimentally compared to the other two methods. Numerical experi-

mental results indicate that the new approach is practical and gives a better estimate.
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Chapter 1

UW's Flexure Jointed Hexapods

Several researchers have developed exure jointed hexapods for micro-precision ap-

plications in which only a very small workspace is required ([1], [2], [3], [4], [5], [6], [7],

[8]). UW's hexapods are exure jointed hexapods. Figure 1.1 shows the structure of one

of the UW's two exure jointed hexapods.

Flexure jointed hexapods are great candidates for micro-precision applications, such

as micro-manipulation, laser weapon pointing, optical communications, and remote sens-

ing. They can provide simultaneous six degree-of-freedom active and passive vibration

isolation and precision pointing. To avoid the extremely nonlinear micro-dynamics of

joint friction and backlash, these hexapods employ exure joints. A exure joint bends

material to achieve motion, rather than sliding or rolling across two surfaces. This does

eliminate friction and backlash, but adds spring dynamics and limits the workspace.

Compared to non-exure jointed hexapods, exure jointed hexapods have several

distinct characteristics [9]:

� The exures greatly alter the dynamic behavior.
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Figure 1.1: One of the UW's two exure jointed hexapods.

� The base motion is a signi�cant contributor to the overall motion, even when the

base is subjected only to ambient seismic vibrations.

� Because the workspace is so small, linearized dynamic models are highly accurate.

Flexure jointed hexapods have been developed to meet two principle needs, depend-

ing on what is mounted to the hexapod \box" [10]. Figure 1.2 de�nes the two general

problems. Generally, the \quiet box" problem uses payload acceleration, velocity, or

position measurements to control the payload motion. The \dirty box" problem uses

base force feedback to minimize the transmission of forces to the base.
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Figure 1.2: Problem #1: Vibrating machinery must be isolated from a precision bus

(this is termed the dirty box problem because the machinery mounted on the hexapod

\box" is mechanically \dirty", i.e. vibrating). Problem #2: A precision payload must be

manipulated in the presence of base vibrations and/or exogenous forces (this is termed

the quiet box problem).
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Chapter 2

Dynamic Modeling of Flexure

Jointed Hexapods

This chapter �rst summarizes the dynamic model of exure jointed hexapods [10],

then introduces the de�nition of the joint space mass-inertia matrix, and briey describes

its physically intrinsic properties.

2.1 Dynamic Model of Flexure Jointed Hexapods

Figure 2.1 illustrates a general exure jointed hexapod. Like any hexapod, it consists of

a base, a payload, and six struts that can change their lengths using the linear actuators

inside them. The struts, which have spherical joints at both ends, connect the payload

to the base.

In the joint space, the dynamics of a exure jointed hexapod are written as [10]

~fb = ~fm �K(~l �~lr)�B
_~l (2.1)

(UPR
PMx

B
PR

T
J�1 + U

BRJ
TMs)

�~l + U
BRJ

TB
_~l + U

BRJ
TK(~l �~lr) =

U
BRJ

T ~fm � (UBRJ
TMs +

U
PR

PMx
U
PR

T
JcJB

�1)�~qs +
~Fe + ~G + ~C (2.2)
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Figure 2.1: A exure jointed hexapod (or Stewart Platform). fPg is a Cartesian coor-

dinate frame located at, and rigidly attached to, the payload's center of mass. fBg is

the frame attached to the (possibly moving) base, and fUg is a Universal inertial frame

of reference.

where

� J is the 6� 6 hexapod Jacobian relating payload Cartesian movements, expressed

in the fPg frame, to strut length changes in the joint space,

� U
BR is the 6�6 rotation matrix from the base frame, fBg, to the Universal inertial

frame of reference fUg (it consists of two identical 3� 3 rotation matrices forming

a block diagonal 6 � 6 matrix). Similarly, B
PR is the rotation matrix from the

payload frame to the base frame, and U
PR =U

B R
B
PR,

� Jc and JB are 6� 6 Jacobian matrices capturing base motion,

� PMx is the 6 � 6 mass-inertia matrix of the payload, found with respect to the

payload frame, fPg, whose origin is at the hexapod payload's center of mass,
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� Ms is a diagonal 6� 6 matrix containing the moving mass of each strut,

� B and K are 6�6 diagonal matrices containing the damping and sti�ness, respec-

tively, of each strut,

� ~l is the 6� 1 vector of strut lengths, and ~lr is the constant vector of relaxed strut

lengths,

� ~fb is the 6� 1 vector of forces exerted at the bottom of the strut,

� ~fm is the 6� 1 vector of strut motor forces,

� �~qs is a 6� 1 vector of base accelerations along each strut plus some Coriolis terms,

� ~Fe is a 6� 1 vector of payload exogenous generalized forces applied at the origin

of the fPg frame,

� ~C is a 6� 1 vector containing all the Coriolis and centripetal terms,

� ~G is a 6� 1 vector containing all gravity terms.

Since the struts can only move very small distances, the Jacobian (J) and the rotation

matrix (BPR) can be considered constant, and Coriolis and Centripetal terms are often

negligible.

Note that the base motions play a role in the dynamic model (2.2) both explicitly

(�~qs,
U
PR, and

U
BR) and implicitly (through

�~l,
_~l, and ~l). The relations among payload

motion, base motion and strut dynamics can be described as [10]

~l = ~ps � ~qs (2.3)
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_~l = _~ps � _~qs (2.4)

�~l = �~ps � �~qs (2.5)

where ~ps = [~uT1 ~p1; :::; ~u
T
6 ~p6]

T
, ~qs = [~uT1 ~q1; :::; ~u

T
6 ~q6]

T
, ~pi denotes the three dimensional

attachment point of the ith strut to the payload and ~qi denotes the attachment point of

the ith strut to the base (Figure 2.1), ~ui is the unit direction vector of the ith strut (~pi,

~qi, and ~ui are expressed in the same coordinate frame).

Substituting (2.3-2.5) into (2.1-2.2) and rearranging terms produces the following

dynamic equations

~fb = ~fm �K(~ps � ~qs �~lr)�B( _~ps � _~qs) (2.6)

(UPR
PMx

B
PR

T
J�1 + U

BRJ
TMs)�~ps +

U
BRJ

TB _~ps +
U
BRJ

TK~ps =
U
BRJ

T ~fm+

(UPR
PMx

B
PR

T
J�1 � U

PR
PMx

U
PR

T
JcJB

�1)�~qs +
U
BRJ

TB _~qs +
U
BRJ

TK(~qs +~lr)+

~Fe + ~G + ~C : (2.7)

For the small movements possible in exure jointed hexapods, J, Jc, JB, and
B
PR are

all nearly constant. For small base motions, U
BR,

U
PR, and

~G are constant, while ~C can

be neglected because large velocities cannot be attained in the small distance moved.

Large base motions can be treated by incorporating U
BR and feeding forward ~G and ~C

terms.

By letting the spring compression absorb the static gravity forces (for small base

motions) or the static part of gravity forces (for the large base motions), both ~lr and ~G
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terms can be removed. Thus (2.7) can be written as the following equation

(UPR
PMx

B
PR

T
J�1 + U

BRJ
TMs)�~ps +

U
BRJ

TB _~ps +
U
BRJ

TK~ps =
U
BRJ

T ~fm+

(UPR
PMx

B
PR

T
J�1 � U

PR
PMx

U
PR

T
JcJB

�1)�~qs +
U
BRJ

TB _~qs +
U
BRJ

TK~qs + ~Fe +�~G :(2.8)

where �~G is the dynamic part of gravity forces. For small base motions, �~G = ~0.

