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Abstract

In various application domains such as entertainment, biomedicine, commerce,

education, and crime prevention, the volume of digital data archives is growing rapidly.

The very large repository of digital information raises challenging problems in retrieval

and various other information manipulation tasks. Content-based image retrieval (CBIR)

is aimed at efficient retrieval of relevant images from large image databases based on

automatically derived imagery features. However, images with high feature similarities

to the query image may be very different from the query in terms of semantics. This

discrepancy between low-level content features (such as color, texture, and shape) and

high-level semantic concepts (such as sunset, flowers, outdoor scene, etc.) is known as

“semantic gap,” which is an open challenging problem in current CBIR systems.

With the ultimate goal of narrowing the semantic gap, this thesis makes three

contributions to the field of CBIR. The first contribution is a novel region-based im-

age similarity measure. An image is represented by a set of segmented regions each

of which is characterized by a fuzzy feature (fuzzy set) reflecting color, texture, and

shape properties. Fuzzy features naturally characterize the gradual transition between

regions (blurry boundaries) within an image, and incorporate the segmentation-related

uncertainties into the retrieval algorithm. The resemblance of two images is defined as

the overall similarity between two families of fuzzy features, and quantified by a sim-

ilarity measure that integrates properties of all the regions in the images. Compared

with similarity measures based on individual regions and on all regions with crisp-valued
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feature representations, the proposed measure greatly reduces the influence of inaccurate

segmentation, and provides a very intuitive quantification.

The second contribution is a novel image retrieval scheme using unsupervised

learning. It is built on a hypothesis that images of the same semantics tend to be clustered

in some feature space. The proposed method attempts to capture semantic concepts by

learning the way that images of the same semantics are similar and retrieving image

clusters instead of a set of ordered images. Clustering is dynamic. In particular, clusters

formed depend on which images are retrieved in response to the query. Therefore, the

clusters give the algorithm as well as the users semantic relevant clues as to where to

navigate. The proposed retrieval scheme is a general approach that can be combined

with any real-valued symmetric similarity measure (metric or nonmetric). Thus it may

be embedded in many current CBIR systems.

The last contribution is a novel region-based image classification method. An

image is represented as a set of regions obtained from image segmentation. It is assumed

that the concept underlying an image category is related to the occurrence of regions of

certain types, which are called region prototypes (RPs), in an image. Each RP represents

a class of regions that is more likely to appear in images with the specific label than in the

other images, and is found according to an objective function measuring a co-occurrence

of similar regions from different images with the same label. An image classifier is

then defined by a set of rules associating the appearance of RPs in an image with image

labels. The learning of such classifiers is formulated as a Support Vector Machine (SVM)

learning problem with a special class of kernels.
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Chapter 1

Introduction

With the rapid growth of the Internet and the falling price of storage devices,

it becomes increasingly popular to store texts, images, graphics, video, and audio in

digital format. This raises the challenging problem of designing techniques that support

effective search and navigation through the contents of large digital archives. As part of

this general problem, image retrieval and indexing have been active research areas for

more than a decade.

Content-based image retrieval (CBIR) is aimed at efficient retrieval of relevant

images from large image databases based on automatically derived imagery features.

These features are typically extracted from shape, texture, or color properties of query

image and images in the database. Potential applications include digital libraries, com-

merce, Web searching, geographic information systems, biomedicine, surveillance and

sensor systems, commerce, education, crime prevention, etc.

This thesis makes three contributions that are closely related to CBIR. The first

contribution is a novel region-based image similarity measure. This measure greatly in-

creases the robustness of the retrieval system against segmentation-related uncertainties.

The second contribution is a novel image retrieval scheme using unsupervised learning.

It retrieves image clusters based not only on the feature similarity of images to the query,



2

but also on how images are similar to each other. The last contribution is a novel im-

age categorization algorithm that classifies images based on the information of regions

contained in the images. The concept underlying an image category is related to the

occurrence of regions of certain properties. Such a relationship is captured by a set of

rules obtained from learning.

The remainder of the thesis is organized as follows:

• Chapter 2. Related Work in Image Retrieval and Categorization

Content-based image retrieval (CBIR) and image categorization are two closely

related and rapidly expanding research areas. CBIR aims at developing techniques

that support effective searching and browsing of large image digital libraries based

on automatically derived image features. Image categorization refers to classifying

images into a collection of predefined categories. We review the related work in

CBIR and image categorization.

• Chapter 3. Related Work in Machine Learning

The field of machine learning is concerned with constructing computer programs

that automatically improve with experience. Machine learning draws on concepts

and results from many fields, including artificial intelligence, statistics, control the-

ory, cognitive science, and information theory. In this chapter, we summarize three

well-known techniques, Support Vector Machine (SVM), additive fuzzy systems,

and spectral graph clustering, which will be used in this thesis.

• Chapter 4. Support Vector Learning for Fuzzy Rule-Based Classifica-

tion Systems
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To design a fuzzy rule-based classification system (fuzzy classifier) with good gen-

eralization ability in a high dimensional feature space has been an active research

topic for a long time. As a powerful machine learning approach for pattern recogni-

tion problems, support vector machine (SVM) is known to have good generalization

ability. More importantly, an SVM can work very well on a high (or even infinite)

dimensional feature space. In this chapter, we investigate the connection between

fuzzy classifiers and kernel machines, establish a link between fuzzy rules and ker-

nels, and propose a learning algorithm for fuzzy classifiers. The result will be used

in Chapter 7.

• Chapter 5. A Robust Image Similarity Measure Using Fuzzified Region

Features

This chapter proposes a fuzzy logic approach, UFM (unified feature matching), for

region-based image retrieval. In our retrieval system, an image is represented by a

set of segmented regions each of which is characterized by a fuzzy feature (fuzzy set)

reflecting color, texture, and shape properties. As a result, an image is associated

with a family of fuzzy features corresponding to regions. Fuzzy features naturally

characterize the gradual transition between regions (blurry boundaries) within an

image, and incorporate the segmentation-related uncertainties into the retrieval

algorithm. The resemblance of two images is then defined as the overall similarity

between two families of fuzzy features, and quantified by a similarity measure, UFM

measure, which integrates properties of all the regions in the images. Compared
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with similarity measures based on individual regions and on all regions with crisp-

valued feature representations, the UFM measure greatly reduces the influence of

inaccurate segmentation, and provides a very intuitive quantification.

• Chapter 6. Cluster-Based Retrieval of Images by Unsupervised Learn-

ing

In a typical content-based image retrieval (CBIR) system, query results are a set

of images sorted by feature similarities with respect to the query. However, im-

ages with high feature similarities to the query may be very different from the

query in terms of semantics. This discrepancy between low-level features and high-

level concepts is known as the semantic gap. This chapter introduces a novel im-

age retrieval scheme, CLUster-based rEtrieval of images by unsupervised learning

(CLUE), which attempts to tackle the semantic gap problem based on a hypoth-

esis that images of the same semantics are similar in a way, images of different

semantics are different in their own ways. CLUE attempts to capture semantic

concepts by learning the way that images of the same semantics are similar and

retrieving image clusters instead of a set of ordered images. Clustering in CLUE is

dynamic. In particular, clusters formed depend on which images are retrieved in

response to the query. Therefore, the clusters give the algorithm as well as the users

semantic relevant clues as to where to navigate. CLUE is a general approach that

can be combined with any real-valued, symmetric, metric or non-metric similarity

measure, and thus it may be embedded in many current CBIR systems.
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• Chapter 7. Image Categorization by Learning and Reasoning with Re-

gions

Designing computer programs that can automatically categorize images into a col-

lection of predefined classes using low-level features is an important and challenging

research topic in image analysis and computer vision. This chapter introduces a

novel image categorization algorithm that classifies images based on the informa-

tion of regions contained in the images. An image is represented as a set of regions

obtained from image segmentation. It is assumed that the concept underlying an

image category is related to the occurrence of certain types of regions, called re-

gion prototypes, in an image. Each region prototype represents a class of regions

that are more likely to appear in images with the specific label than in remaining

images, and is found according to an objective function measuring a co-occurrence

of similar regions from different images with the same label. An image classifier

is then defined by a set of rules associating the appearance of region prototypes

in an image with image labels. The learning of such classifiers is formulated as a

Support Vector Machine (SVM) learning problem with a special class of kernels.

As a result, a collection of SVMs are trained, each corresponding to one image

category.

• Chapter 8

This chapter provides experimental evaluations of the three algorithms described

in Chapter 5, Chapter 6, and Chapter 7. The performance is illustrated using

examples from an image database of about 60, 000 general-purpose images. In
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addition, images returned by Google’s Image Search are used to demonstrate the

potential of applying CLUE to real world image data and integrating CLUE as a

part of the interface for keyword-based image retrieval systems.

• Chapter 9. Conclusions and Future Work

In this chapter, we first summarize the contributions of this thesis on applying

machine learning techniques to content-based image indexing and retrieval. Then

we examine the limitations of the proposed approaches. Finally, we discuss some

directions of future work.
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Chapter 2

Related Work in Image Retrieval and Categorization

Both image retrieval and image categorization are active research areas. They

are highly interdisciplinary areas situated at the intersection of databases, information

retrieval, and computer vision. This chapter provides a brief review the relevant work.

2.1 Image Retrieval

Depending on the query formats, image retrieval algorithms roughly belong to

two categories: keyword-based approaches and content-based methods. The keyword

based approaches are based on the idea of storing a keyword (or keywords) description

of the image content, created by a user on input, in addition to a pointer to the raw

image data. Image retrieval is then shifted to standard database management capability

combined with information retrieval techniques. Some commercial image search engines,

such as Google Image Search and Lycos Multimedia Search, are keyword-based image

retrieval systems.

Manual annotation for a large collection of images is not always available. Some-

times it may be extremely difficult to annotate an image using several keywords. This

motivates research on content-based image retrieval (CBIR): retrieval of images by image

example where a query image or sketch is given as input by a user. Generally speaking,
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CBIR aims to develop techniques that support effective searching and browsing of large

image digital libraries based on automatically derived image features.

In the past decade, many general-purpose image retrieval systems have been devel-

oped. Examples include IBM QBIC System [30], MIT Photobook System [79], Berkeley

Chabot [77] and Blobworld Systems [10], Virage System [41], Columbia VisualSEEK

and WebSEEK Systems [98], the PicHunter System [23], UCSB NeTra System [66],

UIUC MARS System [71], the PicToSeek System [38], and Stanford WBIIS [121] and

SIMPLIcity Systems [120], to name just a few.

From a computational perspective, a typical CBIR system views the query image

and images in the database (target images) as a collection of features, and ranks the

relevance between the query image and any target image in proportion to a similarity

measure calculated from the features. In this sense, these features, or signatures of

images, characterize the content of images. According to the scope of representation,

features fall roughly into two categories: global features and local features. The former

category includes texture histogram, color histogram, color layout of the whole image,

and features selected from multidimensional discriminant analysis of a collection of im-

ages [30, 41, 79, 98, 105]. In the latter category are color, texture, and shape features

for subimages [81], segmented regions [10, 16, 66, 120], and interest points [93].

As a key issue in CBIR, the similarity measure quantifies the resemblance in con-

tents between a pair of images [89]. Depending on the type of features, the formulation of

the similarity measure varies greatly. The Mahalanobis distance [42] and intersection dis-

tance [104] are commonly used to compute the difference between two histograms with

the same number of bins. When the number of bins are different, the Earth Mover’s
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Distance (EMD) [87] applies. The EMD is computed by solving a linear programming

problem. Moments [59], the Hausdorff metric [49], elastic matching [7], and decision

trees [52] have been proposed for shape comparison. In [76], a similarity measure is de-

fined from subjective experiments and multi-dimensional scaling (MDS) based upon the

model of human perception of color patterns. Barnard et al. [5] presented a probability-

based similarity measure that combines the information provided by text and the visual

information provided by image features. The similarity measure in [12] assesses the topo-

logical relationships of image regions represented as a 2D string structure. Li et al. [64]

presented an integrated region matching (IRM) scheme for region-based image retrieval.

The IRM measure allows many-to-many region-based matching.

In one way or another, the aforementioned similarity measures capture certain

facets of image content, named the similarity-induced semantics. Nonetheless, the mean-

ing of an image is rarely self-evident. Similarity-induced semantics usually does not co-

incide with the high-level concept conveyed by an image (semantics of the image). This

is referred to as the semantic gap [97], which reflects the discrepancy between the rela-

tively limited descriptive power of low-level visual features (together with the associated

similarity measure and the retrieval strategy) and high-level concepts.

Many approaches have been proposed to reduce the semantic gap. They gener-

ally fall into two classes depending on the degree of user involvement in the retrieval:

relevance feedback and image database preprocessing using statistical classification. Rel-

evance feedback is a powerful technique originally used in the traditional text-based in-

formation retrieval systems. In CBIR, a relevance-feedback-based approach allows a user

to interact with the retrieval algorithm by providing information regarding the images
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which the user believes to be relevant to the query [23, 73, 88]. Based on user feedback,

the model of similarity measure is dynamically updated to give a better approximation of

the perception subjectivity. There are also works that combine relevance feedback with

supervised learning [110, 132]: binary classifiers are trained on-the-fly based on user feed-

back. Empirical results demonstrate the effectiveness of relevance feedback for certain

applications. Nonetheless such a system may add burden to a user especially when more

information is required than just Boolean feedback (relevant or non-relevant).

Statistical classification methods group images into semantically meaningful cat-

egories using low-level visual features so that semantically-adaptive searching methods

applicable to each category can be applied [95, 112, 120, 63]. For example, the SemQuery

system [95] categorizes images into different set of clusters based on their heterogeneous

features. Vailaya et al. [112] organized vacation images into a hierarchical structure.

At the top level, images are classified as indoor or outdoor. Outdoor images are then

classified as city or landscape that is further divided into sunset, forest, and mountain

classes. SIMPLIcity system [120] classifies images into graph, textured photograph, or

non-textured photograph, and thus narrows down the searching space in a database.

ALIP system [63] uses categorized images to train hundreds of two-dimensional mul-

tiresolution hidden Markov models each corresponding to a semantic category. Although

these classification methods are successful in their specific domains of application, the

simple ontologies built upon them could not incorporate the rich semantics of a sizable

image database. There has been work on attaching words to images by associating the

regions of an image with object names based on a statistic model [5]. But as noted by

the authors in [5], the algorithm relies on semantically meaningful segmentation. And



11

semantically precise image segmentation by an algorithm is still an open problem in

computer vision [96, 119, 133].

2.2 Image Categorization

The term image categorization refers to the labeling of images into one of a num-

ber of predefined categories. Although this is usually not a very difficult task for humans,

it has proved to be an extremely difficult problem for machines (or computer programs).

Major resources of difficulty include variable and sometimes uncontrolled imaging condi-

tions, complex and hard-to-describe objects in an image, objects occluding other objects,

and the gap between arrays of numbers representing physical images and conceptual in-

formation perceived by humans. Designing automatic image categorization algorithms

has been an important research field for decades. Potential applications include digi-

tal libraries, Web searching, geographic information systems, biomedicine, surveillance

and sensor systems, commerce, and education. In terms of CBIR, image categorization

can be applied as a preprocessing stage: grouping images in the database into seman-

tically meaningful categories. Within the areas of image processing, computer vision,

and pattern recognition, there has been abundance of prior work on detecting, recogniz-

ing, and classifying a relatively small set of objects or concepts in specific domains of

application [31, 101].

In Marr’s classical book on computational and mathematical approach to vi-

sion [69], visual perception is described as “the process of discovering from images what

is present in the world and where it is” ([69], p.3). Marr’s characterization of vision

emphasizes the process of extracting useful information from patterns perceived and
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processing information to achieve conceptual clarity. This may also be viewed as a com-

putational abstraction of most current image categorization methods, which only vary

in algorithmic details, i.e., how information is extracted, represented, and processed.

As one of the simplest representations of digital images, histograms have been

widely used for various image categorization problems. Szummer and Picard [106] used

k-nearest neighbor classifier on color histograms to discriminate between indoor and out-

door images. In [112], Bayesian classifiers using color histograms and edge directions his-

tograms are implemented to organize sunset/forest/mountain images and city/landscape

images, respectively. Chapelle et al. [13] applied Support Vector Machines (SVMs) [9],

which are built on color histograms, to classify images containing a generic set of ob-

jects. Although histograms can usually be computed with little cost and are effective

for certain classification tasks, an important drawback of a global histogram representa-

tion is that information about spatial configuration is ignored. Many approaches have

been proposed to tackle the drawback. In [48], a classification tree is constructed using

color correlograms. Color correlogram captures the spatial correlation of colors in an

image. Gdalyahu and Weinshall [33] applied local curve matching for shape silhouette

classifications, in which objects in images are represented by their outlines.

A number of subimage-based methods have been proposed to utilize local and

spatial properties by dividing an image into fixed-size blocks. In the method introduced

by Gorkani and Picard [40], an image is first divided into 16 non-overlapping equal-sized

blocks. Dominant orientations are computed for each block. The image is then classified

as city or suburb scenes as determined by the majority orientations of blocks. Wang et
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al. [120] developed a graph/photograph 1 classification algorithm. The classifier partitions

an image into blocks and classifies every block into one of two categories based on wavelet

coefficients in high frequency bands. If the percentage of blocks classified as photograph

is higher than a threshold, the image is marked as photograph; otherwise, the image is

marked as graph. Yu and Wolf [128] presented a one-dimensional Hidden Markov Model

(HMM) for indoor/outdoor scene classification. The model is trained on vector quantized

color histograms of image blocks. In ALIP system [63], a concept corresponding to a

particular category of images is captured by a two-dimensional multiresolution HMM

trained on color and texture features of image blocks. In this model, spatial relations

among blocks and across image resolutions are both taken into consideration. Maron

and Ratan [67] formulated image categorization into a Multiple-Instance Learning (MIL)

problem [68]. Images are represented as collections of fixed-size, possibly overlapping,

image patches. Simple templates are learned from patches to represent classes of natural

scene images.

Although a rigid partition of an image into fixed-size blocks preserves certain

spatial information, it often breaks an object into several blocks or puts different objects

into a single block. Thus visual information about objects, which could be beneficial

to image categorization, may be destroyed by a rigid partition. Image segmentation

is one way to extract object information. It decomposes an image into a collection of

regions, which correspond to objects if decomposition is ideal. Image segmentation has

been successfully used in content-based image retrieval [10, 16, 66, 99, 120, 130]. Several

1As defined in [120], a graph image is an image containing mainly text, graph, and overlays;
a photograph is a continuous-tone image.
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region-based methods have been developed for image categorization as well. SIMPLIcity

system [120] classifies images into textured or non-textured classes based upon how evenly

a region scatters in an image. Mathematically, this is described by the goodness of

match, which is measured by the χ2 statistic, between the distribution of the region and

a uniform distribution. Smith and Li [99] proposed a method for classifying images by

spatial orderings of regions. Their system decomposes an image into regions with the

attribute of interest of each region represented by a symbol that corresponds to an entry

in a finite pattern library. Each region string is converted to a composite region template

(CRT) descriptor matrix that enables classification using spatial information. Since a

CRT matrix is determined solely by the ordering of symbols, the method is sensitive to

object shifting and rotation. The work by Barnard and Forsyth [5] achieves some success

in associating words to images based on regions. In this method, an image is modeled

as a sequence of regions and a sequence of words generated by a hierarchical statistical

model, which describes the occurrence and co-occurrence of region features and object

names.



15

Chapter 3

Related Work in Machine Learning

In this chapter, we present a brief review of three machine learning techniques,

Support Vector Machines (SVMs), additive fuzzy systems, and spectral graph clustering,

which will be applied in the subsequent chapters.

3.1 Support Vector Machines

This section presents the basic concepts of the VC theory and SVMs. For gentle

tutorials, we refer interested readers to Burges [9]. More exhaustive treatments can be

found in the books by Vapnik [114, 115].

3.1.1 VC Theory

Let’s consider a two-class classification problem of assigning label y ∈ {+1,−1} to

input feature vector x ∈ Rn. We are given a set of training samples {(x1, y1), · · · , (xl, yl)}

that are drawn independently from some unknown cumulative probability distribution

P (x, y). The learning task is formulated as finding a machine (a function f : Rn →

{+1,−1}) that “best” approximates the mapping generating the training set. For any

feature vector x ∈ Rn, f(x) ∈ {+1,−1} is the predicted class label for x. In order to

make learning feasible, we need to specify a function space, H, from which a machine is

chosen. H can be the set of hyperplanes in Rn, polynomials of degree d, artificial neural

networks with certain structure, or, in general, a set of parameterized functions.
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One way to measure performance of a selected machine f is to look at how it

behaves on the training set. This can be quantified by the empirical risk (or training

error)

Remp(f) =
1

l

l∑

i=1

I{f(xi)6=yi}(xi, yi)

where IA(z) is an indicator function defined as IA(z) = 1 for all z ∈ A, and IA(z) = 0

for all z /∈ A. Although the empirical risk can be minimized to zero if H and learning

algorithm are properly chosen, the resulting f may not make correct classifications of

unseen data. The ability of f to correctly classify data not in the training set is known

as generalization. It is this property that we shall aim to optimize. Therefore, a better

performance measure for f is

RP (x,y)(f) =

∫

Rn×{+1,−1}
I{f(x)6=y}(x, y)dP (x, y) . (3.1)

RP (x,y)(f) is called the expected risk (the probability of misclassifications made by f).

Unfortunately, equation (3.1) is more an elegant way of writing the error probability

than practical usefulness because P (x, y) is usually unknown.

However, there is a family of bounds on the expected risk, which demonstrates

fundamental principles of building machines with good generalization. Here we present

one result from the VC theory due to Vapnik and Chervonenkis [116]: given a set of l

training samples and function space H, with probability 1−η, for any f ∈ H the expected
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risk is bounded above by

RP (x,y)(f) ≤ Remp(f) +

√
h(1 + ln 2l

h ) − ln η
4

l
(3.2)

for any distribution P (x, y) on Rn × {+1,−1}. Here h is a non-negative integer called

the Vapnik Chervonenkis (VC) dimension, or in short VC dimension. It is a measure

of the capacity of a {+1,−1}-valued function space (in our case H), and is defined as

the size of the largest subset of domain points that can be labeled arbitrarily (or called

shattered) by choosing functions only from H. Note that the right hand side of (3.2) is

distribution free. If we know h, we can derive an upper bound for RP (x,y)(f) that is

usually not likely to compute. Moreover, given a training set of size l, (3.2) demonstrates

a strategy to control expected risk by controlling two quantities: the empirical risk and

the VC dimension. For a given function space, its VC dimension is fixed. Thus the

lowest upper bound is achieved by selecting a machine (using some learning algorithm)

that minimizes the empirical risk. The same procedure can be done for different function

spaces with different VC dimensions. We then choose a machine that gives the lowest

upper bound across all the given function spaces 1. Next we will discuss an application

of this idea: the SVM learning strategy.

3.1.2 Support Vector Machines

Let {(x1, y1), · · · , (xl, yl)} ⊂ Rn × {+1,−1} be a training set, and 〈·, ·〉 be an

inner product in Rn defined as 〈x, z〉 = xT z. If the classes are linearly separable, then

1This is the basic idea behind structural risk minimization.
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there exists a hyperplane
{
x ∈ Rn : 〈w,x〉 + b = 0

}
and the induced classification rule,

f : Rn → {+1,−1},

f(x) = sign (〈w,x〉 + b) (3.3)

such that the training samples are correctly classified by f , and

min
i=1,··· ,l

|〈w,xi〉 + b| = 1 .

Geometrically, this can be illustrated in Figure 3.1 where the hyperplane (a straight

line in the figure) corresponding to 〈w,x〉 + b = 0 is the decision boundary, and the

region {x ∈ Rn : | 〈w,x〉 + b| ≤ 1} is bounded by the hyperplanes above and below

the decision boundary. The distance between these two bounding hyperplanes is called

the margin between the two classes on the training data under a separating hyperplane.

It is defined as 2
〈w,w〉 . Clearly, different w’s give different margins. For generalization

purpose, as we will see shortly, it is desirable to find the maximal separating hyperplane:

the hyperplane that creates the biggest margin (the decision boundary in Figure 3.1 is in

fact the maximal separating hyperplane). This leads to the following convex optimization

problem:

min
w,b

1

2
〈w,w〉 (3.4)

subject to yi (〈w,xi〉 + b) ≥ 1, ∀i .

Minimizing 1
2 〈w,w〉 is equivalent to maximizing the margin. The constraints yi (〈w,xi〉 + b) ≥

1 ∀i imply correct separation.
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Fig. 3.1. Optimal separating hyperplane 〈w,x〉 + b = 0 with maximal margin 2
〈w,x〉 .

In practice, however, a separating hyperplane does not exist if the two classes

are linearly inseparable. One way to deal with this is to modify the constraints to

allow for the possibility of misclassifications. Define the nonnegative slack variables

ξ = [ξ1, · · · , ξl]
T . The constraints in (3.4) is modified as

yi (〈w,xi〉 + b) ≥ 1 − ξi, ∀i .

The value ξi is the distance by which xi is on the wrong side of its margin. Misclassi-

fications occur when ξi > 1, so bounding
∑l

i=1
ξi limits the total number of training

errors. Therefore, the optimal separating hyperplane is found by solving the following
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quadratic program:

min
w,b

1

2
〈w,w〉 + C

l∑

i=1

ξi (3.5)

subject to yi (〈w,xi〉 + b) ≥ 1 − ξi, ξi ≥ 0, ∀i

where C > 0 is some constant.

How does minimizing (3.5) relate to our ultimate goal of optimizing the general-

ization? To answer this question, we need to introduce a theorem [114] about the VC

dimension of a class of functions H = {f(x) : 〈w,w〉 ≤ A} where f is defined in (3.3).

One can show that for a given set of training samples contained in a sphere of radius R,

the VC dimension h of the function space H is bounded above by

h ≤ min
(
R2A2, n

)
+ 1 .

Thus, minimizing the quadratic term 1
2 〈w,w〉 amounts to minimizing the VC dimension

of H from which the classification rule is chosen, therefore minimizing the second term

of the bound (3.2). On the other hand,
∑l

i=1
ξi is an upper bound on the number of

misclassifications on the training set, thus controls the empirical risk term in (3.2). For

an adequate positive constant C, minimizing (3.5) can indeed decrease the upper bound

on the expected risk.
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Applying the Karush-Kuhn-Tucker conditions, one can show that any w, which

minimizes (3.5), can be written as a linear combination of the training samples

w =
l∑

i=1

yiαixi . (3.6)

The above expansion is called the dual representation of w, in which the number of

unknown coefficients, which are Lagrange multipliers, equals the number of training

samples. A coefficient αj is nonzero only if yj

(〈
w,xj

〉
+ b

)
= 1 − ξi. These xj ’s are

called support vectors. The index set of support vectors is denoted by S. Substituting

(3.6) into (3.3), we obtain the optimal decision rule

f(x) = sign


∑

i∈S
yiαi 〈x,xi〉 + b


 (3.7)

where αi’s can be found by solving the Wolfe dual problem [124] of (3.5) (the dual

problem is a simpler convex quadratic programming problem than the primal)

max
α

l∑

i=1

αi −
1

2

l∑

i=1

l∑

j=1

αiαjyiyj

〈
xi,xj

〉
(3.8)

subject to C ≥ αi ≥ 0, ∀i,
l∑

i=1

αiyi = 0.

Given α, b can be determined by solving
∑

i∈S yiαi

〈
xj ,xi

〉
+ b = yj for any (or all)

xj , 0 < αj < C.

The SVMs described so far finds linear boundaries in the input feature space Rn.

More complex decision surfaces can be generated by employing a nonlinear mapping



22

Φ : Rn → F to map the data into a new feature space F, usually with dimension higher

than n, and solving the same optimization problem in F, i.e., find the maximal separating

hyperplane in F. Note that in (3.7) and (3.8) xi never appears isolated but always in

the form of an inner product
〈
x,xj

〉
(or

〈
xi,xj

〉
). This implies that there is no need

to evaluate the nonlinear mapping Φ as long as we know the inner product in F for any

given x, z ∈ Rn. For computational purposes, instead of defining Φ : Rn → F explicitly,

a function K : Rn × Rn → R is introduced to directly define an inner product in F,

i.e., K(x, z) = 〈Φ(x), Φ(z)〉F where 〈·, ·〉F is an inner product in F, and Φ is a nonlinear

mapping induced by K. Such a function K is also called a Mercer kernel [24, 114, 115],

which will be explored further in the next section. Substituting K(xi,xj) for
〈
xi,xj

〉

in (3.8) produces a new optimization problem

max
α

l∑

i=1

αi −
1

2

l∑

i,j=1

l∑

j=1

αiαjyiyjK(xi,xj) (3.9)

subject to C ≥ αi ≥ 0, ∀i,

l∑

i=1

αiyi = 0.

Solving (3.9) for α gives a decision rule of the form

f(x) = sign


∑

i∈S
yiαiK(x,xi) + b


 , (3.10)

whose decision boundary is a hyperplane in F, and translates to nonlinear boundaries

in the original space. Several techniques for solving quadratic programming problems

arising in SVMs are described in [55, 56, 82].
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Ĵ

α1

Q
Q

Qs

α2

­
­

­
­
­Áαm

-B Defuzzifier -F (x)
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3.2 Additive Fuzzy Systems

Since the publication of L.A. Zadeh’s seminal paper on fuzzy sets [129], fuzzy set

theory and its descendant, fuzzy logic, have evolved into powerful tools for managing

uncertainties inherent in complex systems. In the recent twenty years, fuzzy method-

ology has been successfully applied to a variety of areas including control and system

identification [58, 62, 107, 122, 134], signal and image processing [78, 91, 103], pattern

classification [1, 44, 50, 57], and information retrieval [14, 75].

An additive fuzzy system F stores m fuzzy rules of the form “IF X = Aj THEN

Y = Bj” and computes the output F (x) by defuzzifying the summed and partially fired

THEN-part fuzzy sets [60]. In general, an additive fuzzy system acts as a multiple-input

multiple-output (MIMO) mapping, F : Rn → Rp. In this section, however, we focus

on multiple-input single-output (MISO) models. The results derived here still apply to

the MIMO models by combining several MISO models provided that no coupling exists

among outputs.
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Figure 3.2 shows the “parallel fire-and-sum” structure of an additive fuzzy sys-

tem [60]. Each input x ∈ Rn activates all m IF-part fuzzy sets to degrees aj(x) ∈ [0, 1],

j = 1, · · · , m, which in turn scale the THEN-part fuzzy sets Bj to produce B′
j
. The

output set B is computed as a weighted sum of B′
j
, and is defined by a set function

b : Rn × R → R+ as

b(x, y) =
m∑

j=1

αjaj(x)bj(y) (3.11)

where bj : R → [0, 1] is the membership function for Bj , αj ≥ 0 is the weight for the jth

fuzzy rule. The system defuzzifies B to give the output y = F (x). A fuzzy rule is called

active if its weight is nonzero.

Although an additive fuzzy system allows us to pick arbitrary IF-part fuzzy sets,

factorable fuzzy sets are most commonly employed in practice [60, 74]. An n dimensional

fuzzy set 2 is factorable if and only if it can be written as the Cartesian product of n scalar

fuzzy sets. For example, if Aj is factorable with membership function aj : Rn → [0, 1],

then it can be equivalently written as Aj = A1
j
× A2

j
× · · · × An

j
with membership

function

aj(x) = a1
j
(x1) ⊗ a2

j
(x2) ⊗ · · · ⊗ an

j
(xn) (3.12)

where x = [x1, x2, · · · , xn]T ∈ Rn, Ak
j

is a scalar fuzzy set with membership function

ak
j

: R → [0, 1], k = 1, · · · , n, × denotes the Cartesian product, and ⊗ represents the

fuzzy conjunction operator. As a result, we interpret the fuzzy rule “IF Aj THEN Bj”

2An n dimensional fuzzy set is a fuzzy set in Rn with membership function a : Rn → [0, 1].
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as

IF A1
j

AND A2
j

AND · · · AND An
j

THEN Bj . (3.13)

The fuzzy conjunction (AND) operator can be chosen freely from the set of t-norms [62],

though product and min operators are often employed.

Intuitively, the output set B describes the output distribution for a given input.

Nevertheless, in many applications a crisp output value is required. For example, the

output of a fuzzy classifier should be the class label corresponding to a given input, while

the prediction made by a fuzzy function approximator is usually a real number. The

mapping from B to some real number is realized by a defuzzifier. Several commonly

used defuzzification strategies may be described as the max criterion (MC), the mean

of maximum (MOM), and the center of area (COA) [62]. For a given input x, the MC

finds the global maximizer of b(x, y), the MOM computes the mean value of all local

maximizers of b(x, y), and COA defines the output as

∫∞
−∞ yb(x, y)dy
∫∞
−∞ b(x, y)dy

.

Consider an additive fuzzy system with m fuzzy rules of the form

Rule j : IF A1
j

AND A2
j

AND · · · AND An
j

THEN bj (3.14)

where Ak
j

is a fuzzy set with membership function ak
j

: R → [0, 1], j = 1, · · · , m,

k = 1, · · · , n, bj ∈ R. If we choose product as the fuzzy conjunction operator and COA

defuzzification, then the model becomes a special form of the Takagi-Sugeno (TS) fuzzy
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model [107], and the input output mapping, F : Rn → R, of the model is defined as

F (x) =

∑m
j=1

bj
∏n

k=1
ak
j
(xk)

∑m
j=1

∏n
k=1

ak
j
(xk)

(3.15)

where x = [x1, · · · , xn]T ∈ Rn is the input. Note that (3.15) is not well-defined on

Rn if
∑m

j=1

∏n
k=1

ak
j
(xk) = 0 for some x ∈ Rn, which could happen if the input space

is not wholly covered by fuzzy rule “patches.” However, there are several straight-

forward solutions for this problem. For example, we can force the output to some

constant when
∑m

j=1

∏n
k=1

ak
j
(xk) = 0, or add a fuzzy rule so that the denominator

∑m
j=1

∏n
k=1

ak
j
(xk) > 0 for all x ∈ Rn. Here we take the second approach for analytical

simplicity. The following rule is added:

Rule 0 : IF A1
0

AND A2
0

AND · · · AND An
0

THEN b0 (3.16)

where b0 ∈ R, the membership functions ak
0
(xk) ≡ 1 for k = 1, · · · , n and any xk ∈ R.

Consequently, the input output mapping becomes

F (x) =
b0 +

∑m
j=1

bj
∏n

k=1
ak
j
(xk)

1 +
∑m

j=1

∏n
k=1

ak
j
(xk)

. (3.17)

3.3 Spectral Graph Clustering

Data representation is typically the first step to solve any clustering problem.

In the field of computer vision, two types of representations are widely used. One is

called geometric representation, in which data items are mapped to some real normed
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vector space. The other, referred to as graph representation, emphasizes the pairwise

relationship, but is usually short of geometric interpretation.

Under graph representation, a collection of n data samples can be represented by

a weighted undirected graph G = (V,E): the nodes V = {1, 2, . . . , n} represent data

samples, the edges E = {(i, j) : i, j ∈ V} are formed between every pair of nodes, and

the nonnegative weight wij of an edge (i, j), indicating the similarity between two nodes,

is a function of the distance (or similarity) between nodes i and j. The weights can be

organized into a matrix W, named affinity matrix, with the ij-th entry denoted by wij .

Under a graph representation, clustering can be naturally formulated as a graph

partitioning problem. Among many graph-theoretic algorithms, spectral graph parti-

tioning methods [22, 80, 90, 96, 123] have been successfully applied to many areas in

computer vision including motion analysis [22], image segmentation [96, 123], and ob-

ject recognition [90]. In this paper, we use one of the techniques, the normalized cut

(Ncut) method [96], for image clustering. Compared with many other spectral graph

partitioning methods, such as average cut and average association, the Ncut method is

empirically shown to be relatively robust for image segmentation applications [96, 123].

Next, we present a brief review of the Ncut method based on Shi and Malik’s work [96].

More exhaustive treatments can be found in [96] and [123].

Roughly speaking, a graph partitioning method attempts to organize nodes into

groups so that the within-group similarity is high, and/or the between-groups similarity

is low. Given a graph G = (V,E) with affinity matrix W, a simple way to quantify the

cost for partitioning nodes into two disjoint sets A and B (A ∩B = ∅ and A ∪B = V)

is the total weights of the edges that connect the two sets. In the terminology of the
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graph theory, it is called the cut:

cut(A,B) =
∑

i∈A,j∈B

wij , (3.18)

which can also be viewed as a measure of the between-groups similarity.

Finding a bipartition of the graph that minimizes this cut value is known as the

minimum cut problem. There exist efficient algorithms for solving this problem. However

the minimum cut criterion favors grouping small sets of isolated nodes in the graph [96]

because the cut defined in (3.18) does not contain any within-group information. In

other words, the minimum cut usually yields over-clustered results when it is recursively

applied. This motivates several modified graph partition criteria including the Ncut:

Ncut(A,B) =
cut(A,B)

assoc(A,V)
+

cut(A,B)

assoc(B,V)

where assoc(A,V) =
∑

i∈A,j∈V wij is the total weights of the edges that connect

nodes in A to all nodes in the graph and assoc(B,V) is defined similarly. Note that the

Ncut value is always within the interval [0, 1]. An unbalanced cut would make the Ncut

value very close to 1 since assoc(A,V) = cut(A,B) + assoc(A,A) and assoc(B,V) =

cut(A,B) + assoc(B,B).

Shi and Malik [96] have shown that finding a bipartition with minimum Ncut

value can be formulated as the following discrete optimization problem:

y = arg min
y

yT (D − W)y

yT Dy
(3.19)
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with the constraints: 1) y ∈ {1,−b}n, b > 0; and 2) yT D1 = 0. Here W is an n × n

affinity matrix, D = diag[s1, s2, · · · , sn] is a diagonal matrix with si =
∑

j=1,··· ,n wij ,

and 1 is a vector of all ones. The partition is decided by y: if the i-th element of y is

greater than zero then node i is in A, otherwise in B. Unfortunately, solving the above

discrete optimization problem is NP-complete [96]. However, Shi and Malik show that

if the first constraint on y is relaxed, i.e., y can take real values, then the continuous

version of (3.19) can be minimized by solving the generalized eigenvalue system:

(D − W)y = λDy . (3.20)

And the solution is the generalized eigenvector corresponding to the second smallest

generalized eigenvalue (or in short the second smallest generalized eigenvector). Even

though there is no guarantee that this continuous approximation will be close to the

correct discrete solution, abundant experimental evidence demonstrates that the second

smallest generalized eigenvector does carry useful grouping information [96, 123], and

therefore is used by the Ncut method to bipartition the graph.

Unlike the ideal case, in which the signs of the values in the eigenvector can decide

the partition since the eigenvector can only take on two discrete values, the second

smallest generalized eigenvector of (3.20) usually takes on continuous values. Several

ways have been proposed in [96] to choose a splitting point: 1) keep 0 as the splitting

point; 2) use the median value of the second smallest generalized eigenvector as the

splitting point; 3) check l possible splitting points that are evenly spaced between the
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minimum and maximum values of the second smallest generalized eigenvector, and pick

the one with the minimum Ncut value. The last approach is employed in this work.

Next we would like to point out some implementation details: finding the second

smallest generalized eigenvector is equivalent to computing the largest eigenvector of a

transformed affinity matrix. It is not difficult to verify that the eigenvalues of

L = D−1
2 (D − W)D−1

2

are identical to the generalized eigenvalues of (3.20). Moreover, if y is a generalized

eigenvector of (3.20) then

z = D
1
2y (3.21)

is an eigenvector of L for the same eigenvalue (or generalized eigenvalue). Therefore

one can alternatively compute the second smallest eigenvector of L and transform it to

the desired generalized eigenvector using (3.21). The matrix L, which is a normalized

Laplacian matrix (D − W is called the Laplacian matrix [83]), has the following prop-

erties: 1) it is positive semidefinite with all the eigenvalues in the interval [0, 2]; 2) 0

and z0 = D
1
21 are the smallest eigenvalue and eigenvector, respectively. From these

properties, it is clear that if λ and z are an eigenvalue and eigenvector of L, respectively,

then 2 − λ and z are eigenvalue and eigenvector of 2I − L, respectively, where I is an

identity matrix. Moreover, 2 is the largest eigenvalue of 2I − L whose second largest

eigenvalue corresponds to the second smallest eigenvalue of L. Subtracting from 2I − L

a rank-one matrix defined by its largest eigenvalue 2 and unit length eigenvector
z0
‖z0‖
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gives

L∗ = 2I − L − 2

‖z0‖2
z0z

T
0

.

It is straightforward to check that the largest eigenvector of L∗ is the second smallest

eigenvector of L. The cost to compute L∗ is very low since D is a diagonal matrix with

positive diagonal entries. Therefore, one can apply an eigensolver, such as the Lanczos

method (Ch.9, [39]), to L∗ directly.
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Chapter 4

Support Vector Learning for

Fuzzy Rule-Based Classification Systems

SVM method described in Chapter 3.1 represents one of the most important

directions both in theory and application of machine learning. While fuzzy classifier was

regarded as a method that “are cumbersome to use in high dimensions or on complex

problems or in problems with dozens or hundreds of features (pp. 194, [29]).” In this

chapter, we investigate the connections between these two seemingly unrelated areas.

The result of this chapter will be used in Chapter 7 to design an image categorization

algorithm.

4.1 Overview

In general, building a fuzzy system consists of three basic steps [125]: structure

identification (variable selection, partitioning input and output spaces, specifying the

number of fuzzy rules, and choosing a parametric/nonparametric form of membership

functions), parameter estimation (obtaining unknown parameters in fuzzy rules via op-

timizing a given criterion), and model validation (performance evaluation and model

simplification).

Deciding the number of input variables is referred to as the problem of variable

selection, i.e., selecting input variables that are most predictive of a given outcome.

Given a set of input and output variables, a fuzzy partition associates fuzzy sets with
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each variable. There are roughly two ways of doing it: data independent partition

and data dependent partition. The former approach partitions the input space in a

predetermined fashion. One of the commonly used strategies is to assign fixed number

of linguistic labels to each input variable. The partition of the output space then follows

from supervised learning. Although this scheme is simple to implement, it has two severe

drawbacks:

• The performance of the resulting system may be very bad if the input space par-

tition is quite distinct from the distribution of data. Optimizing output space

partition alone is not sufficient.

• It suffers from the curse of dimensionality. If each input variable is allocated m

fuzzy sets, a fuzzy system with n inputs and one output needs on the order of mn

rules.

Various data dependent partition methods have been proposed to alleviate these draw-

backs. They are basically based on data clustering techniques [26, 94, 109].

Although a fuzzy partition can generate fuzzy rules, results are usually very coarse

with many parameters needing to be learned and tuned. Various optimization tech-

niques are proposed to solve this problem. Genetic algorithms [21] and artificial neural

networks [54] are two of the most popular and effective approaches.

After going through the long journey of structure identification and parameter

estimation, can we infer that we get a good fuzzy model? Conclusions could not be

drawn without answering the following two questions:

• How capable can a fuzzy model be?
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• How well can the model, built on finite amount of data, capture the concept un-

derlying the data?

The first question could be answered from the perspective of function approximation.

Several types of fuzzy models are proven to be “universal approximators” [85, 127].

The second question is about the generalization performance, which is closely related to

several well-known problems in the statistics and machine learning literature, such as

the structural risk minimization (SRM) [113], the bias variance dilemma [35], and the

overfitting phenomena [6]. Loosely speaking, a model, built on finite amount of training

data, generalizes the best if the right tradeoff is found between the training accuracy

and the “capacity” of the model set from which the model is chosen. On one hand, a

low “capacity” model set may not contain any model that fits the training data well.

On the other hand, too much freedom may eventually generate a model behaving like a

refined look-up-table: perfect for the training data but (maybe) poor on generalization.

Researchers in the fuzzy systems community attempt to tackle this problem with

roughly two approaches:(1) use the idea of cross-validation to select a model that has the

best ability to generalize [102]; (2) focus on model reduction, which is usually achieved

by rule base reduction [126], to simplify the model. In statistical learning literature,

the Vapnik-Chervonenkis (VC) theory [115] provides a general measure of model set

complexity, and gives associated bounds on generalization. However, no efforts have

been made to apply the VC theory and the related technique, SVM, to construct fuzzy

systems. The work presented in this chapter tries to bridge this gap.
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4.2 Additive Fuzzy Rule-Based Classification Systems

A classifier associates class labels with input features, i.e., it is essentially a map-

ping from the input space to the set of class labels. In this thesis, we are interested in

binary fuzzy classifiers defined as follows.

Definition 4.1. (Binary Fuzzy Classifier) Consider a fuzzy system with m + 1 fuzzy

rules where Rule 0 is given by (3.16), j = 1, · · · , m, Rule j has the form of (3.14). If

the system uses product for fuzzy conjunction, addition for rule aggregation, and COA

defuzzification, then the system induces a binary fuzzy classifier, f , with decision rule,

f(x) = sign (F (x) + t) (4.1)

where F (x) is defined in (3.17), t ∈ R is a threshold.

The following corollary states that, without loss of generality, we can assume

t = 0.

Corollary 4.2. For any binary fuzzy classifier given by Definition 4.1 with nonzero

threshold t, there exists a binary fuzzy classifier that has the same decision rule but zero

threshold.

Proof: Suppose we are given a binary fuzzy classifier, f , with t 6= 0. From (3.17) and

(4.1), we have

f(x) = sign




(b0 + t) +
∑m

j=1
(bj + t)

∏n
k=1

ak
j
(xk)

1 +
∑m

j=1

∏n
k=1

ak
j
(xk)


 ,
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which is identical to the decision rule of a binary fuzzy classifier with bj + t as the

THEN-part of jth fuzzy rule (j = 0, · · · , m) and zero threshold. ¤

The membership functions for a binary fuzzy classifier defined above could be

any function from R to [0, 1]. However, too much flexibility on the model could make

effective learning (or training) unfeasible. Therefore we narrow our interests to a class

of membership functions, which are generated from location transformation of reference

functions [28], and the classifiers defined on them.

Definition 4.3. (Reference Function 1, [28]) A function µ : R → [0, 1] is a reference

function if and only if µ(x) = µ(−x) and µ(0) = 1.

Definition 4.4. (Standard Binary Fuzzy Classifier) A binary fuzzy classifier given by

Definition 4.1 is a standard binary fuzzy classifier if for the kth input, k ∈ {1, · · · , n},

the membership functions, ak
j

: R → [0, 1], j = 1, · · · , m, are generated from a reference

function ak through location transformation, i.e., ak
j
(xk) = ak(xk−zk

j
) for some location

parameter zk
j
∈ R.

Definition 4.5. (Translation Invariant Kernel) A kernel K(x, z) is translation invari-

ant if K(x, z) = K(x− z), i.e., it depends only on x− z, but not on x and z themselves.

Corollary 4.6. The decision rule of a standard binary fuzzy classifier given by Defini-

tion 4.4 can be written as

f(x) = sign




m∑

j=1

bjK(x, zj) + b0


 (4.2)

1Note that the original definition in [28] has an extra condition: µ is nonincreasing on [0,∞).
But this condition is not needed in deriving our results, and therefore, is omitted.
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where x = [x1, x2, · · · , xn]T ∈ Rn, zj = [z1
j
, z2

j
, · · · , zn

j
]T ∈ Rn contains the location

parameters of ak
j
, k = 1, · · · , n, K : Rn × Rn → [0, 1] is a translation invariant kernel

defined as

K(x, zj) =

n∏

k=1

ak(xk − zk
j
) . (4.3)

Proof: From (3.17), (4.1), and Corollary 4.2, the decision rule of a binary fuzzy classifier

is

f(x) = sign




b0 +
∑m

j=1
bj

∏n
k=1

ak
j
(xk)

1 +
∑m

j=1

∏n
k=1

ak
j
(xk)


 .