Multiplying both sides of (2.8) by J�T UBR
T
, it can be written as

Mp
�~ps +B _~ps +K~ps = ~fm +Mq

�~qs +B _~qs +K~qs + J�T UBR
T
( ~Fe +�~G) (2.9)

where

Mp = J�TBPR
PMx

B
PR

T
J�1 +Ms (2.10)

Mq = J�TBPR
PMx

B
PR

T
J�1 � J�TBPR

PMx
U
PR

T
JcJB

�1: (2.11)

2.2 Hexapod's Joint Space Mass-Inertia Matrix

The hexapod's joint space mass-inertia matrix Mp is de�ned as (2.10)

Mp = J�TBPR
PMx

B
PR

T
J�1 +Ms (2.12)

where J is the hexapod Jacobian relating payload Cartesian movements to strut length

changes in the joint space, B
PR is the rotation matrix from the payload frame to the

base frame, PMx is the mass-inertia matrix of the payload found with respect to the

payload frame, and Ms is a diagonal matrix containing the moving mass of each strut.

The payload's mass-inertia matrix, PMx, consists of two blocks, one expressing mass
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and the other expressing inertial properties of the payload,

BMx = B
PR

PMx
B
PR

T

= B
PR

2
6664
mpI3�3 03�3

03�3
cI

3
7775 B
PR

T

=

2
6664
mpI3�3 03�3

03�3
B
PR

cIBPR
T

3
7775 (2.13)

where mp is the payload mass, and cI is the symmetric inertia tensor [11] of the payload

with respect to the payload frame fPg. The upper block, mpI3�3, is always diagonal.

The lower block, B
PR

cIBPR
T
, is always symmetric.

The joint space mass-inertia matrix (Mp) has two properties:

� It is symmetric.

� It is positive de�nite.

The �rst property comes directly from (2.12) and the fact that cI is symmetric. The sec-

ond property is not obvious. But it can be derived from the intrinsic physical properties

of the BMx matrix. For any rigid body, there exist three orthogonal axes of symmetry

with the payload mass distributed symmetrically about these axes. BMx is then diag-

onal with nonnegative diagonal entries if fBg is selected to coincide with these axes.

This implies that PMx is similar to a positive semi-de�nite diagonal matrixD, i.e. there

exists a rotation matrix B
PR, which is by de�nition unitary, such that B

PR
PMx

B
PR

T
= D.

The de�niteness of BMx can also be derived from the energy point of view. The kinetic
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energy of the payload is 1
2
_~�
T
BMx

_~�, where _~� is the payload's Cartesian space velocity.

The kinetic energy is always greater than or equal to zero. This implies that BMx is

positive semi-de�nite. Since Ms is positive de�nite, Mp can be concluded to be positive

de�nite from (2.12).

Substituting (2.6) into (2.9), assuming ~lr and ~G terms cancel each other, and solving

for ~fb gives

~fb =Mp
�~ps �Mq

�~qs � J�T UBR
T ~Fe : (2.14)

where ~fb is the 6 � 1 vector of forces exerted at the bottom of the strut, �~ps is a 6 � 1

vector of payload accelerations along each strut, �~qs is a 6�1 vector of base accelerations

along each strut, and ~Fe is a 6�1 vector of payload exogenous generalized forces applied

at the origin of the fPg frame.

It can be seen from (2.14) that the payload accelerations (�~ps) are related to the

base forces (~fb) by Mp. (2.9) shows that the \modes" of the hexapod are determined

by the eigenvalues of the matrix Mp
�1K. Thus Mp plays a very important role in the

compensator design for the vibration isolation and pointing control of the exure jointed

hexapod [12].

Note that since the accelerometer can only measure the acceleration along the strut

direction, the measured payload accelerations is not �~ps but
�~pu, where

�~pu is a vector of

payload accelerations along each strut (�~pu = [~uT1
�~p1; : : : ; ~u

T
6
�~p6]

T ). The di�erence between

�~ps and
�~pu is that

�~ps =
�~pu+

~C1, where ~C1 = [ _~u
T

1
_~p1; : : : ;

_~u
T

6
_~p6]

T is a vector of Coriolis terms.

Compared with the magnitude of �~pu,
~C1 is negligible.
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Chapter 3

Estimation of the Joint Space

Mass-Inertia Matrix Using the

Least Squares Approach

There are two ways of obtaining the joint space mass-inertia matrix Mp. One way

is to calculate Mp from the design parameters of the hexapod. The other is to identify

Mp from measurements. The former method requires exact values of Ms, Mx, and J,

which in practice is laborious and can introduce errors. This chapter �rst formulates the

estimation problem, then summarizes a constrained least squares algorithm, proposed by

Brock ([14]) and Higham ([15]), which can possibly be used to estimateMp. A di�erent

proof of the algorithm is also given. Finally, a method is introduced for computing the

nearest symmetric positive semi-de�nite matrix (in the Frobenius norm) to an arbitrary

real matrix [17]. The results derived in this chapter utilize the analytic qualities of

convex sets and convex functions. Some additional background for these properties is

included in Appendix A.
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3.1 A Constrained Least Squares Problem

Equation (2.14) describes the relationships between the payload accelerations (�~ps) and

the base forces (~fb). If the base is kept stationary and there are no exogenous generalized

forces exerted on the payload then �~qs = ~0 and ~Fe = ~0. And use the measured payload

acceleration �~pu instead of �~ps. Thus (2.14) becomes

~fb =Mp
�~pu : (3.1)

This implies that if both the base forces ~fb and strut accelerations (�~pu) are measured,

then Mp can be estimated. The main subtlety is that Mp is symmetric and positive

de�nite.

Estimation of the Mp matrix �ts into a class of constrained least squares approxi-

mation problems: Find

min
X2P

kAX�Bk2F ; A; B 2 Rm�n; m � n; (3.2)

where P � Rn�n, and k:kF denotes the Frobenius (or Euclidean) norm (2.3.2, [13]),

kYkF =

0
@X

i;j

y2ij

1
A

1=2

: (3.3)

Equation (3.2) can also be written as

min
X2P

Trace
n
(AX�B)T (AX�B)

o
; A; B 2 Rm�n; m � n; (3.4)

where P � Rn�n, and Tracef:g denotes the trace of a matrix,

Trace fYg =X
i

yii: (3.5)
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If P = Rn�n, then (3.2) and (3.4) becomes a standard unconstrained least squares

problem, having a well-known solution X = A+B, where A+ is the pseudo-inverse of

A [13]. If P is the set of all real symmetric matrices, then the problem is called the

\symmetric procrustes problem" [15].

3.2 The Symmetric Procrustes Problem

The symmetric procrustes problem arises in the determination of the strain matrix

of an elastic structure: �nd the symmetric matrix which minimizes the Frobenius (or

Euclidean) norm of AX � B, where A and B are given rectangular matrices. In [14],

Brock derives the normal equation of this problem. He claims that the solutions of the

normal equation are local minimums. As this thesis will show, his proof in incomplete. In

[15], Higham derives the same normal equation and the set of minimizers using singular

value decomposition, and gives a suÆcient condition to get a positive de�nite or positive

semi-de�nite solution. This section gives a di�erent proof of Brock and Higham's results.

The Symmetric Procrustes Problem can be stated as

min
X=XT ;X2Rn�n

kAX�Bk2F ; A; B 2 Rm�n; m � n; (3.6)

which is equivalent to minimizing a scalar

� = Trace
n
(AX�B)T (AX�B)

o
: (3.7)

Employing the fact that X = XT , (3.7) can be written as

� = Trace
n
XATAX�XATB�BTAX+BTB

o
: (3.8)
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Using the following known identities in matrix calculus

Trace fPQg = Trace fQPg ; (3.9)

Trace fPg+ Trace fQg = Trace fP+Qg ; (3.10)

Trace fPg = Trace
n
PT
o
; (3.11)

@Trace fPg
@x

= Trace

(
@P

@x

)
; (3.12)

"
@P

@x

#T
=

@PT

@x
; (3.13)

where P;Q 2 Rn�n; x 2 R, then the partial derivative of � with respect to xij is derived

as [14]

@�

@xij
= Trace

(
@X

@xij
ATAX+XATA

@X

@xij
� @X

@xij
ATB�BAT @X

@xij

)

= Trace

(h
ATAX+XATA�ATB�BAT

i @X
@xij

)
; (3.14)

where xij is the ijth entry of the X matrix. Thus, � is made stationary with respect to

each element of X if X satis�es the equation

ATAX+XATA = ATB+BTA: (3.15)

Equation (3.15) is the normal equation of the symmetric procrustes problem. It is a

special form of Lyapunov equation.