Since 1 +
∑m

j=1

∏n
k=1

ak
j
(xk) > 0, we have

f(x) = sign


b0 +

m∑

j=1

bj

n∏

k=1

ak
j
(xk)


 . (4.4)

From the definition of a standard binary fuzzy classifier, ak
j
(xk) = ak(xk − zk

j
), k =

1, · · · , n, j = 1, · · · , m. Substituting these results into (4.4) completes the proof. ¤

4.3 Positive Definite Fuzzy Classifiers

One particular kind of kernel, the Mercer kernel, has received considerable at-

tention in the machine learning literature [24, 36, 115] because it is an efficient way of

extending linear learning machines to nonlinear ones. Is the kernel defined by (4.3) a

Mercer kernel? Before answering this question, we first quote a theorem.

Theorem 4.7. (Mercer’s Theorem [24, 72]) Let X be a compact subset of Rn. Suppose

K is a continuous symmetric function such that the integral operator TK : L2(X) →



38

L2(X),

(TKf)(·) =

∫

X
K(·,x)f(x)dx

is positive, that is
∫

X×X
K(x, z)f(x)f(z)dxdz ≥ 0 (4.5)

for all f ∈ L2(X). Let φi ∈ L2(X), i = 1, 2, · · · , denote the eigenfunctions of the

operator TK , where each φi is normalized in such a way that ‖φi‖L2
= 1; and let λi,

i = 1, 2, · · · , denote the corresponding eigenvalues. Then we can expand K(x, z) in a

uniformly convergent series on X × X,

K(x, z) =
∞∑

i=1

λiφi(x)φi(z) . (4.6)

The positivity condition (4.5) is also called the Mercer condition. A kernel satis-

fying the Mercer condition is called a Mercer kernel. An equivalent form of the Mercer

condition, which proves most useful in constructing Mercer kernels, is given by the fol-

lowing lemma [24].

Lemma 4.8. (Positivity Condition for Mercer Kernels [24]) For a kernel K : Rn×Rn →

R, the Mercer condition (4.5) holds if and only if the matrix [K(xi,xj)] ∈ Rn×n is

positive semi-definite for all choices of points {x1, · · · ,xn} ⊂ X and all n = 1, 2, · · · · · · .

For most nontrivial kernels, directly checking the Mercer conditions in (4.5) or

Lemma 4.8 is not an easy task. Nevertheless, for the class of translation invariant kernels,

to which the kernels defined by (4.3) belong, there is an equivalent yet practically more

powerful criterion based on the spectral property of the kernel [100].
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Lemma 4.9. (Mercer Conditions for Translation Invariant Kernels, Smola et al. [100])

A translation invariant kernel K(x, z) = K(x − z) is a Mercer kernel if and only if the

Fourier transform

F [K](ω) =
1

(2π)
n
2

∫

Rn
K(x)e−i〈ω,x〉dx

is nonnegative for all ω ∈ Rn.

Kernels defined by (4.3) do not, in general, have nonnegative Fourier transforms.

However, if we assume that the reference functions are positive definite functions, which

are defined by the following definition, then we do get a Mercer kernel (given in Theo-

rem 4.12).

Definition 4.10. (Positive Definite Function [47]) A function f : R → R is said to be

a positive definite function if the matrix [f(xi−xj)] ∈ Rn×n is positive semi-definite for

all choices of points {x1, · · · , xn} ⊂ R and all n = 1, 2, · · · · · · .

Corollary 4.11. A function f : R → R is positive definite if and only if the Fourier

transform

F [f ](ω) =
1√
2π

∫ ∞

−∞
f(x)e−iωxdx

is nonnegative all ω ∈ R.

Proof: Given any function f : R → R, we can define a translation invariant kernel

K : R × R → R as

K(x, z) = f(x − z) .
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From Lemma 4.9, K is a Mercer kernel if and only if the Fourier transform of f is

nonnegative. Thus from Lemma 4.8 and Definition 4.10, we conclude that f is a positive

definite function if and only if its Fourier transform is nonnegative. ¤

Theorem 4.12. (Positive Definite Fuzzy Classifier, PDFC) A standard binary classifier

given by Definition 4.4 is called a positive definite fuzzy classifier (PDFC) if the reference

functions, ak : R → [0, 1], k = 1, · · · , n, are positive definite functions. The translation

invariant kernel (4.3) is then a Mercer kernel.

Proof: From Lemma 4.9, it suffices to show that the translation invariant kernel defined

by (4.3) has nonnegative Fourier transform. Rewrite (4.3) as

K(x, z) = K(u) =

n∏

k=1

ak(uk)

where x = [x1, · · · , xn]T , z = [z1, · · · , zn]T ∈ Rn, u = [u1, · · · , un]T = x − z. Then

F [K](ω) =
1

(2π)
n
2

∫

Rn
e−i〈ω,u〉

n∏

k=1

ak(uk)du

=
1

(2π)
n
2

∫

Rn

n∏

k=1

ak(uk)e−iωkukdu

=
n∏

k=1

1√
2π

∫

R
ak(uk)e−iωkukduk

which is nonnegative since ak, k = 1, · · · , n, are positive definite functions (Corol-

lary 4.11). ¤
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4.4 Positive Definite Fuzzy Classifiers and Mercer Features

Recall the expansion (4.6) given by the Mercer Theorem. Let F be an l2 space.

If we define a nonlinear mapping Φ : X → F as

Φ(x) = [
√

λ1φ1(x), · · · ,
√

λkφi(x), · · · ]T , (4.7)

and define an inner product in F as

〈
[u1, · · · , ui, · · · ]

T , [v1, · · · , vi, · · · ]
T

〉
F

=
∞∑

i=1

uivi , (4.8)

then (4.6) becomes

K(x, z) = 〈Φ(x), Φ(z)〉F . (4.9)

The function Φ(x) ∈ F is sometimes referred to as the Mercer features. Equation (4.9)

displays a nice property of Mercer kernels: a Mercer kernel implicitly defines a nonlinear

mapping Φ such that the kernel computes the inner product in the space to which Φ maps.

Therefore a Mercer kernel enables a classifier, in the form of (4.2), to operate on Mercer

features (which usually reside in a space with dimension much higher than that of the

input space) without explicitly evaluating the Mercer features (which is computationally

very expensive). The following theorem illustrates the relationship between the PDFCs

and Mercer features.

Theorem 4.13. Given n positive definite reference functions, ak : R → [0, 1], k =

1, · · · , n, and a compact set X ⊂ Rn, we define a Mercer kernel K(x, z) =
∏n

k=1
ak(xk−
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zk) where x = [x1, · · · , xn]T , z = [z1, · · · , zn]T ∈ X. Let F be an l2 space, Φ : X → F

be the nonlinear mapping given by (4.7), and 〈·, ·〉F be an inner product in F defined

by (4.8). Given a set of points {z1, · · · , zm} ⊂ X, we define a subspace W ⊂ F as

W = Span{Φ(z1), · · · , Φ(zm)}, and a function space H on F as H = {h : h(u) =

sign(〈w,u〉F + b0), w ∈ W, u ∈ F, b0 ∈ R}. Then we have the following results:

1. For any g ∈ H, there exists a PDFC with ak, k = 1, · · · , n, as reference functions

such that the decision rule, f , of the PDFC satisfies f(x) = g(Φ(x)), ∀x ∈ X.

2. For any PDFC using ak, k = 1, · · · , n, as reference functions, if zj contains

location parameters of the IF-part membership functions associated with the jth

fuzzy rule for j = 1, · · · , m (as defined in Corollary 4.6), then there exists g ∈ H

such that the decision rule, f , of the PDFC satisfies f(x) = g(Φ(x)), ∀x ∈ X.

Proof:

1. Given g ∈ H, we have g(u) = sign(〈w,u〉F + b0). Since w ∈ W, it can be written

as a linear combination of Φ(zj)’s, i.e., w =
∑m

j=1
bjΦ(zj). Thus g(u) becomes

g(u) = sign




〈
m∑

j=1

bjΦ(zj),u

〉

F

+ b0




= sign




m∑

j=1

bj

〈
Φ(zj),u

〉
F

+ b0


 .

Now we can define a PDFC using ak, k = 1, · · · , n, as reference functions. For j =

1, · · · , m, let zj contain location parameters of the IF-part membership functions

associated with the jth fuzzy rule (as defined in Corollary 4.6), and bj be the
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THEN-part of the jth fuzzy rule. The THEN-part of Rule 0 is b0. Then from (4.2)

and (4.9), the decision rule is

f(x) = sign




m∑

j=1

bjK(x, zj) + b0




= sign




m∑

j=1

bj

〈
Φ(x), Φ(zj)

〉
F

+ b0




Clearly, f(x) = g(Φ(x)), ∀x ∈ X.

2. For a PDFC described in the theorem, let bj be the THEN-part of the jth fuzzy

rule, and b0 be the THEN-part of Rule 0. Then from (4.2) and (4.9), the decision

rule is

f(x) = sign




m∑

j=1

bj

〈
Φ(x), Φ(zj)

〉
F

+ b0




= sign




〈
m∑

j=1

bjΦ(zj), Φ(x)

〉

F

+ b0


 .

Let w =
∑m

j=1
bjΦ(zj) and g(u) = sign(〈w,u〉F + b0), then g ∈ H and f(x) =

g(Φ(x)), ∀x ∈ X.

This completes the proof. ¤

Remark 4.14. The compactness of the input domain X is required for purely theoretical

reason: it ensures that the expansion (4.6) can be written in a form of countable sum,

thus the nonlinear mapping (4.7) can be defined. In practice, we don’t need to worry

about it provided that all input features (both training and testing) are within certain
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range (which can be satisfied via data preprocessing). Consequently, it is reasonable to

assume that zj is also in X for j = 1, · · · , m because this essentially requires that all

fuzzy rule “patches” center inside the input domain.

Remark 4.15. Since g(u) = sign(〈w,u〉F + b) = 0 defines a hyperplane in F, Theo-

rem 4.13 relates the decision boundary of a PDFC in X to a hyperplane in F. The theo-

rem implies that given any hyperplane in F, if its orientation (normal direction pointed

by w) is a linear combination of vectors that have preimage (under Φ) in X, then the

hyperplane transforms to a decision boundary of a PDFC. Conversely, given a PDFC,

one can find a hyperplane in F that transforms to the decision boundary of the given

PDFC. Therefore, we can alternatively consider the decision boundary of a PDFC as a

hyperplane in the feature space F, which corresponds to a nonlinear decision boundary in

X. Constructing a PDFC is then converted to finding a hyperplane in F.

Remark 4.16. A hyperplane in F is defined by its normal direction w and the dis-

tance to the origin, which is determined by b for fixed w. According to the proof of

Theorem 4.13, w and b are defined as w =
∑m

j=1
bjΦ(zj) and b = b0, respectively,

where {z1, · · · , zm} ⊂ X is the set of location parameters of the IF-part fuzzy rules,

and {b0, · · · , bm} ⊂ R is the set of constants in the THEN-part fuzzy rules. This im-

plies that the IF-part and THEN-part of fuzzy rules play different roles in modeling the

hyperplane. The IF-part parameters, {z1, · · · , zm}, defines a set of feasible orienta-

tions, W = Span{Φ(z1), · · · , Φ(zm)}, of the hyperplane. The THEN-part parameters

{b1, · · · , bm} select an orientation,
∑m

j=1
bjΦ(zj), from W. The distance to the origin

is then determined by the THEN-part of Rule 0, i.e., b = b0.
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4.5 An SVM Approach to Build Positive Definite Fuzzy Classifiers

A PDFC with n inputs and m, which is unknown, fuzzy rules is parameterized

by n, possibly different, positive definite reference functions (ak : R → [0, 1], k = 1, ...n),

a set of location parameters ({z1, · · · , zm} ⊂ X) for the membership functions of the

IF-part fuzzy rules, and a set of real numbers ({b0, · · · , bm} ⊂ R) for the constants in the

THEN-part fuzzy rules. Which reference functions to choose is an interesting research

topic by itself [74]. But it is out of the scope of this thesis. Here we assume that the

reference functions ai : R → [0, 1], i = 1, · · · , n are predetermined. So the remaining

question is how to find a set of fuzzy rules ({z1, · · · , zm} and {b0, · · · , bm}) from the

given training samples {(x1, y1), · · · , (xl, yl)} ⊂ X × {+1,−1} so that the PDFC has

good generalization.

As given in (4.3), for a PDFC, a Mercer kernel can be constructed from the positive

definite reference functions. The kernel implicitly defines a nonlinear mapping Φ that

maps X into a kernel-induced feature space F. Theorem 4.13 states that the decision

rule of a PDFC can be viewed as a hyperplane in F. Therefore, the original question

transforms to: given training samples {(Φ(x1), y1), · · · , (Φ(xl), yl)} ⊂ F×{+1,−1}, how

to find a separating hyperplane in F that yields good generalization, and how to extract

fuzzy rules from the obtained optimal hyperplane. We have seen in Section 4.2 that the

SVM algorithm finds a separating hyperplane (in the input space or the kernel induced

feature space) with good generalization by reducing the empirical risk and, at the same

time, controlling the hyperplane margin. Thus we can use the SVM algorithm to find



46

an optimal hyperplane in F. Once we get such a hyperplane, fuzzy rules can be easily

extracted. The whole procedure is described by the following algorithm.

Algorithm 4.1. SVM Learning for PDFC

Inputs: Positive definite reference functions ak(xk), k = 1, · · · , n, associated with n

input variables, and a set of training samples {(x1, y1), · · · , (xl, yl)}.

Outputs: A set of fuzzy rules parameterized by zj , bj , and m. zj (j = 1, · · · , m)

contains the location parameters of the IF-part membership functions of the jth fuzzy

rule, bj (j = 0, · · · , m) is the THEN-part constant of the jth fuzzy rule, and m + 1 is

the number of fuzzy rules.

Steps:

1 construct a Mercer kernel, K, from the given positive definite

reference functions according to (4.3).

2 construct an SVM to get a decision rule of the form (3.10):

1) assign some positive number to C, and solve the quadratic program

defined by (3.9) to get the Lagrange multipliers α.

2) find b (details can be found in, for example, [11]).

3 extracting fuzzy rules from the decision rule of the SVM:

b0 ← b

j ← 1

FOR i = 1 TO l

IF αi > 0

zj ← xi
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bj ← yiαi

j ← j + 1

END

END

m ← j − 1

It is straightforward to check that the decision rule of the resulting PDFC is identical to

(3.10).

Once reference functions are fixed, the only free parameter in the above algorithm

is C. According to the optimization criterion in (3.5), C weights the classification error

versus the upper bound on the VC dimension. Another way of interpreting C is that it

affects the sparsity of α (the number of nonzero entries in α) [8]. Unfortunately, there is

no general rule for choosing C. Typically, a range of values of C should be tried before

the best one can be selected.

The above learning algorithm has several nice properties:

• The shape of the reference functions and C parameter are the only prior information

needed by the algorithm.

• The algorithm automatically generates a set of fuzzy rules. The number of fuzzy

rules is irrelevant to the dimension of the input space. It equals the number

of nonzero Lagrange multipliers. In this sense, the “curse of dimensionality” is

avoided. In addition, due to the sparsity of α, the number of fuzzy rules is usually

much less than the number of training samples.
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• Each fuzzy rule is parameterized by a training sample (xj , yj) and the associ-

ated nonzero Lagrange multiplier αj where xj specifies the location of the IF-part

membership functions, and yjαj gives the THEN-part constant.

• The global solution for the optimization problem can always be found efficiently

because of the convexity of the objective function and of the feasible region. Al-

gorithms designed specifically for the quadratic programming problems in SVMs

make large-scale training (for example 200, 000 samples with 40, 000 input vari-

ables) practical [55, 56, 82]. The computational complexity of classification oper-

ation is determined by the cost of kernel evaluation and the number of support

vectors.

• Since the goal of optimization is to lower an upper bound on the expected risk (not

just the empirical risk), the resulting PDFC usually has good generalization.

4.6 Discussions

In the literature, it is well-known that a Gaussian RBF network can be trained

via support vector learning using a Gaussian RBF kernel [92]. While the functional

equivalence between fuzzy inference systems and Gaussian RBF networks is established

in [53] where the membership functions within each rule must be Gaussian functions with

identical variance. So connection between such fuzzy systems and SVMs with Gaussian

RBF kernels can be established. The following discussion compares the kernels defined

by PDFCs and RBF kernels commonly used in SVMs.
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The kernels of PDFCs are constructed from positive definite reference functions.

These kernels are translation invariant, symmetric with respect to a set of orthogonal

axes, and tailing off gradually. In this sense, they appear to be very similar to the

general RBF kernels [36]. In fact, the Gaussian reference function defines the Gaussian

RBF kernel. However, in general, the kernels of PDFCs are not RBF kernels. According

to the definition, an RBF kernel, K(x, z), depends only on the norm of x − z, i.e.,

K(x−z) = KRBF (‖x−z‖). It can be shown that for a kernel, K(x, z), defined by (4.3)

using symmetric triangle, Cauchy, Laplace, hyperbolic secant, or squared sinc reference

functions (even with identical d for all input variables), there exists x1, x2, z1, and z2

such that ‖x1 − z1‖ = ‖x2 − z2‖ and K(x1, z1) 6= K(x2, z2). Moreover, a general RBF

kernels (even if it is a Mercer kernel) may not be a PDFC kernel, i.e., it can not be

in general decomposed as product of positive definite reference functions. It is worth

noting that the kernel defined by symmetric triangle reference functions is identical to

the Bn-splines (or order 1) kernel that is commonly used in the SVM literature [117].
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Chapter 5

A Robust Image Similarity Measure

Using Fuzzified Region Features

This chapter starts with an overview of the proposed approach. Then we describe

image segmentation and fuzzy feature representation of an image in Section 5.2. A

similarity measure is introduced in Section 5.3. Section 5.4 provides an algorithmic

presentation of the resulting CBIR system.

5.1 Overview

Semantically precise image segmentation by an algorithm is very difficult [96,

119, 133]. However, a single glance is sufficient for human to identify circles, straight

lines, and other complex objects in a collection of points and to produce a meaningful

assignment between objects and points in the image. Although those points cannot

always be assigned unambiguously to objects, human recognition performance is hardly

affected. We can often identify the object of interest correctly even when its boundary

is very blurry. This is probably because the prior knowledge of similar objects and

images may provide powerful assistance for human in recognition. Unfortunately, this

prior knowledge is usually unavailable to most of the current CBIR systems. However,

we argue that a similarity measure allowing for blurry boundaries between regions may

increase the performance of a region-based CBIR system. To improve the robustness of

a region-based image retrieval system against segmentation-related uncertainties, which
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always exist due to inaccurate image segmentation, we propose unified feature matching

(UFM) scheme based on fuzzy logic theory.

Applying fuzzy processing techniques to CBIR has been extensively investigated

in the literature. In [61], fuzzy logic is developed to interpret the overall color information

of images. Nine colors that match human perceptual categories are chosen as features.

Vertan et al. propose a fuzzy color histogram approach in [118]. A class of similarity

distances is defined based on fuzzy logic operations. Our scheme is distinct from the

above methods in two aspects:

• It is a region-based fuzzy feature matching approach. Segmentation-related uncer-

tainties are viewed as blurring boundaries between segmented regions. Instead of

a feature vector, we represent each region as a multidimensional fuzzy set, named

fuzzy feature, in the feature space of color, texture, and shape. Thus, each image

is characterized by a class of fuzzy features. Fuzzy features naturally characterize

the gradual transition between regions (blurry boundaries) within an image. It

assigns weights, called degrees of membership, to every feature vectors in the fea-

ture space. As a result, a feature vector usually belongs to multiple regions with

different degrees of membership as opposed to the classical region representation,

in which a feature vector belongs to exactly one region.

• A novel image similarity measure, UFM measure, is derived from fuzzy set op-

erations. The matching of two images is performed in three steps. First, each

fuzzy feature of the query image is matched with all fuzzy features of the target
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image in a Winner Takes All fashion. Then, each fuzzy feature of the target im-

age is matched with all fuzzy features of the query image using the same strategy

as in the previous step. Finally, overall similarity, given as the UFM measure, is

calculated by properly weighting the results from the above two steps.

5.2 Image Segmentation and Representation

The building blocks for the UFM approach are segmented regions and the corre-

sponding fuzzy features. In our system, the query image and all images in the database

are first segmented into regions. Regions are then represented by multidimensional fuzzy

sets in the feature space. The collection of fuzzy sets for all regions of an image consti-

tutes the signature of the image.

5.2.1 Image Segmentation

Our system segments images based on color and spatial variation features using

k-means algorithm [43], a very fast statistical clustering method. For general-purpose

images such as the images in a photo library or the images on the World-Wide Web,

precise object segmentation is nearly as difficult as computer semantics understanding.

However, semantically-precise segmentation is not crucial to our system because our

UFM approach is insensitive to inaccurate segmentation.

To segment an image, the system first partitions the image into small blocks. A

feature vector is then extracted for each block. The block size is chosen to compromise

between texture effectiveness and computation time. Smaller block size may preserve

more texture details but increase the computation time as well. Conversely, increasing
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the block size can reduce the computation time but lose texture information and increase

the segmentation coarseness. In our current system, each block has 4 × 4 pixels. The

size of the images in our database is either 256×384 or 384×256. Therefore each image

corresponds to 6144 feature vectors. Each feature vector, fi, consists of six features, i.e.,

fi ∈ R6, 1 ≤ i ≤ 6144. Three of them are the average color components in a 4 × 4

block. We use the well-known LUV color space, where L encodes luminance, and U and

V encode color information (chrominance). The other three represent energy in the high

frequency bands of the wavelet transforms [25], that is, the square root of the second

order moment of wavelet coefficients in high frequency bands.

To obtain these moments, a Daubechies-4 wavelet transform is applied to the L

component of the image. After a one-level wavelet transform, a 4×4 block is decomposed

into four frequency bands: the LL, LH, HL, and HH bands. Each band contains 2 × 2

coefficients. Without loss of generality, suppose the coefficients in the HL band are

{ck,l, ck,l+1, ck+1,l, ck+1,l+1}. One feature is

f =


1

4

1∑

i=0

1∑

j=0

c2
k+i,l+j




1
2

.

The other two features are computed similarly from the LH and HH bands. The mo-

tivation for using the features extracted from high frequency bands is that they reflect

texture properties. Moments of wavelet coefficients in various frequency bands have been

shown to be effective for representing texture [111]. The intuition behind this is that
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coefficients in different frequency bands show variations in different directions. For ex-

ample, the HL band shows activities in the horizontal direction. An image with vertical

strips thus has high energy in the HL band and low energy in the LH band.

The k-means algorithm is used to cluster the feature vectors into several classes

with every class corresponding to one region in the segmented image, i.e., for an im-

age with the set of feature vectors F = {fi ∈ R6 : 1 ≤ i ≤ 6144}, F is partitioned

into C groups {F1, · · · ,FC}, and consequently, the image is segmented into C regions

{R1, · · · ,RC} with Rj ⊂ N2 being the region corresponding to the feature set Fj ,

1 ≤ j ≤ C. Because clustering is performed in the feature space, blocks in each cluster

do not necessarily form a connected region in the images. This way, we preserve the

natural clustering of objects in textured images and allow classification of textured im-

ages [65]. The k-means algorithm does not specify how many clusters to choose. We

adaptively select the number of clusters C by gradually increasing C until a stop crite-

rion is met. The average number of clusters for all images in the database changes in

accordance with the adjustment of the stop criteria. As we will see in Section 8.1, the

average number of clusters is closely related to segmentation-related uncertainty level,

and hence affects the performance of the system.

After segmentation, three extra features are calculated for each region to describe

shape properties. They are normalized inertia [37] of order 1 to 3. For a region Rj ⊂ N2

in the image plane, which is a finite set, the normalized inertia of order γ is given as

I(Rj ,γ) =

∑
(x,y):(x,y)∈Rj

[(x − x̂)2 + (y − ŷ)2]
γ
2

V(Rj)
1+γ

2

,
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where (x̂, ŷ) is the centroid of Rj , V(Rj) is the volume of Rj . The normalized inertia

is invariant to scaling and rotation. The minimum normalized inertia is achieved by

spheres. Denote the γth order normalized inertia of spheres as Iγ . We define shape

feature hj of region Rj as I(Rj ,γ) normalized by Iγ , i.e.,

hj =

[
I(Rj ,1)

I1
,
I(Rj ,2)

I2
,
I(Rj ,3)

I3

]T

.

5.2.2 Fuzzy Feature Representation of an Image

A segmented image can be viewed as a collection of regions, {R1, · · · ,RC}.

Equivalently, in the feature space, the image is characterized by a collection of fea-

ture sets, {F1, · · · ,FC}, which form a partition of F. We could use the feature set Fj

to describe the region Rj , and compute the similarity between two images based on

Fj ’s. Representing regions by feature sets incorporates all the information available in

the form of feature vectors, but it has two drawbacks:

• It is sensitive to segmentation-related uncertainties. For any feature vector in

F, under this region representation, it belongs to exactly one feature set. But,

in general, image segmentation cannot be perfect. As a result, for many feature

vectors, a unique decision between in and not in the feature set is impossible.

• The computational cost for similarity calculation is very high. Usually, the similar-

ity measure for two images is calculated based on the distances (Euclidean distance

is the one that is commonly used in many applications) between feature vectors
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from different images. Therefore, for each image in the database, we need to com-

pute 6144×6145
2 such distances. Even with a rather conservative assumption, one

CPU clock cycle per distance, it takes about half an hour just to compute the

Euclidean distances for all 60, 000 images in our database on a 700MHz PC. This

amount of time is certainly too much for system users to tolerate.

In an improved region representation [64], which mitigates the above drawbacks,

each region (Rj) is represented by the center (f̂j) of the corresponding feature set (Fj)

with f̂j defined as

f̂j =

∑
f∈Fj

f

V(Fj)
, (5.1)

which is essentially the mean of all elements of Fj , and in general may not be an element

of Fj . While averaging over all features in a feature set decreases the impact of inaccurate

segmentation, at the same time, lots of useful information is also submerged in the

smoothing process because a set of feature vectors are mapped to a single feature vector.

Moreover, the segmentation-related uncertainties are not explicitly expressed in this

region representation.

Representing regions by fuzzy features, to some extent, combines the advantages

and avoids the drawbacks of both region representations mentioned above. In this repre-

sentation, each region is associated with a fuzzy feature that assigns a value (between 0

and 1) to each feature vector in the feature space. The value, named degree of member-

ship, illustrates the degree of wellness that a corresponding feature vector characterizes

the region, and thus models the segmentation-related uncertainties. In Section 5.3, we
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will show that this representation leads to a computationally efficient region matching

scheme if appropriate membership functions are selected.

A fuzzy feature F on the feature space R6 is defined by a mapping µF : R6 → [0, 1]

named the membership function. For any feature vector f ∈ R6, the value of µF(f) is

called the degree of membership of f to the fuzzy feature F (or, in short, the degree of

membership to F). A value closer to 1 for µF(f) means more representative the feature

vector f is to the corresponding region. For a fuzzy feature F, there is a smooth transition

for the degree of membership to F besides the hard cases f ∈ F (µF(f) = 1) and f 6∈ F

(µF(f) = 0). It is clear that a fuzzy feature degenerates to a conventional feature set if

the range of µF is {0, 1} instead of [0, 1] (µF is then called the characteristic function of

the feature set).

Building or choosing a proper membership function is an application dependent

problem. Some most commonly used prototype membership functions are cone, ex-

ponential, and Cauchy functions [46]. Two factors are considered when we select the

membership function for our system: retrieval accuracy and computational intensity for

evaluating a membership function. For different membership functions, although the

discrepancies among the efforts of computing degrees of membership are small, it is not

negligible for large-sized image databases as, in a retrieval process, it is magnified by the

product of the number of regions in the query image and the number of images in the

database. As shown in Section 8.1.4, under proper parameters, the cone, exponential,

and Cauchy functions can capture the uncertainties in feature vectors almost equally well,

which is reflected by retrieval accuracies of the resulting systems. But computational
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Fig. 5.1. Cauchy functions in R1.

intensities vary. As a result, we pick the Cauchy function due to its good expressive-

ness and high computational efficiency. A detailed comparison of all three membership

functions are given in Section 8.1.4.

The Cauchy function, C : Rk → [0, 1], is defined as

C(x) =
1

1 +
(‖x−v‖

d

)α (5.2)

where v ∈ Rk, d and α ∈ R, d > 0, α ≥ 0. v is the center location (point) of the function

(or called the center location of the fuzzy set), d represents the width (‖x − v‖ for

C(x) = 0.5) of the function, and α determines the shape (or smoothness) of the function.

Collectively, d and α portray the grade of fuzziness of the corresponding fuzzy feature.

For fixed d, the grade of fuzziness increases as α decreases. If α is fixed, the grade of
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fuzziness increases with the increasing of d. Figure 5.1 illustrates Cauchy functions in R

with v = 0, d = 36, and α varying from 0.01 to 100. As we can see, the Cauchy function

approaches the characteristic function of open interval (−36, 36) when α goes to positive

infinity. When α equals 0, the degree of membership for any element in R (except 0,

whose degree of membership is always 1 in this example) is 0.5.

Accordingly, the region Rj is represented by fuzzy feature Fj whose membership

function, µFj
: R6 → [0, 1], is defined as

µFj
(f) =

1

1 +
(‖f−f̂j‖

df

)α
(5.3)

where

df =
2

C(C − 1)

C−1∑

i=1

C∑

k=i+1

‖f̂i − f̂k‖

is the average distance between cluster centers, f̂i’s, defined by (5.1). An interesting

property intrinsic to membership function (5.3) is that the farther a feature vector moves

away from the cluster center, the lower its degree of membership to the fuzzy feature. At

the same time, its degrees of membership to some other fuzzy features may be increasing.

This nicely describes the gradual transition of region boundaries.

As stated in Section 5.2.1, the shape properties of region Rj is described by

shape feature hj . Considering the impacts of inaccurate segmentation on the shapes of

regions, it is reasonable to use fuzzy sets to illustrate shape properties. Thus, for region

Rj , the shape feature hj is extended to a fuzzy set Hj with membership function,
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µHj
: R3 → [0, 1], defined as

µHj
(h) =

1

1 +
(‖h−hj‖

dh

)α
(5.4)

where

dh =
2

C(C − 1)

C−1∑

i=1

C∑

k=i+1

‖hi − hk‖

is the average distance between shape features. The experiments show that the perfor-

mance changes insignificantly when α is in the interval [0.9, 1.2], but degrades rapidly

outside the interval. This is probably because, as α decreases, the Cauchy function

becomes sharper within its center region ([−d, d] for the example in Figure 5.1) and

flatter outside. As a result, many useful feature vectors within that region are likely to

be overlooked since their degrees of membership become smaller. Conversely, when α

is large, the Cauchy function becomes flat within the center region. Consequently, the

noise feature vectors in that region are likely to be selected as their degrees of member-

ship are high. We set α = 1 in both (5.3) and (5.4) based on the experimental results in

Section 8.1.4.

For an image with regions Rj , 1 ≤ j ≤ C, (F ,H) is named the fuzzy feature

representation (or signature) of the image, where F = {Fj : 1 ≤ j ≤ C, j ∈ N} with Fj

defined by (5.3), H = {Hj : 1 ≤ j ≤ C, j ∈ N} with Hj defined by (5.4). The color and

texture properties are characterized by F , while the shape properties are captured by

H.
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5.2.3 An Algorithmic View

The image segmentation and fuzzy feature representation process can be summa-

rized as follows. ε1 > 0 and ε2 > 0 are given stop criteria. The input is an image in

raw format. The outputs is the signature of the image, (F ,H), which is characterized

by f̂j ∈ R6 (center location) and df > 0 (width) of color/texture fuzzy features, and

hj ∈ R3 (center location) and dh > 0 (width) of shape fuzzy features. j = 1 . . . C, C is

the number of regions.

Algorithm 5.1. Image Segmentation and Fuzzy Features Extraction

1 partition the image into B 4 × 4 blocks

2 FOR i = 1 TO B

3 extract feature vector fi for block i

4 END

5 k ← 2, D[1] ← 0

6 WHILE k ≤ M

7 group {fi : 1 ≤ i ≤ B} into k clusters using the k-means algorithm

8 C ← k

9 FOR j = 1 TO C

10 compute the mean, f̂j, for cluster j

11 END

12 D[k] ← ∑B
i=1

min1≤j≤C ‖fi − f̂j‖2

13 IF D[k] < ε1 OR D[k] − D[k − 1] < ε2

14 k ← M + 1
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15 ELSE

16 k ← k + 1

17 END

18 END

19 FOR j = 1 TO C

20 compute shape feature hj for region j

21 END

22 df ← 0, dh ← 0

23 FOR i = 1 TO C − 1

24 FOR j = i + 1 TO C

25 df ← df + ‖f̂i − f̂j‖

26 dh ← dh + ‖hi − hj‖

27 END

28 END

29 df ← 2df

C(C−1)
, dh ← 2dh

C(C−1)

5.3 Unified Feature Matching

In this section, we describe the unified feature matching (UFM) scheme which

characterizes the resemblance between images by integrating properties of all regions in

the images. Based upon fuzzy feature representation of images, characterizing the sim-

ilarity between images becomes an issue of finding similarities between fuzzy features.

We first introduce a fuzzy similarity measure for two regions. The result is then extended
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to construct a similarity vector which includes the region-level similarities for all regions

in two images. Accordingly, a similarity vector pair is defined to illustrate the resem-

blance between two images. Finally, the UFM measure maps a similarity vector pair to a

scalar quantity, within the real interval [0, 1], which quantifies the overall image-to-image

similarity.

5.3.1 Similarity Between Regions: Fuzzy Similarity Measure

Considering the fuzzy feature representation of images, the similarity between

two regions can be captured by a fuzzy similarity measure of the corresponding fuzzy

features (fuzzy sets). In the classical set theory, there are many definitions of similarity

measure for sets. For example, a similarity measure of set A and B can be defined as the

maximum value of the characteristic function of A∩B, i.e., if they have common elements

then the similarity measure is 1 (most similar), otherwise 0 (least similar). If A and B

are finite sets, another definition is
V(A∩B)√
V(A)V(B)

, meaning the more elements they have in

common, the more similar they are. Almost all similarity measures for conventional sets

have their counterparts in fuzzy domain [4]. Taking the computational complexity into

account, in this paper, we use a definition extended from the first definition mentioned

above.

Before giving the formal definition of the fuzzy similarity measure for two fuzzy

sets, we first define elementary set operations, intersection and union, for fuzzy sets.

Let A and B be fuzzy sets defined on Rk with corresponding membership functions

µA : Rk → [0, 1] and µB : Rk → [0, 1], respectively. The intersection of A and B,

denoted by A ∩B, is a fuzzy set on Rk with membership function, µA∩B : Rk → [0, 1],
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defined as

µA∩B(x) = min[µA(x), µB(x)]. (5.5)

The union A and B, denoted by A∪B, is a fuzzy set on Rk with membership function,

µA∪B : Rk → [0, 1], defined as

µA∪B(x) = max[µA(x), µB(x)]. (5.6)

Note that there exists different definitions of intersection and union, the above definitions

are computationally simplest [4].

The fuzzy similarity measure for fuzzy sets A and B, S(A,B), is given by

S(A,B) = sup
x∈Rk

µA∩B(x). (5.7)

It is clear that S(A,B) is always within the real interval [0, 1] with a larger value de-

noting a higher degree of similarity between A and B. For the fuzzy sets defined by

Cauchy functions, as in (5.2), calculating the fuzzy similarity measure according to (5.7)

is relatively simple. This is because the Cauchy function is unimodal, and therefore the

maximum of (5.5) can only occur on the line segments connecting the center locations

of two functions. It is not hard to show that for fuzzy sets A and B on Rk with Cauchy

membership functions

µA(x) =
1

1 +
(‖x−u‖

da

)α
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and

µB(x) =
1

1 +
(‖x−v‖

db

)α ,

the fuzzy similarity measure for A and B, which is defined by (5.7), can be equivalently

written as

S(A,B) =
(da + db)

α

(da + db)
α + ‖u − v‖α . (5.8)

5.3.2 Fuzzy Feature Matching

It is clear that the resemblance of two images is conveyed through the similarities

between regions from both images. Thus it is desirable to construct the image-level

similarity using region-level similarities. Since image segmentation is usually not perfect,

a region in one image could correspond to several regions in another image. For example,

a segmentation algorithm may segment an image of dog into two regions: the dog and the

background. The same algorithm may segment another image of dog into five regions:

the body of the dog, the front leg(s) of the dog, the rear leg(s) of the dog, the background

grass, and the sky. There are similarities between the dog in the first image and the body,

the front leg(s), or the rear leg(s) of the dog in the second image. The background of

the first image is also similar to the background grass or the sky of the second image.

However, the dog in the first image is unlikely to be similar to the background grass and

sky in the second image.

Using fuzzy feature representation, these similarity observations can be expressed

as:
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• The similarity measure, given by (5.8), for the fuzzy feature of the dog in the first

image and the fuzzy features of the dog body, front leg(s), OR rear leg(s) in the

second image is high (e.g., close to 1).

• The similarity measure for the fuzzy feature of the background in the first image

and the fuzzy features of the background grass OR sky in the second image is also

high.

• The similarity measure for the fuzzy feature of the dog in the first image and the

fuzzy feature of the background grass in the second image is small (e.g., close to

0). The similarity measure for the fuzzy feature of the dog in the first image and

the fuzzy feature of the sky in the second image is also small.

Based on these qualitative illustrations, it is natural to think of the mathematical mean-

ing of the word OR, i.e., the union operation. What we have described above is es-

sentially the matching of a fuzzy feature with the union of some other fuzzy features.

Based on this motivation, we construct the similarity vector for two classes of fuzzy sets

through the following steps.

Let A = {Ai : 1 ≤ i ≤ Ca, i ∈ N}, and B = {Bj : 1 ≤ j ≤ Cb, j ∈ N} denote two

collections of fuzzy sets. First, for every Ai ∈ A, we define the similarity measure for it

and B as

lB
i

= S(Ai,

Cb⋃

j=1

Bj). (5.9)
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Combining lB
i

’s together, we get a vector

lB = [lB
1

, lB
2

, · · · , lB
Ca

]T .

Similarly, for every Bj ∈ B, we define the similarity measure between it and A as

lA
j

= S(Bj ,

Ca⋃

i=1

Ai). (5.10)

Combining lA
j

’s together, we get a vector

lA = [lA
1

, lA
2

, · · · , lA
Cb

]T .

It is clear that lB describes the similarity between individual fuzzy features in A and

all fuzzy features in B. Likewise, lA illustrates the similarity between individual fuzzy

features in B and all fuzzy features in A. Thus we define a similarity vector for A and

B, denoted by L(A,B), as

L(A,B) =




lB

lA


 ,

which is a Ca + Cb dimensional vector with values of all entries within the real interval

[0, 1].

It can be shown that if A = B 1 then L(A,B) contains all 1’s. If a fuzzy set of A

(B) is quite different from all fuzzy sets of B (A), in the sense that the distances between

1A = B if and only if the membership functions of fuzzy sets in A are the same as those of
fuzzy sets in B.
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their centers are much larger than their widths, the corresponding entry in L(A,B) would

be close to 0. Using the definition of the union of fuzzy sets, which is given by (5.6),

equations (5.9) and (5.10) can be equivalently written as

lB
i

= max
j=1,··· ,Cb

S(Ai,Bj), (5.11)

lA
j

= max
i=1,··· ,Ca

S(Bj ,Ai). (5.12)

Equations (5.11) and (5.12) shows that computing the similarity measure for Ai (Bj)

and B (A) is equivalent to calculating the similarity measures for Ai (Bj) and Bj (Ai)

with j taking integer values from 1 to Cb (i taking integer values from 1 to Ca), and

then picking the maximum value, i.e., in a Winner Takes All fashion.

Let (Fq,Hq) and (Ft,Ht) be fuzzy feature representations for query image (q)

and target image (t), respectively. The similarity between the query and target images

is then captured by a similarity vector pair (L
(Fq,Ft),L

(Hq,Ht)) where L
(Fq ,Ft) depicts

the similarity in colors and textures, and L
(Hq ,Ht) describes the similarity in shapes.

Within the similarity vectors, l
Fq and l

Hq refer to the similarity between the query

image and regions of the target image. Likewise, lFt and lHt designate the similarity

between the target image and regions of the query image.

5.3.3 The UFM Measure

Endeavoring to provide an overall image-to-image and intuitive similarity quan-

tification, the UFM measure is defined as the summation of all the weighted entries of

similarity vectors L
(Fq ,Ft) and L

(Hq,Ht). We have discussed the methods of computing
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similarity vectors in Sections 5.3.1 and 5.3.2. The problem is then converted to design-

ing a weighting scheme. The UFM measure is computed in two stages. First, the inner

products of similarity vectors L
(Fq,Ft) and L

(Hq,Ht) with weight vectors w1 and w2,

respectively, are calculated. The results are then weighted by ρ1 and ρ2, and added up

to give the UFM measure m(q,t).

There are many ways of choosing weight vectors w1 and w2. For example, in

a uniform weighting scheme we assume every region being equally important. Thus all

entries of w1 and w2 equal to 1
Cq+Ct

where Cq (Ct) is the number of regions in the query

(target) image. Such weight vectors favor the image with more regions because, in both

w1 and w2, the summation of weights associated with the regions of the query (target)

image is
Cq

Cq+Ct
(

Ct
Cq+Ct

). If the regions within the same image are regarded as equally

important, then the weights for entries of l
Fq and l

Hq (lFt and lHt) can be chosen as

1
2Cq

( 1
2Ct

). It is clear that regions from the image with less regions are allocated larger

weights (if Cq = Ct then the weights are identical to those under the uniform weighting

scheme). We can also take the location of the regions into account, and assign higher

weights to regions closer to the center of the image (center favored scheme, assuming

the most important objects are always near the image center) or conversely to regions

adjacent to the image boundary (border favored scheme, assuming images with similar

semantics have similar backgrounds). Another choice is area percentage scheme. It uses

the percentage of the image covered by a region as the weight for that region based on

the viewpoint that important objects in an image tend to occupy larger areas.

In the UFM measure, both area percentage and border favored schemes are used.

The weight vectors w1 and w2 are defined as w1 = (1 − λ)wa + λwb and w2 = wa



70

where wa contains the normalized area percentages of the query and target images, wb

contains normalized weights 2 which favor regions near the image boundary, λ ∈ [0, 1]

adjusts the significance of wa and wb in w1. The weights ρ1 and ρ2 are given by

ρ1 = 1 − ρ,

ρ2 = ρ,

where ρ is within the real interval [0, 1]. Consequently, the UFM measure for query

image q and target image t is defined as

m(q,t) = (1 − ρ) [(1 − λ)wa + λwb]
T L

(Fq,Ft) + ρwT
a
L

(Hq,Ht). (5.13)

As shown by equation (5.13), the UFM measure incorporates three similarity

components captured by wT
a
L

(Fq,Ft), wT
b
L

(Fq,Ft), and wT
a
L

(Hq ,Ht):

• wT
a
L

(Fq,Ft) contributes to the UFM measure from a color and texture perspective

because L
(Fq,Ft) reflects the color and texture resemblance between the query and

target images. In addition, the matching of regions with larger areas is favored

which is the direct consequence of the area percentage weighting scheme.

• wT
b
L

(Fq,Ft) also expresses the color and texture resemblance between images. But,

unlike in wT
a
L

(Fq,Ft), regions adjacent to the image boundaries are given a higher

preference because of the border favored weight vector wb. Intuitively, wT
b
L

(Fq,Ft)

characterizes the similarity between the backgrounds of images.

2Both the summation of all entries of wa and that of wb equal 1.
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• Similarly, wT
a
L

(Hq,Ht) describes the similarity of the shape properties of the re-

gions (or objects) in both images since L
(Hq ,Ht) contains similarity measures for

shape features.

Weighted by λ and ρ, the aforementioned similarity components are then synthe-

sized into the UFM measure, in which [(1 − λ)wa + λwb]
T L

(Fq ,Ft) represents the color

and texture similarity with contributions from the area percentage and the border fa-

vored schemes weighted by λ, while ρ determines the significance of the shape similarity,

wT
a
L

(Hq,Ht), with respect to the color and texture similarity. In our system, the query

image is automatically classified as either a textured or a non-textured image (for details

see [65]). For textured images, the information of the shape similarity is skipped (ρ = 0)

in the UFM measure since region shape is not perceptually important for such images.

For non-textured images, ρ is chosen to be 0.1. Experiments indicate that including

shape similarity as a small fraction of the UFM measure can improve the overall perfor-

mance of the system. We intentionally stress color and texture similarities more than

shape similarity because, compared with the color and texture features, shape features

used in our system are more sensitive to image segmentation. The weight parameter λ is

set to be 0.1 for all images. Experiments show that large λ is beneficial to categorizing

images with similar background patterns. For example, the background of images of

flowers often consists of green leaves and images of elephants are very likely to have trees

in them. Thus emphasizing backgrounds can help grouping images, such as flowers or

elephants, together. But the above background assumption is in general not true. In

our observation, the overall image categorization performance degrades significantly for
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λ > 0.5. When ρ and λ are within [0.05, 0.3], no major system performance deterioration

is noticed in our experiments.

m(q,t) is always in the real interval [0, 1] because wa and wb are normalized

weight vectors, and ρ and λ are within [0, 1]. It is easy to check that m(q,t) = 1 if two

images are same. The experiments show that there is little resemblance between images

if m(q,t) ≤ 0.5. In this sense, the UFM measure is very intuitive for query users.

5.3.4 An Algorithmic View

An algorithmic outline of the UFM algorithm is given as below. Weights ρ, λ ∈

[0, 1] are fixed. Inputs are (Fq,Hq) (characterized by f̂j ∈ R6, df ∈ R, hj ∈ R3,

dh ∈ R, 1 ≤ j ≤ Cq), (Ft,Ht) (characterized by f̂ ′j ∈ R6, d′
f
∈ R, h′j ∈ R3, d′

h
∈ R,

1 ≤ j ≤ Ct), and weight vectors wa,wb ∈ RCq+Ct . The UFM measure m(q,t) is the

output.

Algorithm 5.2. Unified Feature Matching

1 FOR i = 1 TO Cq

2 L
(Fq,Ft)[i] ←

df+d′
f

df+d′
f
+minj=1,...,Ct

‖f̂i−f̂ ′j‖

3 IF the query image is non-textured

4 L
(Hq ,Ht)[i] ← dh+d′

h
dh+d′

h
+minj=1,...,Ct

‖hi−h′j‖

5 END

6 END

7 FOR i = 1 TO Ct

8 L
(Fq,Ft)[i + Cq] ←

df+d′
f

df+d′
f
+minj=1,...,Cq

‖f̂ ′i−f̂j‖
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9 IF the query image is non-textured

10 L
(Hq ,Ht)[i + Cq] ←

dh+d′
h

dh+d′
h
+minj=1,...,Cq

‖h′i−hj‖

11 END

12 END

13 m(q,t) ← [(1 − λ)wa + λwb]
T L

(Fq,Ft)

14 IF the query image is non-textured

15 m(q,t) ← (1 − ρ)m(q,t) + ρwT
a
L

(Hq ,Ht)

16 END

5.4 An Algorithmic Summarization of the System

Based on the results given in Section 5.2 and Section 5.3, we describe the overall

image retrieval and indexing scheme as follows.

1. Pre-processing image database

To generate the codebook for an image database, signatures for all images in the

database are extracted by Algorithm 5.1. Each image is classified as either a

textured or a non-textured image using techniques in [65]. The whole process is

very time-consuming. Fortunately, for a given image database, it is performed once

for all.