The solutions of (3.15) are called critical points (stationary points). A critical point

can be a minimizer, a maximizer, or a saddle point. The following new lemma and

theorem prove that the critical points of � are minimizers.
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Lemma 3.1 If f(X) is a real-valued function de�ned on Rn�n by

f(X) = Trace
n
(AX�B)T (AX�B)

o
; (3.16)

where A, B 2 Rm�n, then f(X) is convex on Rn�n and any convex subset of Rn�n. If

Rank(A) = n, then f(X) is strictly convex on Rn�n and any convex subset of Rn�n.

Proof: From De�nition A.1 (Appendix A), it is easy to check that Rn�n is convex.

Let X = [~x1; ~x2; : : : ; ~xn];B = [~b1;~b2; : : : ;~bn]; where ~xi 2 Rn;~bi 2 Rm; i = 1; : : : ; n.

Then

f(X) = Trace
n
(AX�B)T (AX�B)

o

=
nX
i=1

h
(A~xi �~bi)

T (A~xi �~bi)
i

=
h
Ac~x�~b

iT h
Ac~x�~b

i

= ~xTAc
TAc~x� 2~bTAc~x+~bT~b;

where Ac = In�n 
 A, 
 denotes Kronecker product, ~x =
h
~xT1 ; ~x

T
2 ; : : : ; ~x

T
n

iT
, and ~b =

h
~bT1 ;

~bT2 ; : : : ;
~bTn

iT
. So

rf(X) = 2Ac
TAc~x� 2Ac

T~b;

Hf(X) = 2Ac
TAc:

Since Hf(X) is always positive semi-de�nite, it follows from Theorem A.4 that

f(X) is convex on Rn�n. And from De�nition A.2, f(X) is convex on any subset of

Rn�n. Moreover, if Rank(A) = n, then Rank(Ac) = n2. So Hf(X) is positive de�nite,
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which implies that f(X) is strictly convex on Rn�n. And from De�nition A.2, f(X) is

strictly convex on any open subset of Rn�n. 2

Theorem 3.2 De�ne the set of minimizers of (3.6) as

M =
n
X 2 Rn�n : X = XT and f(X) � f(Y); for all Y = YT ;Y 2 Rn�n

o
; (3.17)

where

f(X) = Trace
n
(AX�B)T (AX�B)

o
:

then

1. X 2M if and only if X = XT and ATAX+XATA = ATB+BTA.

2. The minimizer is unique if and only if rank(A) = n.

3. If rank(A) = n and ATB+BTA is positive (semi-)de�nite then the unique mini-

mizer XLS is positive (semi-)de�nite.

Proof: De�ne a set, S, of all symmetric matrices as

S =
n
X 2 Rn�n : X = XT

o

From De�nition A.1, it is easy to check that S is convex. Since S is a subset of Rn�n,

so from Lemma 3.1, f(X) is convex on S. Then (1) follows from Corollary A.7 and

Theorem A.8.

If rank(A) = n, then from Lemma 3.1 f(X) is strictly convex on S. From Theorem

A.9 the minimizer is unique. And the normal equation (3.15) has a unique solution only

if rank(A) = n. This proves (2).
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If rank(A) = n, then ATA is positive de�nite, thus the unique solution of the

normal equation (3.15) can be written as (p.82, [16])

XLS =
Z 1

0
e�A

T
At(ATB+BTA)e�A

T
Atdt; (3.18)

which is positive (semi-)de�nite. This proves (3).2

The last property gives a suÆcient condition for the de�niteness of XLS. Note

that the condition is not necessary. An example in [14] shows that XLS can be positive

de�nite when ATB + BTA is inde�nite. All the above properties can also be proved

using a singular value decomposition approach [15].

3.3 Frobenius Norm Positive Approximation

Last section presents a method to �nd a symmetric matrix X which \best" describes the

linear relationships between A and B. Here \best" denotes minimizing the Frobenius

norm of AX�B, where X is positive (semi-)de�nite if ATB +BTA is positive (semi-

)de�nite.

In many applications (like in our case), the intrinsic relationships between A and B

are characterized by a symmetric and positive (semi-)de�nite matrix. But, due to some

unknown factors, such as measurement noises and unmodeled dynamics residing in A

and/or B, ATB+BTA may not be positive (semi-)de�nite. Thus the normal equation

(3.15) may yield an inde�nite solution although positive (semi-)de�niteness is what we

really want.
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In [17], Higham derives a method of computing the nearest symmetric positive

semi-de�nite matrix in the Frobenius norm to an arbitrary real matrix. The method is

summarized as follows:

For any A 2 Rn�n

1. B = A+AT

2
.

2. B = U�VT , the singular value decomposition of B.

3. H = V�VT .

4. XF = B+H
2

is the unique positive approximation of A in the Frobenius norm.

Note that if A is positive de�nite, then the above steps can give a symmetric positive

de�nite approximation. If A is not positive de�nite, the above steps can only give a

symmetric positive semi-de�nite approximation.
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Chapter 4

Estimation of the Joint Space

Mass-Inertia Matrix Using the Total

Least Squares Approach

This chapter �rst presents a geometric interpretation of the least squares and total

least squares methods, then summarizes the basic algorithms for one-dimensional and

multi-dimensional total least squares problems. Finally, a way is proposed to employ

the symmetric constraint.

4.1 Some Geometric Motivations

The least squares method and total least squares method are used to solve a set of

overdetermined linear equations

A~x = ~b; (4.1)

where A and ~b are known.

In the classical least squares approach, the measurement data matrix A is assumed

to be free of error. Hence all errors are con�ned to the observation vector ~b. However,
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in many applications, like in our case, sampling errors, modeling errors, and sometimes

human errors make the data matrix A inaccurate as well. Total least squares is one of

the methods of doing estimation when there are errors in both the observation vector ~b

and the data matrix A.

To compare the e�ects of using least squares as opposed to using total least squares,

let's �rst look at a one variable case, solving a set of overdetermined equations

~ax = ~b; (4.2)

where ~a = [a1; a2; : : : ; am]
T ;~b = [b1; b2; : : : ; bm]

T 2 Rm are known, and x 2 R.

If both ~a and ~b are free of errors, and the underlying relationship between ~a and ~b

is described by (4.2), then there exists an exact solution of (4.2). However, in almost all

applications, either ~a or ~b, or both of them contain errors. So there is no exact solution

of (4.2).

Suppose the errors exist only in~b, then using a least squares approach is appropriate,

and the least squares solution of (4.2) is

xLS =
~aT~b

~aT~a
; (4.3)

which minimizes the sum of the squared di�erences
Pm

i=1 (bi � aix)
2.

Suppose the errors exist only in ~a, then using a least squares approach is again

appropriate, because (4.2) can be written as

~b

x
= ~a: (4.4)
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Thus the least squares solution of (4.4) is

xLS =
~bT~b

~bT~a
; (4.5)

which minimizes the sum of the squared di�erences
Pm

i=1 (ai � bi
x
)2.

Geometric interpretations of (4.3) and (4.5) are given in Figure 4.1 and Figure 4.2.

-
a

6b

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

b b

b b b

b
b

b

b

b
b

b
b

bi

ai1

x

jbi � aixj
6

?

Figure 4.1: Geometric interpretation of one parameter estimation (least squares solution)

~ax = ~b with errors in the measurements ~b.

As shown in Figure 4.1, the least squares solution (4.3) minimizes the sum of the squared

vertical \errors". And in Figure 4.2, the least squares solution (4.5) minimizes the sum

of the squared horizontal \errors".

However, in many applications, both ~a and ~b are measurements containing errors.

If the errors are independently and identically distributed with zero mean and common

variance, the best estimate x̂ of (4.2) is obtained by minimizing the sum of squared

distances of the observed points from the �tted line, i.e.,
Pm

i=1
(bi�aix)2

(1+x2)
[18].