2. Pre-processing query image

Here we consider two scenarios, namely inside query and outside query. For in-

side query, the query image is in the database. Therefore, the fuzzy features and

semantic types (textured or non-textured image) can be directly loaded from the
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codebook. If a query image is not in the database (outside query), the image is

first expanded or contracted so that the maximum value of the resulting width and

height is 384 and the aspect ratio of the image is preserved. Fuzzy features are

then computed for the resized query image. Finally, the query image is classified

as textured or non-textured image.

3. Computing the UFM measures

Using Algorithm 5.2, the UFM measures are evaluated for the query image and all

images in the database, which have semantic types identical to that of the query

image.

4. Returning query results

Images in the database are sorted in a descending order according to the UFM

measures obtained from the previous step. Depending on a user specified number

n, the system returns the first n images. The quick sort algorithm is applied here.
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Chapter 6

Cluster-Based Retrieval of Images by

Unsupervised Learning

This chapter starts with some motivations for the cluster-based image retrieval

method. Then we describe the general methodology of method in Section 6.2. Algo-

rithmic and computational issues are discussed in Section 6.3. Section 6.4 introduces an

image retrieval system using the proposed method.

6.1 Overview

Figure 6.1 shows a query image and the top 29 target images returned by a CBIR

system described in [16] where the query image is on the upper-left corner. From left to

right and top to bottom, the target images are ranked according to decreasing values of

similarity measure. In essence, this can be viewed as a one-dimensional visualization of

the image database in the “neighborhood” of the query image using a similarity measure.

If the query image and majority of the images in the “vicinity” have the same semantics,

then we would expect good results. But target images with high feature similarities to

the query image may be quite different from the query image in terms of semantics due

to the semantic gap. For the example in Figure 6.1, the target images belong to several

semantic classes where the dominant ones include horses (11 out of 29), flowers (7 out

of 29), golf player (4 out of 29), and vehicle (2 out of 29).
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Fig. 6.1. A query image and its top 29 matches returned by the CBIR system at
http://wang.ist.psu.edu/IMAGE (UFM). The query image is on the upper-left corner.
The ID number of the query image is 6275.

However, the majority of top matches in Figure 6.1 belong to a quite small number

of distinct semantic classes, which suggests a hypothesis that, in the “vicinity” of the

query image, images of the same semantics are more similar to each other than to images

of different semantics. Or, in other words, images tend to be semantically clustered.

Therefore, a retrieval method, which is capable of capturing this structural relationship,

may render semantically more meaningful results to the user than merely a list of images

sorted by a similarity measure. Similar hypothesis has been well studied in document

(or text) retrieval [3] where strong supporting evidence has been presented [45].

This motivates us to tackle the semantic gap problem from the perspective of

unsupervised learning. In this thesis, we propose an algorithm, CLUster-based rEtrieval

of images by unsupervised learning (CLUE), to retrieve image clusters instead of a set

of ordered images: the query image and neighboring target images, which are selected
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according to a similarity measure, are clustered by an unsupervised learning method

and returned to the user. In this way, relations among retrieved images are taken into

consideration through clustering and may provide extra information for ranking and

presentation. CLUE has the following characteristics:

• It is a cluster-based image retrieval scheme that can be used as an alternative

to retrieving a set of ordered images. The image clusters are obtained from an

unsupervised learning process based on not only the feature similarity of images

to the query, but also how images are similar to each other. In this sense, CLUE

aims to capture the underlying concepts about how images of the same semantics

are alike and present to the users semantic relevant clues as to where to navigate.

• It is a similarity-driven approach that can be built upon virtually any symmetric

real-valued image similarity measure. Consequently, our approach could be com-

bined with many other image retrieval schemes including the relevance feedback

approach with dynamically updated models of similarity measure. Moreover, as

shown in Section 8.2, it may also be used as a part of the interface for keyword-

based image retrieval systems.

• It provides a dynamic and local visualization of the image database using a cluster-

ing technique. The clusters are created depending on which images are retrieved in

response to the query. Consequently, the clusters have the potential to be closely

adapted to characteristics of a query image. Moreover, by constraining the collec-

tion of retrieved images to the neighborhood of the query image, clusters generated

by CLUE provides a local approximation of the semantic structure of the whole
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image database. Although the overall semantic structure of the database could be

very complex and extremely difficult to identify by a computer program, locally it

may be well described by a simple approximation such as clusters. This is in con-

trast to current image database statistical classification methods [95, 112, 120], in

which the semantic categories are derived for the whole database in a preprocessing

stage, and therefore are global, static, and independent of the query.

• It employs a pairwise representation of images, which is independent of the specific

representation of image features. A set of n images is represented by
n(n+1)

2

pairwise similarities not as a collection of points in a certain normed feature space.

This is crucial for nonmetric image similarity measures (many commonly used

similarity measures are indeed nonmetric [51]), under which the images cannot be

embedded in a normed vector space. Using pairwise distances for image retrieval

is not a new idea. In [87], the authors propose the use of the MDS technique to

embed a group of images in a two-dimensional Euclidean space so that the pairwise

distances are preserved as much as possible. However, their method requires that

the images are mapped to distributions in a geometric color space to make “the

‘axes of variation’ be perceptually clear to the user” [87]. While our approach

does not impose such a strict constraint on the image features. Furthermore, our

approach provides a local “semantics summarization” of the image database using

a clustering technique instead of projecting images onto a plane.
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Fig. 6.2. A diagram of a general CBICR system. The arrows with dotted lines may not
exist for some CBICR systems.

6.2 Retrieval of Similarity-Induced Image Clusters

For the purpose of simplifying the explanations, we call a CBIR system using

CLUE a Content-Based Image Clusters Retrieval (CBICR) system. In this section, we

first present an overview of CBICR systems. We then describe in detail the major

components of CLUE, namely, neighboring image selection and images clustering.

6.2.1 System Overview

From a data-flow viewpoint, a general CBICR system can be characterized by the

diagram in Figure 6.2. The retrieval process starts with feature extraction for a query

image. The features for target images (images in the database) are usually precom-

puted and stored as feature files. Using these features together with an image similarity

measure, the resemblance between the query image and target images are evaluated and

sorted. Next, a collection of target images that are “close” to the query image are selected
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as the neighborhood of the query image. A clustering algorithm is then applied to these

target images. Finally, the system displays the image clusters and adjusts the model of

similarity measure according to user feedback (if relevance feedback is included).

The major difference between CBICR and CBIR systems lies in the two processing

stages, selecting neighboring target images and image clustering, which are the major

components of CLUE. A typical CBIR system bypasses these two stages and directly

outputs the sorted results to the display and feedback stage. Figure 6.2 suggests that

CLUE can be designed independent of the rest of the components because the only

information needed by CLUE is the sorted similarities. This implies that CLUE may

be embedded in a typical CBIR system regardless of the image features being used, the

sorting method, and whether there is feedback or not. The only requirement is a real-

valued similarity measure satisfying the symmetry property. As a result, in the following

subsections, we focus on the discussion of general methodology of CLUE, and assume

that a similarity measure is given. An introduction of a specific CBICR system, which

we have implemented, will be given in Section 6.4.

6.2.2 Neighboring Target Images Selection

To mathematically define the neighborhood of a point, we need to first choose a

measure of distance. As to images, the distance can be defined by either a similarity

measure (a larger value indicates a smaller distance) or a dissimilarity measure (a smaller

value indicates a smaller distance). Because simple algebraic operations can convert a

similarity measure into a dissimilarity measure, without loss of generality, we assume that

the distance between two images is determined by a symmetric dissimilarity measure,
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d(i, j) = d(j, i) ≥ 0, and name d(i, j) the distance between images i and j to simplify

the notation.

Next we propose two simple methods to select a collection of neighboring target

images for a query image i:

1. Fixed radius method (FRM) takes all target images within some fixed radius ε with

respect to i. For a given query image, the number of neighboring target images is

determined by ε.

2. Nearest neighbors method (NNM) first chooses k nearest neighbors of i as seeds.

The r nearest neighbors for each seed are then found. Finally, the neighboring

target images are selected to be all the distinct target images among seeds and

their r nearest neighbors, i.e., distinct target images in k(r + 1) target images.

Thus the number of neighboring target images is bounded above by k(r + 1).

If the distance is metric, both methods would generate similar results under proper

parameters (ε, k, and r). However, for nonmetric distances, especially when the triangle

inequality is not satisfied, the set of target images selected by two methods could be

quite different regardless of the parameters. This is due to the violation of the triangle

inequality: the distance between two images could be huge even if both of them are very

close to a query image. Compared with the FRM, our empirical results show that, with

proper choices of k and r, NNM tends to generate more structured collection of target

images under a nonmetric distance.

On the other hand, the computational cost of NNM is higher than that of the FRM

because of the extra time to find nearest neighbors for all k seeds. Thus a straightforward
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implementation of NNM would be k-times slower than the FRM. Note that all k seeds

are images in the database. Consequently, their nearest neighbors can be found in a

preprocessing step to reduce the computational cost. However, the price we then have

to pay is additional storage space for the nearest neighbors of target images. This

work chooses NNM. A detailed discussion of computational issues (including parameters

selection) will be covered in Section 6.3.

6.2.3 Spectral Graph Partitioning

Data representation is typically the first step to solve any clustering problem. Two

types of representations are widely used: geometric representation and graph represen-

tation. When working with images, geometric representation has a major limitation: it

requires that the images be mapped to points in some real normed vector space. Overall,

this is a very restrictive constraint. For example, in region-based algorithms [16, 64, 120],

an image is often viewed as a collection of regions. The number of regions may vary for

different images. Although regions can be mapped to certain real normed vector space,

it is in general impossible to do so for images in a lossless way unless the distance be-

tween images is metric, in which case embedding becomes feasible. Nevertheless, many

distances defined for images are nonmetric for reasons given in [51].

Therefore, this thesis adopts a graph representation of neighboring target images.

A set of n images is represented by a weighted undirected graph G = (V,E): the nodes

V = {1, 2, . . . , n} represent images, the edges E = {(i, j) : i, j ∈ V} are formed between

every pair of nodes, and the nonnegative weight wij of an edge (i, j), indicating the

similarity between two nodes, is a function of the distance (or similarity) between nodes
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(images) i and j. Given a distance d(i, j) between images i and j, we define

wij = e
−d(i,j)

2

s2 (6.1)

where s is a scaling parameter that needs to be tuned to get a suitable locality. The

weights can be organized into a matrix W, named the affinity matrix, with the ij-th

entry given by wij . Although Equation (6.1) is a relatively simple weighting scheme, our

experimental results (Section 8.2) have shown its effectiveness. The same scheme has

been used in [34, 96, 123]. Support for exponential decay from psychological studies is

provided by [34].

Under a graph representation, clustering becomes a graph partitioning problem.

The Ncut described in Chapter 3.3 is recursively applied to get more than two clusters.

But this leads to the questions: 1) which subgraph should be divided? and 2) when

should the process stop? In this paper, we use a simple heuristic. The subgraph with

the maximum number of nodes is recursively partitioned (random selection is used for tie

breaking). The process terminates when the bound on the number of clusters is reached

or the Ncut value exceeds some threshold.

6.2.4 Finding a Representative Image for a Cluster

Ultimately, the system needs to present the clustered target images to the user.

Unlike a typical CBIR system, which displays certain numbers of top matched target

images to the user, a CBICR system should be able to provide an intuitive visualization

of the clustered structure in addition to all the retrieved target images. For this reason,
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we propose a two-level display scheme. At the first level, the system shows a collection

of representative images of all the clusters (one for each cluster). At the second level,

the system displays all target images within the cluster specified by a user.

Nonetheless two questions still remain: 1) how to organize these clusters? and

2) how to find a representative image for each cluster? The organization of clusters

will be described in Section 6.3.2. For the second question, we define a representative

image of a cluster to be the image that is most similar to all images in the cluster. This

statement can be mathematically illustrated as follows. Given a graph representation

of images G = (V,E) with affinity matrix W, let the collection of image clusters be

{C1,C2, · · · ,Cm}, which is also a partition of V, i.e., Ci ∩ Cj = ∅ for i 6= j and

⋃m
i=1

Ci = V. Then the representative node (image) of Ci is

arg max
j∈Ci

∑

t∈Ci

wjt . (6.2)

Basically, for each cluster, we pick the image that has the maximum sum of within cluster

similarities.

6.3 An Algorithmic View

This section starts with an algorithmic summary of CLUE described in Sec-

tion 6.2. We then talk about the organization of clusters, followed by a discussion

of computational complexity and parameters selection.
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6.3.1 Outline of Algorithm

The following pseudo code selects a group of neighboring target images for a query

image, recursively partitions the query image and target images using the Ncut method,

and outputs the clusters together with their representative images.

Algorithm 6.1. CLUE

Inputs: A query image; k ≥ 2 and r ≥ 1 needed by NNM for neighboring target images

selection; M ≥ 2 (maximum number of clusters) and 0 ≤ T ≤ 1 (threshold for the Ncut

value) required by the recursive Ncut method.

Outputs: Image clusters and the corresponding representative images.

[Generating neighboring target images]

1 get k nearest neighbors (seeds) of the query image and denote the

results as {S10, S20, · · · , Sk0}

2 let I be an empty set

3 FOR i = 1 TO k

4 get r nearest neighbors of seed Si0 and denote the results as

{Si1, Si2, · · · , Sir}

5 FOR j = 0 TO r

6 IF Sij /∈ I

7 I ← I ∪ {Sij}

8 END

9 END

10 END
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[Graph construction]

11 for the query image and all target images in I, generate a weighted

graph G = (V,E) with affinity matrix W

[Recursive Ncut]

12 m ← 1

13 v ← 1

14 C ← {V}

15 WHILE (m < M AND v < T)

16 P ← arg maxC∈C |C| (|C| denotes the volume of C)

17 use the Ncut algorithm to partition P into two disjoint sets

A and B

18 v ← Ncut(A,B)

19 C ← (C − {P}) ∪ {A,B}

20 m ← m + 1

21 END

22 FOR each element in C

23 find the representative image according to (6.2)

24 END

25 OUTPUT image clusters and the corresponding representative images

In the above pseudo code, lines 1 − 10 generate the neighboring target images

for a query image using NNM. Line 11 constructs a weighted undirected graph for the

query image and its neighboring target images. Lines 12− 21 apply the Ncut algorithm
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Fig. 6.3. A tree generated by four Ncuts that are applied to V with 200 nodes. The
numbers denote the size of the corresponding clusters.

recursively to the graph or the largest subgraph until a bound on the number of clusters

is reached or the Ncut value exceeds a predefined threshold. The number of clusters then

equals m. The representative images for the clusters are found in lines 22 − 24.

6.3.2 Organization of Clusters

The recursive Ncut partition described by lines 12 − 21 of the pseudo code is

essentially a hierarchical divisive clustering process that produces a tree. For example,

Figure 6.3 shows a tree generated by four recursive Ncuts. The first Ncut divides V into

C1 and C2. Since C2 has more nodes than C1, the second Ncut partitions C2 into C3

and C4. Next, C3 is further divided because it is larger than C1 and C4. The fourth

Ncut is applied to C1, and gives the final five clusters (or leaves): C4, C5, C6, C7, and

C8.

The above example suggests trees as a natural organization of clusters, which

could be presented to the user. Nonetheless, the tree organization here may be misleading
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to a user because there is no guarantee of any correspondence between the tree and

the semantic structure of images. Furthermore, organizing image clusters into a tree

structure will significantly complicate the user interface. So, in this work, we employ a

simple linear organization of clusters called traversal ordering: arrange the leaves in the

order of a binary tree traversal (left child goes first). For the example in Figure 6.3, it

yields a sequence: C7, C8, C5, C6, and C4. However, the order of two clusters produced

by an Ncut bipartition iteration is still undecided, i.e., which one should be the left child

and which one should be the right child. This can be solved by enforcing an arbitration

rule: 1) let C1 and C2 be two clusters generated by an Ncut on C, and d1 (d2) be the

minimal distance between the query image and all images in C1 (C2); 2) if d1 < d2 then

C1 is the left child of C, otherwise, C2 is the left child.

The traversal ordering and arbitration rule have the following properties:

• The query image is in the leftmost leaf (C7 in Figure 6.3) since a cluster containing

the query image will have a minimum distance (d1 or d2) of 0, and thus will always

be assigned to the left child. (Note that V includes the query image).

• We can view d1 (or d2) as a distance from a query image to a cluster of images.

In this sense, for any parent node, its left child is closer to the query image than

its right child.

• In the traversal, the leaves of the left subtree of any parent node appear before the

leaves of its right subtree.

Therefore, the resulting linear organization of clusters considers not only the distances

to a query image, but also the hierarchical structure that generates the clusters. To this
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end, it may be viewed as a structured sorting of clusters in ascending order of distances to

a query image. For the sake of consistency, images within each cluster are also organized

in ascending order of distances to a query image.

6.3.3 Computational Complexity

The computational complexity of a CBICR system is higher than that of a typical

CBIR system due to the added computation of CLUE. The time complexity of CLUE is

the sum of the complexity of NNM and the complexity of the recursive Ncut.

Since NNM needs to find r nearest neighbors for all k seeds, a straightforward im-

plementation, which treats each seed as a new query, would make the whole process very

slow when the size of image database is large. For example, using a 700MHz Pentium III

PC, the SIMPLIcity [120] system with UFM (Unified Feature Matching) [16] similarity

measure, on average, takes 0.7 second to index a query image (time for computing and

sorting the similarities between the query image and all target images, excluding the

time for feature extraction) on a database of 60, 000 images 1. It adds up to 21 seconds

for NNM if k = 30, i.e., 30 seeds are used and each seed takes 0.7 second on average.

This is certainly an excessive amount of time for a real-time retrieval system.

Two methods can be applied to reduce the time cost of NNM. One method is to

parallelize NNM because nearest neighbors for all k seeds can be selected simultaneously.

The other method utilizes the fact that all seeds are images in the database. Thus

similarities can be computed and sorted in advance. So the time needed by NNM does

1The time complexity is O(C2N + NlogN) where N is the size of the database, C is the
average number of regions of an image [16].
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not scale up by the number of seeds. Nevertheless, it then requires storing the sorting

results with every image in the database as a query image. The space complexity becomes

O(N2) where N is the size of the database. However, the space complexity can also be

reduced because NNM only needs r nearest neighbors, which leads to a space complexity

of O(rN). The locality constraint guarantees that r is very small compared with N . In

our implementation, only the ID numbers of the 100 nearest neighbors for each image

are stored (N = 60, 000). The second method is used in our experimental system. We

argue that this method is practical even if the database is very large. Because computing

and sorting similarities for all target images may be very time-consuming, this process is

required only once. Moreover, the process can also be parallelized for each target image.

If new images are added to the database, instead of redoing the whole process, we can

merely compute those similarities associated with new images and update previously

stored sorting results accordingly.

The time needed by the recursive Ncut process consists of two parts: graph con-

struction and the Ncut algorithm. For graph construction, one needs to evaluate
n(n+1)

2

entries of the affinity matrix where n ≤ k(r+1)+1 is the number of nodes (query image

and all its neighboring target images). Thus the time complexity is O(n2). The Ncut

algorithm involves eigenvector computations, of which the time complexity is O(n3) us-

ing standard eigensolvers. Fortunately, we only need to compute the second smallest

generalized eigenvector, which can be solved by the Lanczos algorithm (Ch.9, [39]) in

O(n2). Note that if the affinity matrix is sparse, the time complexity of the Lanczos

algorithm is O(n). Yet in our application, the sparsity is in general not guaranteed. As
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the number of clusters is bounded by M , the total time complexity for the recursive

Ncut process is O(k2r2) (because n ≤ k(r + 1) + 1).

6.3.4 Parameters Selection

Several parameters need to be specified to implement Algorithm 6.1. These in-

clude k and r for NNM, s for affinity matrix evaluation, M and T for recursive Ncut.

Three requirements are considered when specifying k and r. First, we want the neighbor-

ing images to be close to the query image so that the assumption of a locally clustered

structure is valid. Second, we need sufficient number of images to provide an informative

local visualization of the image database to the user. Third, computational cost should

be kept within the tolerance of real-time applications. It is clear that the second con-

straint favors large k and r, while the other two constraints need k and r to be small.

Finding a proper tradeoff is dependent upon the application.

For the CBICR system described in the next section, k and r are obtained from a

simple tuning strategy. We randomly choose 20 query images from the image database.

For each pair of k and r, where k ∈ {25, 26, · · · , 35} and r ∈ {5, 6, · · · , 10}, we man-

ually examine the semantics of images generated by NNM using each of the 20 query

images, and record the average number of distinct semantics. Next, all pairs of k and r

corresponding to the median of the above recorded numbers are found. We pick the pair

with minimal kr value, which gives k = 29 and r = 7 for our system. As a byproduct,

M (maximum number of clusters) in recursive Ncut is set to be 8, which is the integer

closest to the median. Note that our criteria on distinct semantics may be very different
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from the criteria of a system user. However, we observed that the system is not sensitive

to k and r. This will be demonstrated numerically in Section 8.2.4.

The parameter s in (6.1) reflects the local scale on distances. Thus it should be

adaptive to the query image and its neighboring target images. In our system, s = 2σ

where σ is the standard deviation of all the pairwise distances used to construct the

affinity matrix. The threshold T is chosen to make the median of the number of clusters

generated by recursive Ncuts on the 20 collections of images, which are used in k and r

tuning process, equal or close to M = 8. A proper T value is found to be 0.9.

6.4 A Content-Based Image Clusters Retrieval System

Our CBICR system uses the same feature extraction scheme and similarity mea-

sure (UFM) as those described in Chapter 5. It has a very simple CGI-based query

interface. The system provides a Random option that will give a user a random set of

images from the image database to start with. In addition, users can either enter the ID

of an image as the query or submit any image on the Internet as a query by entering the

URL of the image. The system is capable of handling any standard image format from

anywhere on the Internet and reachable by our server via the HTTP protocol.

Once a query image is received, the system displays a list of thumbnails each of

which represents an image cluster. The thumbnails are found according to (6.2), and

sorted using the algorithm in Section 6.3.2. Figure 6.4(a) shows 8 clusters corresponding

to a query image with ID 6275. Below each thumbnail are cluster ID and the number of

images in that cluster. A user can start a new query search by submitting a new image

ID or URL, get a random set of images from the image database, or click a thumbnail
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(a) Thumbnails of image clusters.

(b) Images in Cluster 1.

Fig. 6.4. Two snapshots of the user interface displaying query results for a query image
with ID 6275.

to see all images in the associated cluster. The contents of Cluster 1 are displayed in

Figure 6.4(b). From left to right and top to bottom, the images are listed in ascending

order of distances to the query image. The underlined numbers below the images are

image IDs. The other numbers are cluster IDs. The image with a border around it is

the representative image for the cluster. Again, a user has three options: enter a new

image ID or URL, get a random set of images from the database, or click an image to

submit it as a query.
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Chapter 7

Image Categorization by Learning

and Reasoning with Regions

This chapter starts with a motivational discussion for region-based image cat-

egorization. A detailed description of a new method is presented in Section 7.2 and

7.3.

7.1 Overview

Although color and texture are fundamental aspects for visual perception, human

discernment of certain visual contents could be potentially associated with interesting

classes of objects or semantic meaning of objects in the image. For one example: if we are

asked to decide which images in Figure 7.1 are images about winter, people, skiing, and

outdoor scenes, at a single glance, we may come up with the following answers together

with supporting arguments:

• Images (a) to (d) are winter images since we see snow in them;

• Images (b) to (f) are images about people since there are people in them;

• Images (b) to (d) are images about skiing since we see people and snow;

• All images listed in Figure 7.1 are outdoor scenes since they all have a region or

regions corresponding to snow, sky, sea, trees, or grass.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 7.1. Sample images belonging to at least one of the categories: winter, people,
skiing, and outdoor scenes.

This seems to be effortless for humans because prior knowledge of similar images and

objects may provide powerful assistance for us in recognition. Given a set of labeled

images, can a computer program learn such knowledge or semantic concepts from im-

plicit information of objects contained in images? In this work, we propose an image

categorization method using a set of automatically extracted rules. Intuitively, these

rules bear an analogy to the supporting arguments that are used to describe a semantic

concept about images in the above example.

In terms of image representation, our approach is a region-based method. Images

are segmented into regions such that each region is roughly homogeneous in color and

texture. Each region is characterized by one feature vector describing color, texture,

and shape attributes. Consequently, an image is represented by a collection of feature

vectors. If segmentation is ideal, regions will correspond to objects. But as we have

mentioned earlier, semantically accurate image segmentation by a computer program

is still an ambitious long-term goal for computer vision researchers. Nevertheless, we

argue that region-based image representation can provide some useful information about

objects even though segmentation may not be perfect. Moreover, empirical results in



96

Section 8.3 demonstrate that the proposed method is not sensitive to inaccurate image

segmentation.

From the perspective of learning or classifier design, our approach can be viewed as

a generalization of supervised learning in which labels are associated with images instead

of individual regions. This is in essence identical to MIL setting [27, 68, 131] where images

and regions are respectively called bags and instances 1. While every instance may

possess an associated true label, it is assumed that instance labels are only indirectly

accessible through labels attached to bags. Several researchers have applied MIL for

image classification and retrieval [2, 67, 130]. Key assumptions of their formulation of

MIL are that bags and instances share the same set of labels (or categories or classes

or topics); and a bag receives a particular label if at least one of the instances in the

bag possesses the label. For binary classification, this implies that a bag is “positive”

if at least one of its instances is a positive example; otherwise, the bag is “negative.”

Therefore, learning focuses on finding which of the instances in a positive bag are the

actual positive examples and which ones are not.

However, this formulation of MIL does not perform well for image categorization

even if image segmentation and object recognition are assumed to be ideal. For one

simple example, let’s consider the sample images in Figure 7.1 with skiing being the

positive class. It should be clear that images (b), (c), and (d) are positive images; images

(a), (e), (f), and (g) are negative images. In this example, any object in a positive image

also appears in at least one of the negative images: snow appears in (a); people and

sky appear in (e) and (f); trees appears in (a), (f), and (g). Hence, to correctly classify

1In this chapter, the terms bag (instance) and image (region) have identical meaning.
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positive images, some of these objects need positive labels. But labeling any of these

objects positive (note that labels for the same object will be consistent across images)

will inevitably misclassify some negative images. Although using the co-occurrence of

snow and people will avoid the paradox, it is not allowed by the above formulation of

MIL. Inaccurate segmentation and recognition will only worsen the situation.

This motivates our approach under much weaker assumptions:

1. Bags and instances do not share the same set of labels (or categories or classes or

topics). Only the set of bag labels, not the set of instance labels, is given in advance.

For example, {winter, people, skiing, outdoor scenes} is the set of bag (or image)

labels for images in Figure 7.1. While a somewhat ideal (but unknown) set of

instance (or region) labels would be descriptions of instance semantic categories in

all the bags: {snow, people, sky, sea, trees, grass}.

2. Each instance has multiple labels with different weights. The weight, named de-

gree of membership, illustrates the degree of wellness with which a corresponding

instance label characterizes the instance, thus, to a certain extent, models the un-

certainties associated with image segmentation. For instance, an under-segmented

region may contain both trees and grass; an over-segmented sky may look similar

to both sky and sea.

3. The label of a bag is determined collectively by degrees of membership of its in-

stances with respect to all instance labels.

Our approach proceeds as follows. First, in the space of region features, a collec-

tion of feature vectors, each of which is called a region prototype (RP), is determined
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according to an objective function, Diverse Density (DD) [68], defined over the region

feature space. DD measures a co-occurrence of similar regions from different images in

the same category. Each RP is chosen to be a local maximizer of DD. Hence, loosely

speaking, an RP represents a class of regions that is more likely to appear in images

with the specific label than in the other images. In the context of our first assumption

above, each RP corresponds to an instance class. Next, an image classifier is defined by

a set of rules associating the appearance of RPs in an image (described by degrees of

membership of regions with respect to the RPs) with image labels. We formulate the

learning of such classifiers as an SVM problem [9, 115]. Consequently, a collection of

SVMs are trained, each corresponding to one image category.

7.2 Learning Region Prototypes Using Diverse Density

In this section, we first present the basic concepts of Diverse Density (DD), which

is proposed by Maron and Lozano-Pérez [68] for learning from multiple-instance exam-

ples. We then introduce a scheme to extract region prototypes using DD.

7.2.1 Diverse Density

We start with some notations in MIL. Let D be the labeled data set which consists

of l bag/label pairs, i.e., D = {(B1, Y1), · · · , (Bl, Yl)}. Each bag Bi is a collection of

instances with xij denoting the jth instance in the bag. Different bags may have different

number of instances. Labels Yi take binary values 1 or −1. A bag is called a positive bag

if its label is 1; otherwise, negative bag. Note that a label is attached to each bag and not

to every instance. In the context of images, a bag is a collection of region feature vectors;



99

an instance is a region feature vector (as defined in Chapter 5.2); positive (negative) label

represents that an image belongs (does not belong) to a particular category.

Given a set of labeled bags, finding what is in common among the positive bags

and does not appear in the negative bags may provide inductive clues for classifier design.

In the ideal scenario, these clues can be extracted by the intersection of the positive bags

minus the union of the negative bags. However, in practice strict set operations of

intersection, union, and difference may not be useful because most real world problems

involve noisy information: features of instances might be corrupted by noise; some labels

of bags might be wrong; strict intersection of positive bags might generate an empty

set. DD implements soft versions of the intersection, union, and difference operations

by thinking of the instances and bags as generated by some probability distribution. It

is a function defined over the instance feature space. The DD value at a point in the

feature space is indicative of the probability that the point agrees with the underlying

distribution of positive and negative bags.

Next, we introduce one definition of DD from [68]. Interested readers are refereed

to [68] for detailed derivations based on a probabilistic framework. Given a labeled data

set D, the DD function is defined as

DDD(x,w) =
l∏

i=1


1 + Yi

2
− Yi

Ci∏

j=1

(
1 − e

−‖xij−x‖2
w

)
 . (7.1)
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Here, x is a point in the feature space of instances; w is a weight vector defining which

features are considered important and which are considered unimportant; Ci is the num-

ber of instances in the ith bag; and ‖ · ‖w denotes a weighted norm defined by

‖x‖w =
[
xT Diag(w)2x

]1
2 (7.2)

where Diag(w) is a diagonal matrix whose (i, i) the entry is the ith component of w.

It is clear that values of DD are always between 0 and 1. For fixed w, if a point x

is close to an instance from a positive bag Bi, then
1+Yi

2 −Yi
∏Ci

j=1

(
1 − e

−‖xij−x‖2
w

)

will be close to 1; if x is close to an instance form a negative bag Bi, then
1+Yi

2 −

Yi
∏Ci

j=1

(
1 − e

−‖xij−x‖2
w

)
will be close to 0. The above definition indicates that

DD(x,w) will be close to 1 if x is close to instances from different positive bags and,

at the same time, far away from instances in all negative bags. Thus it measures a

co-occurrence of instances from different (diverse) positive bags.

7.2.2 Learning Region Prototypes

For the applications discussed in this thesis, the DD function defined in (7.1)

is a continuous and highly nonlinear function with multiple peaks and valleys (or local

maximums and minimums). A larger value of DD at a point indicates a higher probability

that the point fits more with the instances from positive bags than with those from

negative bags. This motivates us to choose local maximizers of DD as region prototypes

(RPs). Loosely speaking, an RP represents a class of regions that is more likely to appear

in positive bags than in negative bags. For the sample images in Figure 7.1, if winter
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category is chosen to be the positive class, one may expect to find an RP corresponding

to regions of snow because, in this example, every winter image ((a), (b), (c), and (d))

contains a region or regions of snow; and snow does not show up in the rest images ((e),

(f), and (g)).

Therefore learning RPs becomes an optimization problem: finding local maximiz-

ers of the DD function in a high-dimensional space. Since the DD functions are smooth,

we apply gradient based methods to find local maximizers. Now the question is: how

do we find all the local maximizers? In fact we do not know in general the number of

local maximizers a DD function has. However, according to the definition of DD, a local

maximizer is close to instances from positive bags [68]. Thus starting a gradient based

optimization from one of those instances will likely lead to a local maximum. Therefore,

a simple heuristic is applied to search for multiple maximizers: we start an optimization

at every instance in every positive bag with uniform weights, and record all the resulting

maximizers (feature vector and corresponding weights).

RPs are selected from those maximizers satisfying two additional constraints: 1)

they need to be distinct from each other; and 2) they need to have large DD values.

The first constraint concerns with the precision issue of numerical optimization: due to

numerical precision, different starting points may lead to different versions of the same

maximizer. So we need to remove some of the maximizers that are essentially repetitions

of each other. The second constraint limits RPs to those that are most informative in

terms of co-occurrence in different positive bags. In our algorithm, this is achieved by

picking maximizers with DD values greater than certain threshold.
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According to the above steps, one can find RPs representing classes of regions

that are more likely to appear in positive bags than in negative bags. One could argue

that RPs with an exactly reversed property (more likely to appear in negative bags than

in positive bags) may be of equal importance. Such RPs can be computed in exactly the

same steps after switching the labels of positive and negative bags. Our empirical study

shows that including such RPs (for negative bags) can improve classification accuracy.

7.2.3 An Algorithmic View

Next, we summarize the above discussion into pseudo code. The input is a set of

labeled bags D. The following pseudo code learns a collection of RPs each of which is

represented as a pair of vectors (x∗
i
,w∗

i
). The optimization problem involved is solved

by Quasi-Newton search dfpmin in [84].

Algorithm 7.1. Learning RPs

MainLearnRPs(D)

1 Rp = LearnRPs(D) [Learn RPs for positive bags]

2 negate labels of all bags in D

3 Rn = LearnRPs(D) [Learn RPs for negative bags]

4 OUTPUT (the set union of Rp and Rn)

LearnRPs(D)

1 set P be the set of instances from all positive bags in D

2 initialize M to be an empty set
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3 FOR (every instance in P as starting point for x)

4 set the starting point for w to be all 1’s

5 find a maximizer (p,q) of the log(DD) function by quasi-newton search

6 add (p,q) to M

7 END

8 set i = 1, T =
max(p,q)∈M log(DDD(p,q))+min(p,q)∈M log(DDD(p,q))

2

9 REPEAT

10 set (x∗
i
,w∗

i
) = arg max(p,q)∈M log(DDD(p,q))

11 remove from M all elements (p,q) satisfying

(‖p − x∗
i
‖ < α‖x∗

i
‖ AND ‖abs(q) − abs(w∗

i
)‖ < α‖w∗

i
‖) OR log(DDD(p,q)) < T

12 set i = i + 1

13 WHILE (M is not empty)

14 OUTPUT ({(x∗
1
,w∗

1
), · · · , (x∗

i−1
,w∗

i−1
)})

In the above pseudo code for LearnRPs, lines 1–7 find a collection of local

maximizers for the DD function by starting optimization at every instance in every

positive bag with uniform weights. For a better numerical stability, the optimization

is performed on the log(DD) function, in stead of the DD function itself. Lines 8–13

describe an iterative process to pick a collection of “distinct” local maximizers as RPs. In

each iteration, an element of M, which is a local maximizer, with the maximal log(DD)

value (or, equivalently, the DD value) is selected as an RP (line 10). Then depending on

the distances to the RP selected in this iteration and the DD values, elements, which are

close the RP or have DD values lower than a threshold, are removed from M (line 11). A
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new iteration starts if M is not empty. The abs(w) in line 11 computes component-wise

absolute values of w. This is because the signs in w has no effect on the definition (7.2)

of weighted norm.

The number of RPs selected from M is determined by two parameters α and T .

In our implementation, α is set to be 0.05; and T is the average of the maximal and

minimal DD values for all local maximizers found (line 8). These two parameters may

need to be adjusted for other applications. However, empirical study shows that the

performance of the classifier, which will be discussed in the next section, is not sensitive

to α and T .

7.3 Image Categorization by Reasoning with Region Prototypes

In this section, we present in details the modeling process which learns image clas-

sifiers based on RPs. We show that image categorization using regions can be naturally

formulated as a rule-based classification problem. And under quite general assump-

tions, such classifiers are functionally equivalent to SVMs with kernels of certain forms.

Therefore, SVM learning is applied to design the classifiers.

7.3.1 A Rule-Based Image Classifier

Prior knowledge of similar images and objects may be crucial for human to identify

semantic meanings of images. As indicated by the simple example in Section 7.1, a human

being can easily classify images into different categories by reasoning on the semantic

meanings of objects in the images. In that specific problem setting, the class membership

of an image can be described by a set of simple rules of the form:
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• If there is snow in an image, then the image is about winter;

• If there is people in an image, then the image is about people;

• If there are snow AND people in an image, then the image is about skiing;

• If there are snow OR sky OR sea OR trees OR grass in an image, then the image

is about outdoor scene.

This motivates us to classify images using a set of rules describing whether of not some

RPs appear in an image.

How can one decide if an RP shows up in an image? One can of course make a

binary decision (appearing or not appearing) based on the similarity between regions in

an image and an RP. However, due to inaccurate image segmentation, neither RPs nor

regions are free of noise. Thus a binary decision may be very sensitive to such noises.

So we propose to use soft decisions based on the idea of fuzzy sets [129]:

• First, for a collection of RPs denoted by RP = {RPk : k = 1, · · · , n, RPk =

(x∗
k
,w∗

k
)}, each RPk is viewed as a fuzzy set with membership function, gk : Rd →

[0, 1], defined as

gk(x) = µ(‖x − x∗
k
‖w∗

k
) (7.3)

where µ(·) is a function that is strictly monotonically decreasing on [0,∞). There-

fore, given a region with feature vector x calculated according to Chapter 5.2,

gk(x), which is called the degree of membership of x with respect to RPk, illus-

trates the degree of wellness with which the region belongs to the fuzzy set defined

by RPk. Under the definition (7.3), a region belongs to all RPs with possibly
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different degrees of membership. To a certain extent, this models the uncertainties

related to image segmentation.

• Next, for an image Bi = {xij : j = 1, · · · , Ci} (where xij are region feature

vectors), we denote rk as the degree that RPk appears in Bi, and define it as

rk = max
j=1,··· ,Ci

gk(xij) , (7.4)

i.e., the appearance of RPk in an image is determined by the region that belongs to

RPk with the highest degree of membership. It is clear that rk is always between

0 and 1. A larger value of rk indicates a higher degree that RPk shows up in

the image. Binary decision is a special case of the definition (7.4): when µ(·) is

a binary-valued function. Note that, according to (7.3) and (7.4), if µ(·) is fixed

then knowing rk is equivalent to knowing

dk = min
j=1,··· ,Ci

‖xij − x∗
k
‖w∗

k
, (7.5)

which is the minimum weighted distance from all region feature vectors of an image

to RPk. Since the information of µ(·) can be implicitly included in the model

described below, we use dk directly instead of rk to simplify the computation:

there is no need to evaluate µ(·) explicitly.
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Now we introduce a rule-based image classifier, which is defined by m rules of the

form

Rule j : IF (d1 is A1
j
) AND (d2 is A2

j
) AND · · · AND (dn is An

j
) THEN bj

where Ak
j

is a fuzzy set with membership function ak
j

: R → [0, 1], j = 1, · · · , m,

k = 1, · · · , n, bj is a real number related to class label. Intuitively, (dk is Ak
j
) can

be interpreted as “the value of dk is around some number.” Here, the linguistic term

“around some number” is mathematically defined by a fuzzy number Ak
j
, which can be

viewed as a generalized real number. For instance, a fuzzy number 1 could be defined

by a membership function µ1(x) = e−(x−1)2 . Given a real number x, µ1(x) tells us the

degree of membership that x belongs to fuzzy number 1 or is “around 1.” Under µ1(·),

a number, which is closer to 1, has a higher degree to be “around 1.” Since dk’s are

directly related to the degrees that RPs appear in an image, the above rule reasons out

a label of an image based on a soft interpretation the appearance of RPs in the image.

The question is how to determine Ak
j
’s and bj ’s. This will be addressed in the next

section.

7.3.2 Support Vector Machine Concept Learning

The rule-based classifier introduced in Section 7.3.1 is essentially a fuzzy rule-

based system. If we choose product as the fuzzy conjunction operator, addition for fuzzy

rule aggregation (it makes the model an additive fuzzy system [60]), and center of area

(COA) defuzzification, then the model becomes a special form of the Takagi-Sugeno (TS)
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fuzzy model [107]. The input output mapping, F : Rn → R, of the model is then defined

as

F (d) =

∑m
j=1

bj
∏n

k=1
ak
j
(dk)

∑m
j=1

∏n
k=1

ak
j
(dk)

where d = [d1, · · · , dn]T ∈ Rn is the input. Chapter 4 shows that binary classifiers

(multi-class problem can be handled by combining several binary classifiers) can be

defined over such a model as

label(d) = sign(F (d) + b0) (7.6)

where b0 is a threshold. Moreover, if we assume that all membership functions associated

with the same input variable are generated from location transformation of a reference

function, and let ak : R → [0, 1] denote the reference function for ak
j
(·), j = 1, · · · , m

with

ak
j
(dk) = ak(dk − zk

j
) (7.7)

for some location parameter zk
j
∈ R, then the decision function becomes

label(d) = sign




m∑

j=1

bjK(d, zj) + b0


 (7.8)

where zj = [z1
j
, z2

j
, · · · , zn

j
]T ∈ Rn contains the location parameters of ak

j
, k = 1, · · · , n,

K : Rn × Rn → [0, 1] is a kernel defined as

K(d, zj) =
n∏

k=1

ak(dk − zk
j
) . (7.9)
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Table 7.1. A list of positive definite reference functions.

Symmetric Triangle µ(x) = max(1 − s |x| , 0), s > 0

Gaussian µ(x) = e−sx
2
, s > 0

Cauchy µ(x) = 1
1+sx2 , s > 0

Laplace µ(x) = e−s|x|, s > 0

Hyperbolic Secant µ(x) = 2
esx+e−sx , s > 0

Squared sinc µ(x) =
sin

2
(sx)

s2x2 , s > 0

This implies that the parameters needed to be learned are m (number of rules), zj

(location parameters for the IF-part of jth rule), bj (the THEN-part of jth rule), and

b0 (the threshold).

It is proved in Chapter 4 that the kernel (7.9) becomes a Mercer kernel if the

reference functions are positive definite functions [17]. The resulting fuzzy classifier

is functionally equivalent to SVMs [115] with kernels defined by (7.9). In particular,

each support vector determines the IF-part parameters of one fuzzy rule. The THEN-

part parameter is given by the Lagrange multiplier of the support vector. As a result,

the proposed rule-based image classifier can be obtained from SVM learning. Many

commonly used reference functions are indeed positive definite. An incomplete list is

given in Table 7.1. Any convex combination of positive definite functions is still positive

definite.

7.3.3 An Algorithmic View

The following pseudo code summarizes the learning process of the proposed rule-

based classifier. The input are D (a collection of bags with binary labels) and RP (a set



110

of RPs generated by Algorithm 7.1). The output is an SVM classifier that is functionally

equivalent to the proposed rule-based classifier.

Algorithm 7.2. Support Vector Machine Concept Learning

LearnSVM(D)

1 set S be an empty set

2 FOR (every bag in D)

3 compute d = [d1, · · · , dn]T according to (7.5)

4 add (d, Y ) to S where Y is the label of the bag

5 END

6 use the given ak(·)’s to define a kernel function according to (7.9)

7 train an SVM using the data set S and the kernel defined in the

previous step

8 OUTPUT (the SVM)

The above pseudo code assumes that the reference functions ak(·), k = 1, · · · , n

are given in advance. In our empirical study presented in the next section, different

choices of reference functions are compared.
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Chapter 8

Experiments

This chapter provides extensive experimental results for the methods proposed in

Chapter 5, Chapter 6, and Chapter 7.

8.1 Unified Feature Matching

We implemented the UFM in our experimental SIMPLIcity image retrieval sys-

tem. The system is tested on a general-purpose image database (from COREL) includ-

ing about 60, 000 pictures, which are stored in JPEG format with size 384 × 256 or

256× 384. These images were automatically classified into two semantic types: textured

photograph, and non-textured photograph [65]. For each image, the features, locations,

and areas of all its regions are stored. In Section 8.1.1, we provide several query results

on the COREL database to demonstrate qualitatively the accuracy and robustness (to

image alterations) of the UFM scheme. Section 8.1.2 presents systematic evaluations of

the UFM scheme, and compares the performance of UFM with those of the IRM [64] and

EMD-based color histogram [87] approaches based on a subset of the COREL database.

The speed of the UFM scheme is compared with that of two other region-based methods

in Section 8.1.3. The effect of the choice of membership functions on the performance of

the system is presented in Section 8.1.4.



112

8.1.1 Query Examples

To qualitatively evaluate the accuracy of the system over the 60, 000-image COREL

database, we randomly pick 5 query images with different semantics, namely natural

out-door scene, horses, people, vehicle, and flag. For each query example, we exam the

precision of the query results depending on the relevance of the image semantics. We

admit that the relevance of image semantics depends on the standpoint of the user. Thus

our relevance criteria, specified in Figure 8.1, may be quite different from those used by

a user of the system. Due to space limitation, only the top 19 matches to each query

are shown in Figure 8.1. We also provide the number of relevant images among top 31

matches. More matches can be viewed from the on-line demonstration site by using the

query image ID, given in Figure 8.1, to repeat the retrieval 1.

The robustness of the UFM scheme to image alterations, such as intensity varia-

tion, sharpness variation, color distortion, cropping, shifting, rotation, and other inten-

tional distortions, is also tested. Figure 8.2 shows some query results using the 60, 000-

image COREL database. The query image is the left image for each group of images.

In this example, the first retrieved image is exactly the unaltered version of the query

image for all tested image alterations except sharpening, in which case, the unaltered

version appears in the second place.

8.1.2 Systematic Evaluation

The UFM scheme is quantitatively evaluated focusing on the accuracy, the ro-

bustness to image segmentation, and the robustness to image alterations. Comparisons

1The demonstration site is at http://wang.ist.psu.edu/IMAGE
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(a) Natural out-door scene; 15 matches out of 19; 23 matches out of 31

(b) Horses; 19 matches out of 19; 28 matches out of 31

(c) People; 15 matches out of 19; 23 matches out of 31

(d) Vehicle; 17 matches out of 19; 24 matches out of 31

(e) Flag; 19 matches out of 19; 25 matches out of 31

Fig. 8.1. The accuracy of the UFM scheme. For each block of images, the query image is
on the upper-left corner. There are three numbers below each image. From left to right
they are: the ID of the image in the database, the value of the UFM measure between
the query image and the matched image, and the number of regions in the image.
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Brighten 40% Darken 30%

Blur with a 10×10, σ = 5 Gaussian filter Sharpen with 5×5 filter

55% more saturated 15% less saturated

Random spread in 10×10 neighborhood 30% cropping

Horizontal shifting right by 120 pixels Clockwise rotating by 45 degrees

Flip 180 degrees Flop 180 degrees

Fig. 8.2. The robustness of the UFM scheme against image alterations.
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with the EMD-based color histogram system [87] and the region-based IRM system [64]

are also provided. However, it is hard to make objective comparisons with some other

region-based searching algorithms such as the Blobworld and the NeTra systems which

require additional information provided by the user during the retrieval process.

8.1.2.1 Experiment Setup

To provide more objective comparisons, the UFM scheme is evaluated based on

a subset of the COREL database, formed by 10 image categories, each containing 100

pictures. The categories are Africa, Beach, Buildings, Buses, Dinosaurs, Elephants,

Flowers, Horses, Mountains, and Food with corresponding Category ID’s denoted by

integers from 1 to 10, respectively. Within this database, it is known whether any two

images are of the same category. In particular, a retrieved image is considered a correct

match if and only if it is in the same category as the query. This assumption is reasonable

since the 10 categories were chosen so that each depicts a distinct semantic topic. Every

image in the sub-database is tested as a query, and the positions of all the retrieval

images are recorded.