In fact x̂ is the total least squares solution of (4.2). Figure 4.3 illustrates the
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Figure 4.2: Geometric interpretation of one parameter estimation (least squares solution)
~b
x
= ~a with errors in the measurements ~a.

estimation. The deviations are orthogonal to the �tted line. Therefore, it is the sum of
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Figure 4.3: Geometric interpretation of one parameter estimation (total least squares

solution) with errors in both the measurements ~a and ~b.

squares of their lengths that is minimized.
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4.2 Solving Total Least Squares Problem

In the �eld of numerical analysis, the total least squares problem was studied by Golub

and Van Loan [19]. It is an alternative form of the least squares method suitable for the

case where all data are a�ected by errors.

A good way to introduce and motivate the total least squares method is to recast

the ordinary least squares problem (12.3, [13]).

De�nition 4.1 (Ordinary least squares problem) (De�nition 2.2, [20]) Given an

overdetermined set of m linear equations A~x = ~b in n unknowns ~x, the least squares

problem seeks to

min
~b02Rm

k~b�~b0k2 (4.6)

subject to ~b0 2 Range(A): (4.7)

Once a minimizing~b0 is found, then any ~x satisfyingA~x = ~b0 is called a least squares

solution and �~b0 = ~b�~b0 the corresponding least squares correction. Equation (4.6) and

(4.7) are satis�ed if ~b0 is the orthogonal projection of ~b onto Range(A). Thus, the least

squares problem amounts to perturbing the observation ~b by a minimum amount �~b so

that ~b0 = ~b��~b0 can be \predicted" by the columns of A.

The underlying assumption here is that the data matrix A is exactly known, and

errors only occur in the observation vector ~b. In many applications, this assumption

is not realistic since sampling errors, unmodeled dynamics, or measurement noise also

a�ect the data matrixA. As in our case, there are sampling errors, unmodeled dynamics,
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and measurement noise in both the base forces and the payload accelerations.

One way to take into account the errors in the data matrix A is to introduce

perturbations in A. Under a similar idea as that of the ordinary least squares problem,

the total least squares problem is de�ned as following.

De�nition 4.2 (Basic total least squares problem) (De�nition 2.3, [20]) Given an

overdetermined set of m linear equations A~x = ~b in n unknowns ~x, the total least squares

problem seeks to

min
[Â;~̂b]2Rm�(n+1)

k[A;~b]� [Â;~̂b]kF (4.8)

subject to ~̂b 2 Range(Â): (4.9)

Once a minimizing [Â;~̂b] is found, then any ~x satisfying Â~x = ~̂b is called a total

least squares solution and [�Â; �~̂b] = [A;~b]�[Â;~̂b] the corresponding total least squares

correction.

The following two theorems are of great theoretical and practical importance for

the total least squares problems. The �rst theorem is about the singular value decom-

position, and the other is about the matrix approximation.

Theorem 4.3 (Singular value decomposition (SVD)) (Theorem 2.5.2, [13]) IfA 2

Rm�n, then there exist orthogonal matrices

U = [~u1; : : : ; ~um] 2 Rm�m and V = [~v1; : : : ; ~vn] 2 Rn�n (4.10)

such that

UTAV = diag[�1; : : : ; �p] 2 Rm�n p = min (m;n) (4.11)
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where �1 � �2 � : : : � �p � 0.

Theorem 4.4 (Eckart-Young-Mirsky matrix approximation theorem) (Theorem

2.3, [20]) Let the singular value decomposition of A 2 Rm�n be given by

A =
rX

i=1

�i~ui~v
T
i with r = rank(A): (4.12)

If k < r and Ak =
Pk

i=1 �i~ui~v
T
i , then

min
rank(B)=k

kA�BkF = kA�AkkF =

vuut pX
i=k+1

�i2; p = min (m;n): (4.13)

As pointed out in [21] and [19], the singular value decomposition can be used to

solve the total least squares problem. Let's �rst bring A~x = ~b into the following form:

[A;~b]

2
6664

~x

�1

3
7775 = ~0: (4.14)

Then, let the singular value decomposition of [A;~b] be

[A;~b] = U�VT (4.15)

where

� = diag[�1; : : : ; �n; �n+1] 2 Rm�(n+1); �1 � : : : � �n � �n+1 � 0;

U = [~u1; : : : ; ~un; ~un+1; : : : ; ~um] 2 Rm�m; UUT = Im;

V = [~v1; : : : ; ~vn; ~vn+1] 2 R(n+1)�(n+1); VVT = In+1: (4.16)

If �n+1 6= 0, then [A;~b] is of rank n + 1 and the space S generated by the rows of

[A;~b] coincides with Rn+1. There is no nonzero vector in the orthogonal complement
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of S, hence the set of equations (4.14) have no solution (or are called incompatible).

To obtain a solution, the rank of [A;~b] must be reduced to n. From the Eckart-Young-

Mirsky Theorem 4.4, the best rank n total least squares approximation [Â;~̂b] of [A;~b],

which minimizes the deviations in variance, is given by

[Â;~̂b] = U�̂VT with �̂ = diag[�1; : : : ; �n; 0] 2 Rm�(n+1): (4.17)

And the minimal total least squares correction given by (4.13) is then

�n+1 = min
rank([Â;~̂b])=n

k[A;~b]� [Â;~̂b]kF ; (4.18)

with

[A;~b]� [Â;~̂b] = [�A; �~b] = �n+1~un+1~v
T
n+1: (4.19)

Now, the approximate equations

[Â;~̂b]

2
6664

~x

�1

3
7775 = ~0 (4.20)

are compatible and the solution is ~vn+1, as it is in the null space of [Â;~̂b]. Thus the total

least squares solution is obtained by scaling ~vn+1 so that its last entry is �1:
2
6664
~xTLS

�1

3
7775 = �1

vn+1;n+1

~vn+1; (4.21)

where vn+1;n+1 is the (n+1; n+1)th entry of matrix V in (4.16). Note, if �n+1 = 0, then

[A;~b] is of rank n, hence ~vn+1 is in the null space of [A;~b]. So the total least squares

solution is still given by (4.21).
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The following theorem gives conditions for the uniqueness and existence of a total

least squares solution.

Theorem 4.5 (Solution of the total least squares problem A~x = ~b) (Theorem 2.6,

[20]) Suppose the singular value decomposition of A is A = U0�0V0T , where

�0 = diag[�01; : : : ; �
0
n] 2 Rm�n; �01 � : : : � �0n � 0;

U0 = [~u01; : : : ; ~u
0
m] 2 Rm�m; U0U0T = Im;

V0 = [~v01; : : : ; ~v
0
n] 2 Rn�n; V0V0T = In:

And the singular value decomposition of [A;~b] is given by (4.15) and (4.16). If �0n > �n+1,

then

[Â;~̂b] = U�̂VT ; and �̂ = diag[�1; : : : ; �n; 0]; (4.22)

with corresponding total least squares correction matrix

[�Â; �~̂b] = [A;~b]� [Â;~̂b] = �n+1~un+1~v
T
n+1; (4.23)

solves the total least squares problem (4.8) and (4.9). And

~xTLS = � 1

vn+1;n+1

[v1;n+1; : : : ; vn;n+1]
T (4.24)

exists and is the unique solution to A~̂x = ~̂b. vij is the (i; j)th entry of matrix V.

Next, let's consider the multidimensional total least squares problem. Similar to

the basic total least squares problem (De�nition 4.2), it is de�ned as
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De�nition 4.6 (Multidimensional total least squares problem) (De�nition 3.1,

[20]) Given an overdetermined set of m linear equations AX = B, B 2 Rm�d, in

n� d unknowns X. The multidimensional total least squares problem seeks to

min
[Â;B̂]2Rm�(n+d)

k[A;B]� [Â; B̂]kF (4.25)

subject to Range(B̂) � Range(Â): (4.26)

Once a minimizing [Â; B̂] is found, then any X satisfying

ÂX = B̂ (4.27)

is called a total least squares solution and [�Â; �B̂] = [A;B]� [Â; B̂] the corresponding

total least squares correction.

Similar to the one dimensional case, �rst bring (4.27) into the following form:

[A;B]

2
6664

X

�Id

3
7775 = 0m�d: (4.28)

To obtain a solution, the rank of [A;B] must be reduced to n. First let the singular

value decomposition of [A;B] be

[A;B] = U���V�T (4.29)

with

U� = [U1;U2] 2 Rm�m; U1 = [~u1; : : : ; ~un]; U2 = [~un+1; : : : ; ~um]; U
�TU� = Im;

V� =

2
6664
V11 V12

V21 V22

3
7775 = [~v1; : : : ; ~vn+d] 2 R(n+d)�(n+d); V11 2 Rn�n; V12 2 Rn�d;
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V21 2 Rd�n; V22 2 Rd�d; V�TV� = I(n+d)�(n+d);

�� =

2
6664
�1 0

0 �2

3
7775 = diag[�1; : : : ; �n+t]; t = min (m� n; d); �1 � : : : � �n+t � 0;

�1 = diag[�1; : : : ; �n] 2 Rn�n; �2 = diag[�n+1; : : : ; �n+t] 2 R(m�n)�d:

Using the Eckart-Young-Mirsky Theorem 4.4, the best rank n approximation [Â; B̂] of

[A;B] that minimizes (4.25) is obtained by making the smallest singular values �n+i,

1 � i � d, of [A;B] be zero. From (4.29), the lower rank approximation of (4.28) is

[Â; B̂]

2
6664

X

�Id

3
7775 = 0m�d (4.30)

with

[Â; B̂] = U1�1[V
T
11;V

T
21]; (4.31)

the total least squares approximation of [A;B]. The corresponding total least squares

correction matrix is given by

[�Â; �B̂] = U2�2[V
T
12;V

T
22] (4.32)

and its Frobenius norm

k[�Â; �B̂]kF = k�2kF =

vuut tX
i=1

�2
n+i; where t = min (m� n; d) (4.33)

represents the minimal total least squares correction. The solution of (4.30) is then given

by the d right singular vectors

2
6664
V12

V22

3
7775, which are in the null space of [Â; B̂]. If V22 is
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nonsingular, the total least squares solution is

2
6664
XTLS

�Id

3
7775 =

2
6664
V12

V22

3
7775 [�V�1

22 ] =

2
6664
�V12V

�1
22

�Id

3
7775 : (4.34)

The conditions for uniqueness and existence of a total least squares solution for multi-

dimensional problems are given in the following theorem.

Theorem 4.7 (Solution of the multidimensional total least squares problem)

(Theorem 3.1, [20]) Suppose (4.29) is the singular value decomposition of [A;B]. If

�n > �n+1 and V22 nonsingular, then

[Â; B̂] = U�diag[�1; : : : ; �n; 0; : : : ; 0]V
�T = U1�1[V

T
11;V

T
21]; (4.35)

with corresponding total least squares correction matrix

[�Â; �B̂] = [A;B]� [Â; B̂] = U2�2[V
T
12;V

T
22]; (4.36)

solves the total least square problem (4.25) and (4.26). And

XTLS = �V12V
�1
22 (4.37)

exists and is the unique solution to ÂX = B̂.

This section only gives an outline of the most basic total least squares algorithms

(Theorem 4.5 and Theorem 4.7). A more detailed discussion about the advanced topics

of total least squares (such as nonuniqueness of the solution, sensitivity analysis, and

statistical properties) can be found in [20].
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4.3 The Symmetric Procrustes Problem and Total

Least Squares

Previous section gives two algorithms to solve the one dimensional and multidimensional

total least squares problems. But these algorithms are only valid for unconstrained

problems.

The joint space mass-inertia matrix is symmetric and positive de�nite. These con-

straints should be considered in the total least squares estimation. Unfortunately, unlike

the symmetric procrustes method using the least squares approach, the symmetric pro-

crustes problem using the total least squares method is still an open problem.

However, Theorem 4.7 can still be used to calculate a total least squares estimate

XTLS. Then the nearest symmetric matrix XS in Frobenius norm to XTLS is given by

(P12.6.10, [13])

XS =
XTLS

T +XTLS

2
: (4.38)

And the nearest symmetric positive approximation XF in Frobenius norm to XTLS is

given by [17]

XF =
B+H

2
(4.39)

where B = XTLS
T+XTLS

2
, B = UH is the polar decomposition (4.2.10, [13]) of B. The

columns of U are orthonormal, and H is a symmetric and positive de�nite matrix with

eigenvalues equal to the singular values of B.

If XTLS is positive de�nite, then XS and XF are symmetric positive de�nite. If
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XTLS is positive semi-de�nite, then XS and XF are symmetric positive semi-de�nite.

If XTLS is inde�nite, then XS is symmetric inde�nite, and XF is symmetric positive

semi-de�nite.
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Chapter 5

Estimation of Joint Space

Mass-Inertia Matrix Employing

Positive De�nite Constraint

Although several algorithms have been discussed in Chapter 3 and Chapter 4, none

of them really takes into account the positive de�nite constraint. In the symmetric

procrustes problem, the de�niteness of the estimate XLS depends on the de�niteness of

ATB + BTA (Section 3.2). Using the total least squares method, the estimate XTLS

will not even be symmetric. If what we want is a symmetric positive de�nite matrix,

then Higham's method [17] will not be very useful because it only computes a nearest

symmetric positive semi-de�nite matrix if XLS and XTLS are inde�nite.

This chapter �rst introduces a method to employ the positive de�nite constraint.

Then, a necessary condition for the existence and uniqueness of a symmetric positive

de�nite estimate is proven. Finally, a geometric explanation of one parameter estimation

is given, which illustrates that the symmetric positive de�nite estimate seeks to minimize

the sum of the areas.
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5.1 Symmetric Positive De�nite Estimation Prob-

lem

Our goal is to solve an overdetermined set of linear equations

AX = B (5.1)

with the constraints

XT = X and X being positive de�nite; (5.2)

where A; B 2 Rm�n, X 2 Rn�n.

It is well known that if X 2 Rn�n is symmetric and positive de�nite, then it can

be written as

X = YYT (5.3)

where Y 2 Rn�n, Y is nonsingular. Substituting (5.3) into (5.1), we have

AYYT = B (5.4)

which can also be written as

AY = BY�T : (5.5)

Note, the constraints (5.2) have been embedded into (5.4) and (5.5).

If (5.1) has a symmetric positive de�nite solution X�, then (5.4) and (5.5) can be

solved, and all solutions satisfy

YYT = X�: (5.6)
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Obviously, we are not interested in this case.

If (5.1) fails to have an exact solution or the solutions are not symmetric positive

de�nite, then (5.4) and (5.5) don't have an exact solution. However, by transforming

(5.5) into the following optimizing problem, an optimum solution (under certain crite-

rion) can be found.

De�nition 5.1 (Symmetric positive de�nite estimation problem) Given an over-

determined set of m linear equations AX = B, B 2 Rm�n, in n(n+1)

2
unknowns XT =

X 2 Rn�n, the symmetric positive de�nite estimation problem seeks to

min
Y2S

kAY�BY�Tk2F (5.7)

where S = fZ 2 Rn�n : Z is nonsingular:g. And the symmetric positive de�nite estimate

X is given by X = YYT .

The following theorem gives a necessary condition for a local minimizer for (5.7).

Theorem 5.2 Suppose that Y� 2 S is a local minimizer for problem (5.7), then it

satis�es the following equation

Y�Y�TATAY�Y�T = BTB: (5.8)

Proof: Let f(Y) be a real valued function de�ned on S by

f(Y) = kAY �BY�Tk2F

= Trace
n
(AY �BY�T )

T
(AY �BY�T )

o

= Trace
n
YTATAY +Y�1BTBY�T

o
+ c (5.9)

35



where c = �2Trace
n
ATB

o
is a constant.