The following are some notations used in the performance evaluation. ID(i)

denotes the Category ID of image i (1 ≤ i ≤ 1000 since there are totally 1000 images

in the sub-database). It is clear that ID(i) is an integer between 1 and 10 for any

1 ≤ i ≤ 1000. For a query image i, r(i, j) is the rank of image j (position of image j

in the retrieved images for query image i, it is an integer between 1 and 1000). The
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precision for query image i, p(i), is defined by

p(i) =
1

100

∑

1≤j≤1000, r(i,j)≤100, ID(j)=ID(i)

1 ,

which is the percentage of images belonging to the category of image i in the first 100

retrieved images. Another two statistics are also computed for query image i. They

are the mean rank r(i) of all the matched images and the standard deviation σ(i) of the

matched images, which are defined by

r(i) =
1

100

∑

1≤j≤1000, ID(j)=ID(i)

r(i, j)

and

σ(i) =

√√√√
1

100

∑

1≤j≤1000, ID(j)=ID(i)

[r(i, j) − r(i)]2 .

Based on above definitions, we define the average precision pt, average mean rank

rt, and average standard deviation σt for Category t (1 ≤ t ≤ 10) as

pt =
1

100

∑

1≤i≤1000, ID(i)=t

p(i), (8.1)

rt =
1

100

∑

1≤i≤1000, ID(i)=t

r(i), (8.2)

σt =
1

100

∑

1≤i≤1000, ID(i)=t

σ(i). (8.3)
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Similarly, the overall average precision p, overall average mean rank r, and overall average

standard deviation σ for all images in the sub-database are defined by

p =
1

1000

1000∑

i=1

p(i), (8.4)

r =
1

1000

1000∑

i=1

r(i), (8.5)

σ =
1

1000

1000∑

i=1

σ(i). (8.6)

Finally, we use entropy to characterize the segmentation-related uncertainties in

an image. For image i with C segmented regions, its entropy, E(i), is defined as

E(i) = −
C∑

j=1

P (Ri
j
) log[P (Ri

j
)], (8.7)

where P (Ri
j
) is the percentage of image i covered by region Ri

j
. The larger the value of

entropy, the higher the uncertainty level. Accordingly, the overall average entropy E for

all images in the sub-database are define by

E =
1

1000

1000∑

i=1

E(i). (8.8)

8.1.2.2 Performance on Image Categorization

For image categorization, good performance is achieved when images belonging

to the category of the query image are retrieved with low ranks. To that end, the

average precision pt and the average mean rank rt should be maximized and minimized,
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respectively. The best performance, pt = 1 and rt = 50.5, occurs when the first 100

retrieved images belong to Category t for any query image from Category t (since the

total number of semantically related images for each query is fixed to be 100). The

worst performance, pt = 0 and rt = 950.5, happens when no image in the first 900

retrieved images belongs to Category t for any query image from Category t. For a system

that ranks images randomly, pt is about 0.1, and rt is about 500 for any Category t.

Consequently, the overall average precision p is about 0.1, and the overall average mean

rank r is about 500. In the experiments, the recall within the first 100 retrieved images

was not computed because it is proportional to the precision in this special case.

The UFM scheme is compared with the EMD-based color histogram matching

approach. We use the LUV color space and a matching metric similar to the EMD

described in [87] to extract color histogram features and match in the categorized image

database. Two different color bin sizes, with an average of 13.1 and 42.6 filled color bins

per image, are evaluated. we call the one with less filled color bins the Color Histogram

1 system and the other the Color Histogram 2 system. Comparisons of average precision

pt, average mean rank rt, and average standard deviation σt are given in Figure 8.3. pt,

rt, and σt are computed according to equations (8.1), (8.2), and (8.3), respectively.

It is clear that the UFM scheme performs much better than both of the two

color histogram-based approaches in almost all image categories. The performance of

the Color Histogram 2 system is better that that of the Color Histogram 1 system due

to more detailed color separation obtained with more filled bins. However, the price

paid for the performance improvement is the decrease in speed. The UFM runs at about
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Fig. 8.3. Comparing the UFM scheme with the EMD-based color histogram approaches
on average precision pt, average mean rank rt, and average standard deviation σt. For
pt, the larger numbers indicate better results. For rt and σt, the lower numbers denote
better results.
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twice the speed of the relatively fast Color Histogram 1 system and still provides much

better retrieval accuracy than the extremely slow Color Histogram 2 system.

The UFM scheme is also compared with the IRM approach [64] using the same

image segmentation algorithm with the average number of regions per image for all

images in the sub-database being 8.64. Experiment results show that the UFM scheme

outperforms the IRM approach by a 6.2% increase in overall average precision, a 6.7%

decrease in the overall average mean rank, and a 4.0% decrease in the overall average

standard deviation.

8.1.2.3 Robustness to Segmentation-Related Uncertainties

Because image segmentation cannot be perfect, being robust to segmentation-

related uncertainties becomes a critical performance index for a region-based image

retrieval system. In this section, we compare the performance of the UFM and IRM

approaches with respect to the coarseness of image segmentation. We use the entropy,

defined by equation (8.7), to measure the segmentation-related uncertainty levels. As

we will see, the overall average entropy E, given by (8.8), increases with the increase

of the average number of regions C for all images in the sub-database. Thus, we can

adjust the average uncertainty level through changing the value of C. The control of C

is achieved by modifying the stop criteria of the k-means algorithm. Figure 8.4 shows

two images, beach scene and bird, and the segmentation results with different number

of regions. Segmented regions are shown in their representative colors. Segmentation

results for all images in the database can be found on the demonstration web site.
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Original Image 3 regions 5 regions 7 regions 10 regions 13 regions

Original Image 3 regions 5 regions 7 regions 10 regions 13 regions

Fig. 8.4. Segmentation results by the k-means clustering algorithm. Original images
are in the first column.

To give a fair comparison between UFM and IRM at different uncertainty levels,

we perform the same experiments for different values of C (4.31, 6.32, 8.64, 11.62, and

12.25). Based on equations (8.4), (8.5), and (8.6), the performance in terms of overall

average precision p, overall average mean rank r, and overall average standard deviation

σ are evaluated for both approaches. The results are given in Figure 8.5. As we can

see, the overall average entropy E increases when images are, on average, segmented

into more regions. In other words, the uncertainty level increases when segmentation

becomes finer. At all uncertainty levels, the UFM scheme performs better than the IRM

method in all three statistics, namely p, r, and σ. In addition, there is a significant

increase in p and a decrease in r for the UFM scheme as the average number of regions

increases. While for the IRM method, p and r almost remain unchanged for all values

of C. This can be explained as follows. When segmentation becomes finer, although

the uncertainty level increases, more details (or information) about the original image

are also preserved (as shown in Figure 8.4). Compared with the IRM method, the UFM
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Fig. 8.5. Comparing the UFM scheme with the IRM method on the robustness to image
segmentation: overall average entropy E, overall average precision p, overall average
mean rank r, and overall average standard deviation σ.

scheme is more robust to segmentation-related uncertainties and thus benefits more from

the increasing of the average amount of information per image.

8.1.2.4 Robustness to Image Alterations

The UFM approach has been tested for the robustness to image alterations includ-

ing intensity variation, color distortion, sharpness variation, shape distortion, cropping,

and shifting. The goal is to demonstrate the ability of the system to recognize an image

when its altered version is submitted as the query. We apply image alteration to an

image (called target image i) in the sub-database. The resulting image i′ is then used

as the query image, and the rank of the retrieved target image i, r(i′, i), is recorded.

Repeating the process for all images in the sub-database, the average rank r′ for target
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images and the standard deviation σ′ of the rank are computed as

r′ =
1

1000

1000∑

i=1

r(i′, i) (8.9)

σ′ =

√√√√ 1

1000

1000∑

i=1

[
r(i′, i) − r′

]2. (8.10)

Clearly, smaller numbers for r′ and σ′ indicate more robust performance.

For each type of image alteration, curves for r′ and σ′ with respect to the intensity

of image alteration are plotted in Figure 8.6. If we call a system being robust to image

alterations when the target image appear in the first 10 retrieved images, then, on

average, the UFM scheme is robust to approximately 22% brightening, 20% darkening,

56% more saturation, 30% less saturation, 5 × 5 Gaussian filter, random spread pixels

in a 14× 14 neighborhood, and cropping 45%. The UFM scheme is extremely robust to

horizontal and vertical image shifting.

8.1.3 Speed

The algorithm has been implemented on a Pentium III 700MHz PC running Linux

operating system. Computing the feature vectors for 60, 000 color images of size 384×256

requires around 17 hours. On average, one second is needed to segment and compute

the fuzzy features for an image, which is the same as the speed of IRM. It is much faster

than the Blobworld system [10], which, on average, takes about 5 minutes to segment a
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Fig. 8.6. The robustness of the UFM scheme to image alterations. Average rank r′ and
standard deviation of rank σ′ are plotted against the intensity of image alterations.
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128 × 192 image 2. Fast segmentation speed provides us the ability of handling outside

queries in real-time.

The time for matching images and sorting results in UFM is O(C2N + N log N),

where N is the number of images in the database, C is the average number of regions of

an image. For our current database (N = 60, 000 and C = 4.3), when the query image

is in the database, it takes about 0.7 seconds of CPU time on average to compute and

sort the similarities for all images in the database. If the query is not in the database,

one extra second of CPU time is spent to process the query.

Based on 100 random runs, a quantitative comparison of the speed of UFM, IRM,

and Blobworld systems is summarized in Table 8.1 where ts is the average CPU time for

image segmentation, ti is the average CPU time for computing similarity measures and

indexing 3. The UFM and IRM use the same database of 60, 000 images. The Blobworld

system is tested on a database of 35, 000 images. Unlike IRM and UFM, the Blobworld

system doesn’t support outside queries. For inside queries, which do not require online

image segmentation, UFM is 0.43 times faster than IRM, and 6.57 times faster than

Blobworld.

8.1.4 Comparison of Membership Functions

The UFM scheme is tested against different membership functions, namely the

cone, exponential, and Cauchy functions. To make comparisons consistent, for a given

2The segmentation algorithm (in Matlab code) is tested on a 400MHz UltraSPARC IIi with
the code obtained from http://elib.cs.berkeley.edu/src/blobworld/.

3Approximate execution times are obtained by issuing queries to the demon-
stration web sites http://wang.ist.psu.edu/IMAGE/ (UFM and IRM) and
http://elib.cs.berkeley.edu/photos/blobworld/ (Blobworld). The web server for
UFM and IRM is a 700MHz Pentium III PC, while the web server for Blobworld is unknown.
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Table 8.1. Comparison of UFM, IRM, and Blobworld systems on average segmentation
time ts and average indexing time ti.

region, we require the fuzzy features with different membership functions have identical

0.5-cuts. The 0.5-cut of a fuzzy feature is the set of feature vectors that have degrees of

membership greater than or equal to 0.5. For a Cauchy function C(x) = dα

dα+‖x−v‖α ,

the above requirement can be easily satisfied by choosing the cone function as T (x) =

max(1 − ‖x−v‖α

(2d)α
, 0) and the exponential function as E(x) = e

− ‖x−v‖
α

(1.443d)α .

Under an experiment setup identical to that of Section 8.1.2.2, the performance on

image categorization is tested for three membership functions with parameter α varying

from 0.1 to 2.0. The overall average precision p is calculated according to (8.4). As shown

in the upper plot in Figure 8.7, the highest p for Cauchy and exponential membership

functions, which is 0.477, occurs at α = 1.0. The best α for the cone membership

function is 0.8 with p = 0.478. So three membership functions generate almost the same

maximum overall average precision. However, the computational complexities of three

membership functions with corresponding optimal α values are quite different. For any

given ‖x−v‖, the cone membership function needs to compute a power term
(‖x−v‖

2d

)0.8
.

The exponential membership function needs to evaluate an exponential term e
−‖x−v‖

1.443d .

Only two floating point operations are required by the Cauchy membership function.
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Fig. 8.7. Comparing the Cauchy, exponential, and cone membership functions on overall
average precision p and average CPU time ti for inside queries.

Based on the 60, 000-image database, ti for three membership functions are plotted in

the lower part of Figure 8.7. As expected, ti enlarges linearly with the increase of the

number of regions in the query image and the Cauchy membership function produces

the smallest ti.

We also test the robustness to image alterations with respect to the type of mem-

bership function being used. For all six image alterations described in Section 8.1.2.4,

the performances of exponential (α = 1.0) and cone (α = 0.8) membership functions are

almost identical to that of the Cauchy (α = 1.0) membership function in terms of r′ and

σ′ defined by (8.9) and (8.10), respectively. The Cauchy membership function requires

the least computational cost.
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8.2 Cluster-Based Retrieval of Images

Our system is implemented with the same general-purpose image database as in

Section 8.1. In Section 8.2.1, we provide several query results on the COREL database

to intuitively illustrate the performance of the system. Section 8.2.2 presents systematic

evaluations of CLUE algorithm in terms of the goodness of image clustering and retrieval

accuracy. Numerical comparisons with the SIMPLIcity system using UFM similarity

measure are also given. In Section 8.2.3, the speed of CLUE is compared with that of a

typical CBIR system using UFM similarity measure. The influence of k and r parameters

in NNM on the performance of the system is presented in Section 8.2.4. Section 8.2.5

presents some preliminary results on images returned by Google’s Image Search.

8.2.1 Query Examples

To qualitatively evaluate the performance of the system over the 60, 000-image

COREL database, we randomly pick five query images with different semantics, namely,

birds, car, food, historical buildings, and soccer game. For each query example, we exam-

ine the precision of the query results depending on the relevance of the image semantics.

Here only images in the first cluster, in which the query image resides, are considered.

This is because images in the first cluster can be viewed as sharing the same similarity-

induced semantics as that of the query image according to the clusters organization

described in Section 6.3.2. Performance issues about the rest clusters will be covered in

Section 8.2.2. Since CLUE of our system is built upon UFM similarity measure, query

results of a typical CBIR system, SIMPLIcity system using UFM similarity measure (we
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CLUE Results UFM Results

(a) 6 matches out of 11; 12 out of 29 3 matches out of 11; 9 out of 31

(b) 8 matches out of 11; 15 out of 26 4 matches out of 11; 7 out of 31

(c) 8 matches out of 11; 19 out of 25 4 matches out of 11; 11 out of 31

(d) 10 matches out of 11; 22 out of 25 8 matches out of 11; 22 out of 31

(e) 10 matches out of 11; 13 out of 18 4 matches out of 11; 7 out of 31

Fig. 8.8. Comparison of CLUE and UFM. The query image is the upper-left corner
image of each block of images. The underlined numbers below the images are the ID
numbers of the images in the database. For the images in the left column, the other
number is the cluster ID (the image with a border around it is the representative image
for the cluster). For images in the right column, the other two numbers are the value
of UFM measure between the query image and the matched image, and the number of
regions in the image. (a) birds, (b) car, (c) food, (d) historical buildings, and (e) soccer
game.
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call the system UFM to simplify notation), are also included for comparison. We admit

that the relevance of image semantics depends on standpoint of a user. Therefore, our

relevance criteria, specified in Figure 8.8, may be quite different from those used by a

user of the system. Due to space limitations, only the top 11 matches to each query are

shown in Figure 8.8. We also provide the number of relevant images in the first cluster

(for CLUE) or among top 31 matches (for UFM).

Compared with UFM, CLUE provides semantically more precise results for all

query examples given in Figure 8.8. This is reasonable since CLUE utilizes more in-

formation about image similarities than UFM does. CLUE groups images into clusters

based on pairwise distances so that the within-cluster similarity is high and between-

cluster similarity is low. The results seem to indicate that a similarity-induced image

cluster tends to contain images of similar semantics. In other words, organizing images

into clusters and retrieving image clusters may help to reduce the semantic gap even

when the rest of the components of the system, such as feature extraction and image

similarity measure, remain unchanged.

8.2.2 Systematic Evaluation

To provide a more objective evaluation and comparison, CLUE (built upon UFM

similarity measure) is tested on a subset of the COREL database, formed by 10 image

categories, each containing 100 images. The categories are Africa people and villages,

Beach, Buildings, Buses, Dinosaurs, Elephants, Flowers, Horses, Mountains and glaciers,

and Food with corresponding Category IDs denoted by integers from 1 to 10, respectively.

Within this database, it is known whether two images are of the same category (or
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semantics). Therefore we can quantitatively evaluate and compare the performance of

CLUE in terms of the goodness of image clustering and retrieval accuracy. In particular,

the goodness of image clustering is measured via the distribution of images semantics

in the cluster, and a retrieved image is considered a correct match if and only if it is

the same category as the query image. These assumptions are reasonable since the 10

categories were chosen so that each depicts a distinct semantic topic.

8.2.2.1 Goodness of Image Clustering

Ideally, a CBICR system would be able to generate image clusters each of which

contains images of similar or even identical semantics. The confusion matrix is one way to

measure clustering performance. However, to compute the confusion matrix, the number

of clusters needs to be equal to the number of distinct semantics, which is unknown in

practice. Although we can force CLUE to always generate 10 clusters in this particular

experiment, the experiment setup would then be quite different to a real application. So

we use purity and entropy to measure the goodness of image clustering.

Assume we are given a set of n images belonging to c distinctive categories (or

semantics) denoted by 1, · · · , c (in this experiment c ≤ 10 depending on the collection

of images generated by NNM) while the images are grouped into m clusters Cj , j =

1, · · · , m. Cluster Cj ’s purity can be defined as

p(Cj) =
1

|Cj |
max

k=1,··· ,c
|Cj,k| (8.11)



132

¹¸
º·
118

Ncut 1
©©©©©©¼

HHHHHHj

¹¸
º·
81

Ncut 2
¡

¡
¡ª

@
@

@R

¹¸
º·
40

Ncut 4
¢

¢¢®

A
AAU

¹¸
º·
35

Food
0.80
0.35

¹¸
º·

5

Horses
0.80
0.24

¹¸
º·
41

Ncut 3
¢

¢¢®

A
AAU

¹¸
º·
21

Africa
0.90
0.18

¹¸
º·
20

Buses
0.90
0.19

¹¸
º·
37

Ncut 5
¢

¢¢®

A
AAU

¹¸
º·
35

Dinosaurs
0.97
0.06

¹¸
º·

2

Dinosaurs
1.0
0.0

Fig. 8.9. CLUE applies five Ncuts to a collection of 118 images neighboring to a query
image of food. Numbers within each node denote the size of the corresponding clusters.
Linguistic descriptor and numbers listed under each leaf node are (from top to bottom):
name of the dominant semantic category in the leaf node (or cluster), purity of the
cluster, and entropy of the cluster.
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where Cj,k consists of images in Cj that belong to category k, and |Cj | represents the

size of the set. Each cluster may contain images of different semantics. Purity gives the

ratio of the dominant semantic class size in the cluster to the cluster size itself. The

value of purity is always in the interval [1c , 1] with a larger value means that the cluster

is a “purer” subset of the dominant semantic class. Entropy is another cluster quality

measure, which is defined as follows:

h(Cj) = − 1

log c

c∑

k=1

|Cj,k|
|Cj |

log
|Cj,k|
|Cj |

. (8.12)

Since entropy considers the distribution of semantic classes in a cluster, it is a more

comprehensive measure than purity. Note that we have normalized entropy so that the

value is between 0 and 1. Contrary to the purity measure, an entropy value near 0 means

the cluster is comprised mainly of 1 category, while an entropy value close to 1 implies

that the cluster contains a uniform mixture of all categories. For example, if half of the

images of a cluster belong to one semantic class and the rest of the images are evenly

divided into 9 different semantic classes, then the entropy is 0.7782 and the purity is

0.5. Figure 8.9 shows clusters and the associated tree structure generated by CLUE for

a sample query image of food. Size of each cluster, purity and entropy of leaf clusters

are also listed.

The following are some additional notations used in the performance evaluation.

For a query image i: 1) mi denotes the number of retrieved clusters; 2) vi is the average

size of the retrieved clusters; 3) P (i) is the average purity of the retrieved clusters, i.e.,

P (i) = 1
mi

∑mi
j=1 p(Cj) where p(Cj) is computed according to (8.11); and 4) H(i) is the
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average entropy of the retrieved clusters, i.e., H(i) = 1
mi

∑mi
j=1 h(Cj) where h(Cj) is

computed according to (8.12).

Every image in the 1000-image database is tested as a query. The same set of

parameters specified in Section 6.3.4 is used here. For query images within one semantic

category, the following statistics are computed: the mean of mi, the mean and standard

deviation (STDV) of vi, the mean of P (i), and the mean of H(i). In addition, we calculate

PNNM and HNNM for each query, which are respectively the purity and entropy of

the whole collection of images generated by NNM, and the mean of PNNM and HNNM

for query images within one semantic category. The results are summarized in Table 8.2

(second and third columns) and Figure 8.10. The third column of Table 8.2 shows

that the size of clusters does not vary greatly within a category. This is because of the

heuristic used in recursive Ncut: always dividing the largest cluster. It should be observed

from Figure 8.10 that CLUE provides good quality clusters in the neighborhood of a

query image. Compared with the purity and entropy of collections of images generated

by NNM, the quality of the clusters generated by recursive Ncut is on average much

improved for all image categories except category 5, for which NNM generates quite

pure collections of images leaving little room for improvement.

8.2.2.2 Retrieval Accuracy

For image retrieval, purity and entropy by themselves may not provide a com-

prehensive estimate of the system performance even though they measure the quality of

image clusters. Because what could happen is a collection of semantically pure image

clusters but none of them sharing the same semantics with the query image. Therefore
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Table 8.2. Statistics of the average number of clusters mi and the average cluster size
vi, and an estimation of the correct categorization rate Ct.

ID. Category Name Mean mi Mean vi± STDV Ct

1. Africa people and villages 7.77 14.0 ± 3.80 0.75
2. Beach 7.96 13.6 ± 2.11 0.55
3. Buildings 7.89 11.8 ± 3.81 0.69
4. Buses 7.88 8.61 ± 3.49 0.88
5. Dinosaurs 7.96 6.51 ± 0.68 1.00
6. Elephants 7.52 14.6 ± 3.94 0.64
7. Flowers 8.00 8.84 ± 1.79 0.95
8. Horses 8.00 9.98 ± 2.95 0.97
9. Mountains and glaciers 7.84 14.0 ± 2.70 0.51

10. Food 7.79 12.2 ± 2.48 0.78
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Fig. 8.10. Clustering performance in terms of purity and entropy. For mean P (i) and
mean PNNM , larger numbers indicate purer clusters. For mean H(i) and mean HNNM ,
smaller numbers denote better cluster quality.
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one needs to consider the semantic relationship between these image clusters and the

query image. For this purpose, we introduce the correct categorization rate and average

precision.

A query image is correctly categorized if the dominant category in the query

image cluster (first cluster of leftmost leaf) is identical to the query category. The

correct categorization rate, Ct, for image category t indicates how likely the dominant

semantics of the query image cluster coincides with the query semantics, and is defined

as the ratio of the number of correctly categorized images in category t to the size of

category t. The fourth column of Table 8.2 lists values of Ct for 10 categories used

in our experiments. Note that randomly assigning a dominant category to the query

image cluster will give a Ct value of 0.1. The results there indicate that CLUE has

some difficulties in categorizing images about beaches (category 2) and images about

mountains and glaciers (category 9), even though the performance is still four times

better than random. A detailed examination of the errors shows that most errors on these

two categories are errors between these two categories, i.e., a beach query is categorized

as mountains and glaciers, or conversely. The performance degradation on these two

categories seems understandable. Many images from these two categories are visually

similar. Some beach images contain mountains or mountain-like regions, while some

mountain images have regions corresponding to river, lake, or even ocean. In addition,

UFM measure may also mistakenly view a glacier as clouds because both regions have

similar white color and shape. However, we argue that the performance may be improved

if a better similarity measure is used.
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From the standpoint of a system user, the correct categorization rate may not

be the most important performance index. Even if the first cluster, in which the query

image resides, does not contain any images that are semantically similar to the query

image, the user can still look into the rest of the clusters. So we use precision to measure

how likely a user would find images belonging to the query category within a certain

number of top matches. Here the precision is computed as the percentage of images

belonging to the category of the query image in the first 100 retrieved images. The

recall equals precision for this special case since each category has 100 images. The r

parameter in NNM is set to be 30 to ensure that the number of neighboring images

generated is greater than 100. As mentioned in Section 6.3.2, the linear organization of

clusters may be viewed as a structured sorting of clusters in ascending order of distances

to a query image (recall that images within each cluster are organized in ascending order

of distances to the query). Therefore the top 100 retrieved images are found according to

the order of clusters. The average precision for a category t is then defined as the mean

of precision for query images in category t. Figure 8.11 compares the average precision

given by CLUE with those obtained by UFM. Clearly, CLUE performs better than UFM

for 9 out of 10 categories (they tie on the remaining one category). The overall average

precision for 10 categories are 0.538 for CLUE and 0.477 for UFM. We want to emphasize

again: CLUE can be built upon any real-valued symmetric similarity measure, not just

UFM similarity measure. The results here suggest that on average CLUE scheme may

improve the precision of a CBIR system.
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Fig. 8.11. Comparing CLUE scheme with UFM method on the average precision.