Let g(X;Y) be a real valued function de�ned on Rn�n �Rn�n by

g(X;Y) = Trace
n
YTATAY +XBTBXT

o
: (5.10)

Then minimizing f(Y) on S is equivalent to minimizing g(X;Y) on Rn�n �Rn�n

with the constraint XY = In.

Let X, Y 2 Rn�n, X = [~x1; : : : ; ~xn]
T , Y = [~y1; : : : ; ~yn], and � = [�ij] 2 Rn�n. Now

it is convenient to introduce the Lagrangian associated with the constrained problem

(5.10), de�ned as

L(X;Y;�) = g(X;Y) +
nX
i=1

nX
j=1

�ij

�
~xTi ~yj � Æij

�
; (5.11)

where

Æij =

8>>><
>>>:

1; i = j

0; i 6= j

:

By rearranging terms, (5.11) can be written as

L(X;Y;�) = Trace
n
YTATAY +XBTBXT +�T (XY � In)

o
: (5.12)

Thus the necessary conditions (10.3, [22]) for a local minimum can be expressed in the

form

@L(X;Y;�)

@xij

�����
X�;Y�;��

= 0 (5.13)

@L(X;Y;�)

@yij

�����
X�;Y�;��

= 0 (5.14)

@L(X;Y;�)

@�ij

�����
X�;Y�;��

= 0: (5.15)
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for all 1 � i; j � n.

Using (3.9, 3.11, 3.12, 3.13), equations (5.13, 5.14, 5.15) can be written as

Trace

(
[BTBXT +BTBXT +Y�T ]

@X

@xij

) �����
X�;Y�;��

= 0 (5.16)

Trace

(
[YTATA+YTATA+�TX]

@Y

@yij

) �����
X�;Y�;��

= 0 (5.17)

Trace

(
[XY � In]

@�T

@�ij

) �����
X�;Y�;��

= 0 (5.18)

for all 1 � i; j � n. This implies

2BTBX�T +Y���T = 0n (5.19)

2Y�TATA+��TX� = 0n (5.20)

X�Y� � In = 0n: (5.21)

From (5.19) and (5.21) we have

�� = �2X�BTBX�T : (5.22)

Substituting (5.21) and (5.22) into (5.20) we get

Y�Y�TATAY�Y�T = BTB: (5.23)

This completes the proof. 2

The following Corollary gives a necessary condition for the uniqueness of the sym-

metric positive de�nite estimate.

Corollary 5.3 If Rank(A) = Rank(B) = n, and Y� 2 S is a local minimizer for the

problem (5.7), then the symmetric positive de�nite estimation problem in De�nition 5.1
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has a unique solution

X = Y�Y�T = U��1
1
V�2V

T��1
1
UT (5.24)

where,

ATA = U�1U
TU�1U

T ; UTU = In; �1 = diag[
q
�1; : : : ;

q
�n];

�1; : : : ; �n are eigenvalues of A
TA;

�1U
TBTBU�1 = V�2V

TV�2V
T ; VTV = In; �2 = diag[

p
�1; : : : ;

p
�n];

�1; : : : ; �n are eigenvalues of �1U
TBTBU�1:

Proof: From Theorem 5.2, Y� satis�es

Y�Y�TATAY�Y�T = BTB: (5.25)

Since Rank(A) = n, it follows that ATA is symmetric and positive de�nite. Using

square root decomposition, we have

ATA = U�1U
TU�1U

T = U�1�1U
T (5.26)

where U is unitary, �1 = diag[
p
�1; : : : ;

p
�n] with �1; : : : ; �n the eigenvalues of ATA.

Substitute (5.26) into (5.25), left multiply both sides by �1U
T , and right multiply both

sides by U�1, we have

�1U
TY�Y�TU�1�1U

TY�Y�TU�1 = �1U
TBTBU�1: (5.27)

Since Rank(B) = n, �1 and U are nonsingular. This implies that �1U
TBTBU�1 is

symmetric and positive de�nite. Using square root decomposition again, we have

�1U
TBTBU�1 = V�2V

TV�2V
T (5.28)
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whereV is unitary,�2 = diag[
p
�1; : : : ;

p
�n] with �1; : : : ; �n the eigenvalues of (V�2V

T )2.

Thus (5.27) can be written as

�
�1U

TY�Y�TU�1
�2

=
�
V�2V

T
�2
: (5.29)

Since Y�Y�T is symmetric and positive de�nite, and �1U
T is invertable, this implies

that �1U
TY�Y�TU�1 is symmetric and positive de�nite. Thus from the property of

the square root of a symmetric positive de�nite matrix (4.2.10, [13]), we have

�1U
TY�Y�TU�1 = V�2V

T : (5.30)

Solving (5.30) we have

X = Y�Y�T = U��1
1
V�2V

T��1
1
UT (5.31)

This completes the proof. 2

Corollary 5.3 says that if Rank(A) = Rank(B) = n, and we known (5.7) has at least

one local minimum, then (5.24) gives the unique symmetric positive de�nite estimate

for (5.1).

5.2 A Geometric Interpretation

Section 4.1 gives us some geometric interpretations of the least squares and total least

squares methods. As shown in Figure 4.1 and 4.2, the least squares method seeks to

minimize the sum of the squared vertical or horizontal \errors". And Figure 4.3 tells

us that using the total least squares method, it is the sum of squared distances of the
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observed points from the �tted line that is minimized. Both the least squares and total

least squares methods have nice geometric meanings. What is the geometric meaning of

the optimality criterion in (5.7)?

-
a

6b

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

b b

b b b

b
b

b

b

b
b

b
b

bi

ai1

y2

bi
y2
� ai
?

bi � aiy
2

6

?

Figure 5.1: Geometric interpretation of symmetric positive de�nite estimation problem

~ax = ~b with one parameter.

Although it is not obvious, minimizing the optimality criterion in (5.7) is in fact

equivalent to minimizing the sum of the \areas" of the error triangles [14], which can be

shown by the following equivalent transformations

kAY �BY�Tk2F = Trace
n
(AY �BY�T )

T
(AY �BY�T )

o

= Trace
n
(YTAT �Y�1BT )(AY�BY�T )

o

= Trace
n
Y(YTAT �Y�1BT )(AY �BY�T )Y�1

o

= Trace
n
(YYTAT �BT )(A�BY�TY�1)

o

= Trace
n
(AYYT �B)

T
(A�BY�TY�1)

o
: (5.32)
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In the one variable case, (5.32) becomes

k~ay �
~b

y
k22 = (~ay2 �~b)T (~a�

~b

y2
)

=
mX
i=1

�
aiy

2 � bi

� 
ai � bi

y2

!
(5.33)

where ~a = [a1; a2; : : : ; am]
T , ~b = [b1; b2; : : : ; bm]

T 2 Rm are data vectors, and y is the

variable to be estimated. The geometric interpretation of (5.33) is given in Figure 5.1.

It is the sum of the \areas" of the error triangles that is minimized.
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Chapter 6

Numerical Results

In this chapter, three numerical examples of determining a symmetric positive def-

inite matrix are given. The symmetric procrustes method (SP), the total least squares

method (TLS), and symmetric positive de�nite estimation method (SPD) are compared.

Supporting MATLAB M-�les are contained in Appendix B.

The matrix (Mp) data given below is actual data from one of UW's exure jointed

hexapods. It is calculated from the real design parameters of the hexapod.

Mp =

2
666666666666666666666664

4:6881 0:1978 �0:4042 1:7981 �0:4046 0:6110

0:1978 4:6881 0:6110 �0:4046 1:7981 �0:4042

�0:4042 0:6110 4:6881 0:1975 �0:4042 1:7984

1:7981 �0:4046 0:1975 4:6881 0:6114 �0:4042

�0:4046 1:7981 �0:4042 0:6114 4:6881 0:1975

0:6110 �0:4042 1:7984 �0:4042 0:1975 4:6881

3
777777777777777777777775

: (6.1)

The relationship between payload accelerations and base forces is

~fb =Mp
�~pu (6.2)
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where ~fb = [fb1; : : : ; fb6]
T , �~pu = [~uT1

�~p1; : : : ; ~u
T
6
�~p6]

T . The measured payload accelerations

and base forces are

�̂~pu = �~pu + ~vl (6.3)

~̂f b = ~fb + ~vf (6.4)

where ~vl = [vl1; : : : ; vl6]
T and ~vf = [vf1; : : : ; vf6]

T are measurement noises in the payload

accelerations and base forces respectively.

Experiment 1: �~pu = [~uT1
�~p1; : : : ; ~u

T
6
�~p6]

T are independent white noise signals with

zero mean and common variance 8:2. vli and vfi are independent white noise signals

with zero mean and common variance 0:082.

� Using the symmetric procrustes algorithm (3.15), the least squares estimate is

M̂LS =

2
666666666666666666666664

4:6923 0:3468 �0:2365 1:7292 �0:3496 0:6795

0:3468 4:9109 0:6210 �0:4481 1:8583 �0:3188

�0:2365 0:6210 4:4224 0:2190 �0:4299 1:5901

1:7292 �0:4481 0:2190 4:5584 0:6608 �0:3114

�0:3496 1:8583 �0:4299 0:6608 4:7572 0:1994

0:6795 �0:3188 1:5901 �0:3114 0:1994 4:4602

3
777777777777777777777775

: (6.5)

And the estimation error is measured by

Estimation Error = kMp � M̂LSkF = 0:6755: (6.6)

� Using the total least squares algorithm (4.37), and casting the result into a sym-
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metric matrix by (4.38), the estimate is

M̂TLS =

2
666666666666666666666664

4:8274 0:3924 �0:2547 1:7308 �0:3314 0:6634

0:3924 4:9296 0:6146 �0:4683 1:8915 �0:3243

�0:2547 0:6146 4:4648 0:2180 �0:4287 1:6177

1:7308 �0:4683 0:2180 4:5382 0:6834 �0:2978

�0:3314 1:8915 �0:4287 0:6834 4:7530 0:2111

0:6634 �0:3243 1:6177 �0:2978 0:2111 4:4957

3
777777777777777777777775

: (6.7)

And the estimation error is

Estimation Error = kMp � M̂TLSkF = 0:6899: (6.8)

� Using the symmetric positive de�nite estimation algorithm (5.24), the estimate is

M̂spd =

2
666666666666666666666664

4:6756 0:3219 �0:2249 1:7124 �0:3855 0:6973

0:3219 4:9281 0:6110 �0:4229 1:8757 �0:3527

�0:2249 0:6110 4:4442 0:2110 �0:3984 1:5892

1:7124 �0:4229 0:2110 4:6488 0:7056 �0:3230

�0:3855 1:8757 �0:3984 0:7056 4:7443 0:2255

0:6973 �0:3527 1:5892 �0:3230 0:2255 4:4565

3
777777777777777777777775

: (6.9)

And the estimation error is

Estimation Error = kMp � M̂spdkF = 0:6630: (6.10)

Experiment 2: �~pu = [~uT1
�~p1; : : : ; ~u

T
6
�~p6]

T are independent white noise signals with

zero mean and common variance 8:2. vli and vfi are independent white noise signals

with zero mean and common variance 0:86.
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� Using the symmetric procrustes algorithm (3.15), the least squares estimate is

M̂LS =

2
666666666666666666666664

4:3104 �0:1033 �0:0144 2:1560 �0:3818 1:007

�0:1033 5:1528 0:8565 �0:5108 2:2474 �0:5110

�0:0144 0:8565 3:4603 0:1445 �0:2490 1:2144

2:1560 �0:5108 0:1445 4:5493 0:2986 �0:1294

�0:3818 2:2474 �0:2490 0:2986 4:3539 �0:2728

1:0069 �0:5110 1:2144 �0:1294 �0:2728 4:0349

3
777777777777777777777775

: (6.11)

And the estimation error is

Estimation Error = kMp � M̂LSkF = 2:3610: (6.12)

� Using the total least squares algorithm (4.37), and casting the result into a sym-

metric matrix by (4.38), the estimate is

M̂TLS =

2
666666666666666666666664

4:6080 0:0809 �0:3035 2:2266 �0:7014 0:9748

0:0809 5:9198 0:7359 �0:5061 1:9453 �0:4148

�0:3035 0:7359 3:5913 �0:0697 �0:1584 1:2445

2:2266 �0:5061 �0:0697 4:6728 0:2298 �0:3504

�0:7014 1:9453 �0:1584 0:2298 4:6010 �0:2161

0:9748 �0:4148 1:2445 �0:3504 �0:2161 4:3855

3
777777777777777777777775

:

(6.13)

And the estimation error is

Estimation Error = kMp � M̂TLSkF = 2:3007: (6.14)
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� Using the symmetric positive de�nite estimation algorithm (5.24), the estimate is

M̂spd =

2
666666666666666666666664

4:6242 �0:0176 �0:3489 2:2192 �0:4702 0:9565

�0:0176 5:3939 0:7467 �0:4705 2:0333 �0:5280

�0:3489 0:7467 3:9466 0:0348 �0:0596 1:2329

2:2192 �0:4705 0:0348 4:4798 0:4103 �0:2566

�0:4702 2:0333 �0:0596 0:4103 4:6034 �0:2907

0:9565 �0:5280 1:2329 �0:2566 �0:2907 4:0921

3
777777777777777777777775

: (6.15)

And the estimation error is

Estimation Error = kMp � M̂spdkF = 1:9689: (6.16)

Experiment 3: �~pu = [~uT1
�~p1; : : : ; ~u

T
6
�~p6]

T are independent white noise signals with

zero mean and common variance 8:2. vli and vfi are independent white noise signals

with zero mean and common variance 1:28.

� Using the symmetric procrustes algorithm (3.15), the least squares estimate is

M̂LS =

2
666666666666666666666664

3:3256 0:0243 �0:3521 0:8617 �0:4398 0:0413

0:0243 4:0808 0:6554 �0:2534 1:4923 �0:8605

�0:3521 0:6554 4:5358 �0:2603 �0:7717 1:2805

0:8617 �0:2534 �0:2604 4:9588 1:5125 �0:5735

�0:4398 1:4923 �0:7717 1:5125 4:5898 0:1853

0:0413 �0:8605 1:2805 �0:5735 0:1853 4:3464

3
777777777777777777777775

: (6.17)

And the estimation error is

Estimation Error = kMp � M̂LSkF = 2:9120: (6.18)
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� Using the total least squares algorithm (4.37), and casting the result into a sym-

metric matrix by (4.38), the estimate is

M̂TLS =

2
666666666666666666666664

2:8541 0:3739 �1:1554 2:1164 �0:0316 0:1311

0:3739 4:0972 0:7489 0:0802 1:4777 �0:3654

�1:1554 0:7489 5:2622 �0:9170 �0:8636 1:3953

2:1164 0:0802 �0:9170 5:8818 1:7438 �0:3611

�0:0316 1:4777 �0:8635 1:7438 5:0314 0:2683

0:1311 �0:3654 1:3953 �0:3611 0:2683 4:5636

3
777777777777777777777775

:

(6.19)

And the estimation error is

Estimation Error = kMp � M̂TLSkF = 3:7761: (6.20)

� Using the symmetric positive de�nite estimation algorithm (5.24), the estimate is

M̂spd =

2
666666666666666666666664

3:8906 0:1994 �0:5813 1:3596 �0:3519 0:3424

0:1994 4:3711 0:6745 �0:0381 1:4298 �0:7983

�0:5814 0:6745 4:4697 �0:1437 �0:6737 1:3437

1:3596 �0:0381 �0:1437 5:0564 1:2486 �0:4884

�0:3519 1:4298 �0:6737 1:2486 4:5972 0:1782

0:3424 �0:7983 1:3437 �0:4884 0:1782 4:5134

3
777777777777777777777775

: (6.21)

And the estimation error is

Estimation Error = kMp � M̂spdkF = 2:0083: (6.22)
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Chapter 7

Conclusions and Future Work

An overdetermined set of linear equations AX = B, with the constraints XT = X

and X being positive de�nite, can be solved in three possible ways:

1. The Symmetric Procrustes Method (3.15) directly employs the symmetry con-

straint. But, the de�niteness of the solution depends on the de�niteness of the

data matrix ATB +BTA. Since it is a constrained least squares method, one of

the data matrices, A or B , is supposed to be \error" free.

2. The Total Least Squares Method (4.37) takes into account the \errors" in both

the data matrix A and B, but it does not include the symmetry and positive

de�niteness constraints. Using (4.39), the total least squares estimate can be cast

into a nearest symmetric positive de�nite matrix only if it is positive de�nite.

3. The new method proposed in Chapter 5 can handle both the symmetry and the

positive de�niteness constraints. In addition, it gives a better result in the numer-

ical experiments. But, only a necessary condition for the existence and uniqueness

of solutions has been proven.
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The following is a brief list of future work

1. Find a way to solve the symmetric constrained total least squares problem - sym-

metric procrustes method using total least squares.

2. Find and prove a suÆcient condition for the existence of the solutions of problem

(5.7).

3. Investigate the statistical properties of the symmetric positive de�nite estimation

method (5.24).
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Appendix A

Convex Sets and Convex Functions

De�nition A.1 ([23] 2.1.1) A set C in Rn is convex if for every ~x and ~y in C, the line

segment joining ~x and ~y also lies in C.

De�nition A.2 ([23] 2.3.2) Suppose that f(~x) is a real-valued function de�ned on a

convex set C in Rn. Then:

1. the function f(~x) is convex on C if

f(�~x+ [1� �]~y) � �f(~x) + [1� �]f(~y) (A.1)

for all ~x, ~y in C and all � with 0 � � � 1;

2. the function f(~x) is strictly convex on C if

f(�~x+ [1� �]~y) < �f(~x) + [1� �]f(~y) (A.2)

for all ~x, ~y in C with ~x 6= ~y and all � with 0 < � < 1. If the inequalities in
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the above de�nitions are reversed, we obtain the de�nitions of concave and strictly

concave functions.

De�nition A.3 Suppose that f(~x) is a real-valued function for which all second partial

derivatives of f(~x) exist on a subset D of Rn. The gradient rf of f(~x) is the n-vector

rf =

"
@f

@x1

;
@f

@x2

; � � � ; @f

@xn

#T
; (A.3)

while the Hessian Hf of f(~x) is the symmetric n� n-matrix

Hf =

2
66666666666664

@2f
@x21

@2f
@x1@x2

� � � @2f
@x1@xn

@2f
@x2@x1

@2f
@x21

� � � @2f
@x2@xn

. . . . . . . . . . . . . . . . . . . . . . . . . .

@2f
@xn@x1

@2f
@xn@x2

� � � @2f
@x2n

3
77777777777775

(A.4)

Theorem A.4 ([23] 2.3.7) Suppose that f(~x) has continuous second partial derivatives

on some open convex set C in Rn. If the Hessian Hf(~x) of f(~x) is positive semi-de�nite

(resp. positive de�nite) on C, then f(~x) is convex (resp. strictly convex) on C.

Theorem A.5 ([23] 2.3.10) If f1(~x); : : : ; fk(~x) are convex functions on a convex set C

in Rn, then

f(~x) = f1(~x) + f2(~x) + � � �+ fk(~x) (A.5)

is convex. Moreover, if at least one fi(~x) is strictly convex on C, then the sum f(~x) is

strictly convex.

Theorem A.6 ([23] 2.3.5) Suppose that f(~x) has continuous �rst partial derivatives on

a convex set C in Rn. Then:
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1. the function f(~x) is convex if and only if

f(~x) +rf(~x) � (~y � ~x) � f(~y) (A.6)

for all ~x, ~y in C;

2. the function f(~x) is strictly convex on C if and only if

f(~x) +rf(~x) � (~y � ~x) < f(~y) (A.7)

for all ~x, ~y in C with ~x 6= ~y.

Corollary A.7 ([23] 2.3.6) If f(~x) is a convex function with continuous �rst partial

derivatives on some convex set C, then any critical point of f(~x) in C is a global mini-

mizer of f(~x).

Theorem A.8 ([23] 1.2.3) Suppose that f(~x) is a real-valued function for which all �rst

partial derivatives of f(~x) exist on a subset D of Rn. If ~x� is an interior point of D that

is a local minimizer of f(~x), then ~x� is a critical point of f(~x), that is, rf(~x�) = ~0.

Theorem A.9 ([23] 2.3.4) Any local minimizer of a convex function f(~x) de�ned on a

convex subset C of Rn is also a global minimizer. Any local minimizer of a strictly convex

function f(~x) de�ned on a convex set C in Rn is the unique strict global minimizer of

f(~x) on C.
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Appendix B

Matlab M-�les

%Simulation Code to generate the measurements of

%payload accelerations and base forces.

clear all;

m = 12; %m { the number of samples

n = 6; %n { the number of variables

nm = 3.9;

%nm = 1 { the variance of the noise is 0.082

%nm = 3.2 { the variance of the noise is 0.86

%nm = 3.9 { the variance of the noise is 1.28

%Mprel is the ideal joint space mass-inertia matrix.

Mprel = [4.6881 0.1978 -0.4042 1.7981 -0.4046 0.6110;

0.1978 4.6881 0.6110 -0.40461.7981 -0.4042;
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-0.40420.6110 4.6881 0.1975 -0.4042 1.7984;

1.7981 -0.40460.1975 4.6881 0.6114 -0.4042;

-0.40461.7981 -0.4042 0.6114 4.6881 0.1975;

0.6110 -0.40421.7984 -0.40420.1975 4.6881];

%Generate the payload accelerations lddot

lddot = 10.*(rand([m,n]) - 0.5.*ones([m,n]));

%Add noise to the measurement of lddotm

lddotm = lddot + nm*(rand([m,n])-0.5.*ones([m,n]));

%Generate the base forces fb

fb = lddot * Mprel;

%Add noise to the measurement of fbm

fbm = fb + nm*(rand([m,n])-0.5.*ones([m,n]));

%Save data

save simdata m n nm Mprel lddot lddotm fb fbm;
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Symmetric Procrustes Problem.

clear all;

%Load the simulation data

load simdata;

%Calculate symmetric estimate of Mprel

Mestsp = lyap(lddotm'*lddotm, -1.*(lddotm'*fbm+fbm'*lddotm));

ERROR = norm(Mprel-Mestsp,'fro');
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Total Least Square Estimate.

clear all;

%Load the simulation data

load simdata;

%Singular value decomposition of [lddotm fbm]

[U,S,V] = svd([lddotm fbm]);

%V=[V11 V12; V21 V22]

V12 = V(1:n,n+1:2*n);

V22 = V(n+1:2*n,n+1:2*n);

%Calculate symmetric estimate of Mptls

Mesttls = -1.*V12*inv(V22);

%Calculate the Frobenius Norm of Mprel-Mesttls

ERROR1 = norm(Mprel-Mesttls,'fro');

%Cast Mesttls into symmetric matrix

Mesttlss = 0.5.*(Mesttls' + Mesttls);

%Calculate the Frobenius Norm of Mprel-Mesttlss

ERROR2 = norm(Mprel-Mesttlss,'fro');
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Symmetric Positive De�nite Estimation Problem.

clear all;

%Load the simulation data

load simdata;

%Calculate positive de�nite matrices P and Q

P = lddotm'*lddotm;

Q = fbm'*fbm;

%Calculate the squart root of P

[U,D1] = eig(P);

Sigma1 = sqrt(D1);

%Calculate the squart root of Sigma1*U'*Q*U*Sigma1

[V,D2] = eig(Sigma1*U'*Q*U*Sigma1);

Sigma2 = sqrt(D2);

%Calcualte the symmetric and positive de�nite estimate Mestspd

Mestspd = U*inv(Sigma1)*V*Sigma2*V'*inv(Sigma1)*U';

%Calculate the Frobenius Norm of Mprel-Mestspd

ERROR = norm(Mprel-Mestspd,'fro');
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