8.2.3 Speed

The CLUE has been implemented on a Pentium III 700MHz PC running Linux op-

eration system. To compare the speed of the CLUE with the UFM, which is implemented

and tested on the same computer, 100 random queries are issued to the demonstration

web sites. The CLUE takes on average 0.8 second per query for similarity measure eval-

uation, sorting, and clustering, while the UFM takes 0.7 second to evaluate similarities

and sort the results. The size of the database is 60, 000 for both tests. Although the

CLUE is slower than the UFM because of the extra computational cost for NNM and

recursive Ncut, the execution time is still well within the tolerance of real-time image

retrieval.
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Fig. 8.12. Robustness to the number of neighboring images: mean P (i) and mean H(i)
over 1000 query images for different values of k and r.

8.2.4 Robustness

CLUE is tested for the robustness to the number of neighboring images, which

is decided by k and r parameters for NNM. Given a fixed pair of k and r, the average

purity P (i) and average entropy H(i) for each image in the 1000-image database are

calculated. Then we compute the mean of P (i) and the mean of H(i) over all 1000

query images. The same steps are repeated for different pairs of k and r where k and

r take values from {25, 26, · · · , 35} and {5, 6, · · · , 10}, respectively. The resulting mean

purity and mean entropy are shown in Figure 8.12. For 66 different pairs of k and r,

the mean P (i) varies within the interval [0.832, 0.867] and the mean H(i) varies within

the interval [0.168, 0.208]. Considering that the average number of neighboring images

varies from 59 to 116 (the average numbers of neighboring images are around 59 and 116

for (k, r) = (25, 5) and (35, 10), respectively), the variations on the purity and entropy

are not significant.
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8.2.5 Results on WWW Images

To show the performance of CLUE on real world image data, we provide some

preliminary results using images crawled from the Internet. The images are obtained

from Google’s Image Search (http://images.google.com), which is a keyword-based

image retrieval system. Due to space limitation, we only present the results for two

query words: Tiger and Beijing. Since there is no query image, the neighboring image

selection stage of CLUE is skipped. Instead, for each query word, the recursive Ncut

using the same set of parameters as in the above experiments is directly applied to the

top 200 images returned by Google. Figure 8.13 lists some sample images from the top

4 largest clusters for each query word. Each block of images are chosen to be the top

18 images within a cluster that are closest to the representative image of the cluster in

terms of UFM similarity measure. The cluster size is also specified below each block of

images.

As shown in Figure 8.13, real world images can be visually and semantically quite

heterogeneous even when a very specific category is under consideration. The Tiger

images returned by Google’s Image Search contains images of cartoon tiger (animal),

real tiger (animal), Tiger Woods (golf player), Tiger tank, Crouching Tiger Hidden

Dragon (movie), and tiger shark, etc. Images about Beijing include images of city

maps, people, and buildings, etc. CLUE seems to be capable of providing visually

coherent image clusters with reduced semantic diversity within each cluster. The images

in Figure 8.13(a) are mainly about cartoon tigers. Half of the images in Figure 8.13(d)

contain people. Real tigers appear more frequently in Figure 8.13(b) and (c) than in
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Tiger Beijing

(a) Cluster 1 (75 images) (e) Cluster 1 (61 images)

(b) Cluster 2 (64 images) (f) Cluster 2 (59 images)

(c) Cluster 3 (32 images) (g) Cluster 3 (43 images)

(d) Cluster 4 (24 images) (h) Cluster 4 (31 images)

Fig. 8.13. Some sample images of the top four largest clusters obtained by applying
CLUE to images returned by Google’s Image Search with query words Tiger (left column)
and Beijing (right column).
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Figure 8.13(a) and (b). Images in Figure 8.13(c) have stronger textured visual effect

than images of the other three blocks. The remaining 5 images (four largest clusters

of Tiger take 195 images of the total 200 images), which are not included in the figure,

are all about tiger sharks. As to images about Beijing, the majority of the images in

Figure 8.13(e) are city maps. Out of the 18 images in Figure 8.13(f), 11 contains people.

The majority of images in Figure 8.13(g) are about Beijing’s historical buildings. There

also a lot of images of buildings in Figure 8.13(h). But most of them are modernbuilt.

These results seem to imply that, to some extent, unsupervised learning is helpful in

disambiguating and refining image semantics and may improve the performance of a

keyword-based image retrieval system.

8.3 Image Categorization

In this section we present systematic evaluations of the image categorization

method proposed in Chapter 7 based on a collection of images from COREL. Section 8.3.1

describes the experiment setup including image dataset, implementation details, and pa-

rameters selection. Section 8.3.2 compares the classification accuracies of the proposed

approach (using different reference functions) with those of two image classification meth-

ods. The effect of inaccurate image segmentation on classification accuracies is demon-

strated in Section 8.3.3. Section 8.3.4 illustrates the performance variations when the

number of categories in a dataset increases. The computational issues are discussed in

Section 8.3.5.
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8.3.1 Experiment Setup

The dataset used in our empirical study consists of 2000 images from the COREL

database used in Section 8.1 and 8.2. They belong to 20 thematically diverse image

categories, each containing 100 images. The category names and some randomly selected

sample images from all 20 categories are shown in Figure 8.14. As we can see, images

within each category are not necessarily all visually similar. While images from different

categories may be visually similar to each other.

Images within each category are randomly splitted into a training set and a test

set each with 50 images. We repeat each experiment for 5 random splits, and report the

average (and the standard deviation) of the results obtained over 5 different test sets.

The SVMLight [55] software is used to train the SVMs. The classification problem here

is clearly a multi-class problem. We use the one-against-the-rest approach: 1) For each

category, an SVM is trained to separate that category from all the rest categories; 2)

The final predicted class label is decided by the winner of all SVMs, i.e., one with the

maximum un-thresholded output.

Two other image classification methods are implemented for comparison. One

is a histogram-based SVM classification approach proposed in [13] (we denote it as

Hist-SVM). Each image is represented by a color histogram in the LUV color space.

The dimension of each histogram is 125. The other is an SVM-based MIL method

introduced in [2] (we call it MI-SVM). Since MI-SVM is identical to our approach in

terms of image representation (both are built on features of segmented regions), same
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Category 0: Africa people and villages Category 1: Beach

Category 2: Buildings Category 3: Buses

Category 4: Dinosaurs Category 5: Elephants

Category 6: Flowers Category 7: Horses

Category 8: Mountains and glaciers Category 9: Food

Category 10: Dog Category 11: Lizard

Category 12: Fashion Category 13: Sunsets

Category 14: Cars Category 15: Waterfall

Category 16: Antiques Category 17: Battle ships

Category 18: Skiing Category 19: Dessert

Fig. 8.14. Sample images taken from 20 categories.
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image representation described in Section 5.2 are used by both methods. The learning

problems in Hist-SVM and MI-SVM are solved by SVMLight.

Several parameters need to be specified for SVMLight 4. The most significant

ones are the trade-off between training error and margin, the type of kernel functions,

and kernel parameter. We apply the following strategy to select these parameters:

• First, we pick the type of kernel functions. For our proposed method, the ker-

nel function is determined by reference functions. Different choices of reference

functions will be tested and compared. For Hist-SVM and MI-SVM, we choose

Gaussian kernel.

• Then we allow each one of the trade-off parameter and kernel parameter (for our

proposed method, the kernel parameter is the constant s in Table 7.1) be respec-

tively chosen from two sets each containing 10 predetermined numbers. For every

pair of values of the two parameters (there are 100 pairs in total), a twofold cross-

validation error on the training set is recorded. The pair that gives the minimum

twofold cross-validation error is selected to be the “optimal” parameters.

Note that the above procedure is applied only once for each method. Once the parameters

are determined, the learning is performed over the whole training set.

8.3.2 Categorization Results

The classification results provided in this section are based on images in Cate-

gory 0 to Category 9, i.e., 1000 images. Results for the whole dataset will be given in

4SVMLight software and detailed descriptions of all its parameters are available at
http://svmlight.joachims.org.
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Table 8.3. The performance of the proposed method based on different reference func-
tions. See Table 8.1 for definitions of reference functions. The last two rows show the
performance of Hist-SVM and MI-SVM for comparison. The numbers listed are the
average and the standard deviation of classification accuracies over 5 random test sets.
The images belong to Category 0 to Category 9. Training and test sets are of equal size.

Gaussian 81.5% ± 2.2%
Cauchy 81.6% ± 2.0%
Laplace 80.6% ± 1.6%
Hyperbolic Secant 81.8% ± 2.1%
Squared Sinc 82.0% ± 2.2%
Symmetric Triangle 81.7% ± 1.2%
Hist-SVM 66.7% ± 1.8%
MI-SVM 74.7% ± 0.5%

Section 8.3.3. The top five rows of Table 8.3 show the classification accuracies of our

proposed approach with 6 different reference functions. The kernel defined by Gaussian

reference function is exactly the Gaussian kernel commonly used in SVMs. It is interest-

ing to observe that different reference functions have very similar performance. Among

six reference functions, squared sinc function produces the highest average classification

accuracy (82.0%). The lowest average classification accuracy is given by Laplace function

(80.6%). However, the difference is not significant as indicated by the standard devia-

tions. Therefore, for the rest experiments, we only report the results given by Gaussian

reference function. One expected observation is that the proposed approach performs

much better than Hist-SVM with a 14.8% (for Gaussian reference function) difference

in average classification accuracy. This seems to suggest that, compared with color his-

tograms, a region-based image representation may provide more information about a

concept of image category. Another observation is that the average accuracy of the pro-

posed method using Gaussian reference function is 6.8% higher than that of MI-SVM. As
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Table 8.4. The confusion matrix of image categorization experiments (over 5 randomly
generated test sets). Each row lists the average percentage of images (test images) in one
category classified to each of the 10 categories by the proposed method using Gaussian
reference function. Numbers on the diagonal show the classification accuracy for each
category.

Cat. 0 Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 Cat. 8 Cat. 9

Cat. 0 67.7% 3.7% 5.7% 0.0% 0.3% 8.7% 5.0% 1.3% 0.3% 7.3%

Cat. 1 1.0% 68.4% 4.3% 4.3% 0.0% 3.0% 1.3% 1.0% 15.0% 1.7%

Cat. 2 5.7% 5.0% 74.3% 2.0% 0.0% 3.3% 0.7% 0.0% 6.7% 2.3%

Cat. 3 0.3% 3.7% 1.7% 90.3% 0.0% 0.0% 0.0% 0.0% 1.3% 2.7%

Cat. 4 0.0% 0.0% 0.0% 0.0% 99.7% 0.0% 0.0% 0.0% 0.0% 0.3%

Cat. 5 5.7% 3.3% 6.3% 0.3% 0.0% 76.0% 0.7% 4.7% 2.3% 0.7%

Cat. 6 3.3% 0.0% 0.0% 0.0% 0.0% 1.7% 88.3% 2.3% 0.7% 3.7%

Cat. 7 2.3% 0.3% 0.0% 0.0% 0.0% 2.0% 1.0% 93.4% 0.7% 0.3%

Cat. 8 0.3% 15.7% 5.0% 1.0% 0.0% 4.3% 1.0% 0.7% 70.3% 1.7%

Cat. 9 3.3% 1.0% 0.0% 3.0% 0.7% 1.3% 1.0% 2.7% 0.0% 87.0%

we will see in Section 8.3.4, the difference becomes even greater as the number of cate-

gories increases. This suggests that the proposed method is more effective than MI-SVM

in learning concepts of image categories under the same image representation. The MIL

formulation of our method may be better suited for region-based image classification

than that of MI-SVM.

Next, we take a closer analysis of the performance by looking at classification

results on every category in terms of “confusion matrix.” The results are listed in Ta-

ble 8.4. Each row lists the average percentage of images in one category classified to

each of the 10 categories by the proposed method using Gaussian reference function.

The numbers on the diagonal show the classification accuracy for each category, and

off-diagonal entries indicate classification errors. Ideally, one would expect the diagonal

terms be all 1’s, and the off-diagonal terms be all 0’s. A detailed examination of the
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Beach 1 Beach 2 Beach 3 Beach 4 Beach 5 Beach 6

Mountains 1 Mountains 2 Mountains 3 Mountains 4 Mountains 5 Mountains 6

Fig. 8.15. Some sample images taken from two categories: “Beach” and “Mountains
and glaciers.”

“confusion matrix” shows that two of the largest errors (the underlined numbers in Ta-

ble 8.4) are errors between Category 1 (Beach) and Category 8 (Mountains and glaciers):

15.0% of beach images are misclassified as mountains and glaciers; 15.7% of mountains

and glaciers images are misclassified as beach. Figure 8.15 presents 12 misclassified im-

ages (in at least one experiment) from both categories. All beach images in Figure 8.15

contain mountains or mountain-like regions, while all the mountains and glaciers images

have regions corresponding to river, lake, or even ocean. In other words, although these

two image categories do not share annotation words, they are semantically related and

visually similar. This may be the reason for the relatively highest classification errors.

8.3.3 Sensitivity to Image Segmentation

Because image segmentation cannot be perfect, being robust to segmentation-

related uncertainties becomes a critical performance index for a region-based image

classification method. In this section, we compare the performance of the proposed
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method with MI-SVM approach when the coarseness of image segmentation varies. As

mentioned in Section 8.3.1, MI-SVM is also a region-based classification approach, and

uses the same image representation as our proposed method. To give a fair comparison,

we control the coarseness of image segmentation by adjusting the stop criteria of the

k-means segmentation algorithm. We pick 5 different stop criteria. The corresponding

average numbers of regions per image (computed over 1000 images from Category 0 to

Category 9) are 4.31, 6.32, 8.64, 11.62, and 12.25. The average and standard deviation

of classification accuracies (over 5 randomly generated test sets) under each coarseness

level are presented in Figure 8.16.

The results in Figure 8.16 indicate that our method outperforms MI-SVM on all

5 coarseness levels. In addition, for our method, there are no significant changes in the

average classification accuracy for different coarseness levels. While the performance of

MI-SVM degrades as the average number of regions per image increases. The difference

in average classification accuracies between the two methods are 6.8%, 9.5%, 11.7%,

13.8%, and 27.4% as the average number of regions per image increases. This appears

to support the claim that the proposed region-based image classification method is not

sensitive to image segmentation.

8.3.4 Sensitivity to the Number of Categories in a Dataset

Although the experimental results in Section 8.3.2 and 8.3.3 demonstrate the

good performance of the proposed method using 1000 images in Category 0 to Category

9, the scalability of the method remains to be a question: how the performance scales

as the number of categories in a dataset increases. We attempt to empirically answer
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Fig. 8.16. Comparing our method with MI-SVM on the robustness to image segmenta-
tion. The experiment is performed on 1000 images in Category 0 to Category9 (training
and test sets are of equal size). The top and bottom bar-plots show the average and
standard deviation of classification accuracies (over 5 randomly generated test sets), re-
spectively. There are five groups of bars in each bar-plot. From left to right, each group
corresponds to a distinct stop criterion with the average number of regions per image
being 4.31, 6.32, 8.64, 11.62, and 12.25, respectively. The results of our method are
denoted by the bars with darker color. While the bars with lighter color represent the
results for MI-SVM.
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this question by performing image classification experiments over datasets with different

numbers of categories. A total of 11 datasets are used in the experiments. The number

of categories in a dataset varies from 10 to 20. A dataset with i categories contains

100 × i images from Category 0 to Category i − 1. The average and standard deviation

of classification accuracies (over 5 randomly generated test sets) for each dataset are

presented in Figure 8.17 that includes the results of MI-SVM for comparison.

We observe a decrease in average classification accuracy as the number of cate-

gories increases. When the number of categories becomes doubled (increasing from 10

to 20 categories), the average classification accuracy of our method drops from 81.5%

to 67.5%. However, our method seems to be less sensitive to the number of categories

in a dataset than MI-SVM. This is indicated, in Figure 8.18, by the difference in aver-

age classification accuracies between the two methods as the number of categories in a

dataset increases. It should be clear that our method outperforms MI-SVM consistently.

And the performance discrepancy increases as the increase of number of categories. For

the 1000-image dataset with 10 categories, the difference is 6.8%. This number is nearly

doubled (12.9%) when the number of categories becomes 20. In other words, the per-

formance degradation of our method is slower than that of MI-SVM as the number of

categories increases.

8.3.5 Speed

On average, the leaning of each binary classifier using a training set of 500 images

(4.31 regions per image) takes around 40 minutes of CPU time on a Pentium III 700MHz

PC running Linux operation system. Among this amount of time, the majority part is
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Fig. 8.17. Comparing our method with MI-SVM on the robustness to the number of
categories in a dataset. The experiment is performed on 11 different datasets. The
number of categories in a dataset varies from 10 to 20. A dataset with i categories
contains 100× i images from Category 0 to Category i− 1 (training and test sets are of
equal size). The top and bottom bar-plots show the average and standard deviation of
classification accuracies (over 5 randomly generated test sets), respectively. The results
of our method are denoted by the bars with darker color. While the bars with lighter
color represent the results for MI-SVM.
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Fig. 8.18. Difference in average classification accuracies between our method and MI-
SVM as the number of categories varies. A positive number indicates that our method
has higher average classification accuracy.
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spent on learning RPs, in particular, the FOR loop of LearnPRs(D) in Algorithm 7.1.

This is because the quasi-newton search (the code is written in C programming lan-

guage) needs to be applied with every instance in every positive bag as starting points

(each optimization only takes a few seconds). However, since these optimizations are

independent of each other, they can be fully parallelized. Thus the training time may

be reduced significantly.
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Chapter 9

Conclusions and Future Work

In Section 9.1, we summarize the major contributions of the thesis. The limi-

tations of the proposed approaches are discussed in Section 9.2. Suggestions for future

work are presented in Section 9.3.

9.1 Summary

A major difficulty in CBIR is the “semantic gap.” It reflects the discrepancy

between low-level visual features and high-level concepts. With the ultimate goal of

narrowing the semantic gap, this thesis makes three contributions to the field of CBIR.

The first contribution is UFM (Chapter 5), a robust image similarity measure

using fuzzified region features. In the UFM scheme, an image is first segmented into

regions. Each region is then represented by a fuzzy feature that is determined by center

location (a feature vector) and width (grade of fuzziness). Compared with the conven-

tional region representation using a single feature vector, each region is represented by a

set of feature vectors each with a value denoting its degree of membership to the region.

Consequently, the membership functions of fuzzy sets naturally characterize the grad-

ual transition between regions within an image. That is, they characterize the blurring

boundaries due to imprecise segmentation.
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A direct consequence of fuzzy feature representation is the region-level similarity.

Instead of using the Euclidean distance between two feature vectors, a fuzzy similarity

measure, which is defined as the maximum value of the membership function of the

intersection of two fuzzy features, is used to describe the resemblance of two regions. This

value is always within [0, 1] with a larger value indicating a higher degree of similarity

between two fuzzy features. The value depends on both the Euclidean distance between

the center locations and the grades of fuzziness of two fuzzy features. Intuitively, even

though two fuzzy features are close to each other, if they are not “fuzzy” (i.e., the

boundary between two regions is distinctive), then their similarity could be low. In the

case that two fuzzy features are far away from each other, but they are very “fuzzy”

(i.e., the boundary between two regions is very blurring), the similarity could be high.

These correspond reasonably to the viewpoint of the human perception.

Trying to provide a comprehensive and robust “view” of similarity between im-

ages, the region-level similarities are combined into an image-level similarity vector pair,

and then the entries of the similarity vectors are weighted and added up to produce

the UFM similarity measure which depicts the overall resemblance of images in color,

texture, and shape properties. The comprehensiveness and robustness of UFM measure

can be examined from two perspectives namely the contents of similarity vectors and the

way of combining them. Each entry of similarity vectors signifies the degree of closeness

between a fuzzy feature in one image and all fuzzy features in the other image. Intu-

itively, an entry expresses how similar a region of one image is to all regions of the other

image. Thus a region is allowed to be matched with several regions in case of inaccurate

image segmentation which in practice occurs quite often. By weighted summation, every
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fuzzy feature in both images contributes a portion to the overall similarity measure. This

further reduces the sensitivity of UFM measure. The application of the UFM method

to a database of about 60, 000 general-purpose images has demonstrated good accuracy

and excellent robustness to image segmentation and image alterations.

The second contribution is CLUE (Chapter 6), an image retrieval scheme using

unsupervised learning. CLUE attempts to retrieve semantically coherent image clusters,

instead of a set of images ranked by a similarity measure. Although the underlying image

semantics structure of a large image database may be quite complex, CLUE makes a

rather simple assumption: semantically similar images tend to be clustered. Clustering

is performed in a query-dependent way: query image and target images, which are in the

neighborhood of the query in terms of a similarity measure, are clustered. As a result,

CLUE generates clusters that are tailored to characteristics of the query image. CLUE

employs a graph representation of images: images are viewed as nodes and similarities

between images are denoted by weights of the edges connecting nodes. The graph rep-

resentation captures the pairwise relationship between images, and enables CLUE to

handle the metric and nonmetric similarity measures in a uniform way. In this sense,

CLUE is a general approach that can be combined with any real-valued symmetric image

similarity measure, and thus, may be embedded in many current CBIR systems.

Under a graph representation, clustering is naturally formulated as a graph parti-

tioning problem. The Ncut technique is used by CLUE. The resulting image clusters are

organized in a linear order specified by the traversal of the tree generated by recursive

Ncut. A representative image is also found for each cluster. The system presents the

clusters and the images inside to a user via a two-level display scheme. The application
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of CLUE (with UFM similarity measure) to a database of 60, 000 general-purpose images

demonstrates that CLUE can indeed provide more semantic clues to a system user than

an existing CBIR system using the same similarity measure. Numerical evaluations on

a 1000-image database show good cluster quality and improved retrieval accuracy. Fur-

thermore, preliminary results on images returned by Google’s Image Search suggest the

potential of applying CLUE to real world image data and integrating CLUE as a part

of the interface for keyword-based image retrieval systems.

The last contribution is an image categorization method that classifies images

based on the information of regions (Chapter 4 and Chapter 7). Each image is repre-

sented as a collection of regions obtained from image segmentation using k-means algo-

rithm. The classification is guided by a set of automatically derived rules that relate the

concept underlying an image category with the occurrence of regions (of certain types)

in an image. To incorporate the uncertainties that are intrinsic to image segmentation,

each rule is modeled as a fuzzy inference rule. And the classifier built upon such rules

becomes a fuzzy rule-based classifier. In Chapter 4 we prove that, under quite general

conditions, the proposed classifier is functionally equivalent to SVMs with a special class

of kernels. Therefore, SVM learning is applied to train such classifiers. In particular,

each rule is determined by a support vector and the associated Lagrange multiplier.

We demonstrate that the proposed method performs well in classifying images from 20

semantic classes.
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9.2 Limitations

A major limitation of the UFM scheme, which is inherent to the current fuzzy

feature representation, is that the specificity is sacrificed to the robustness. The current

system works well for the testing image database that consists of 60, 000 photographic

pictures. However, experiments on a different image database (also available at the

demonstration web site) of about 140, 000 clip art pictures show that the IRM outper-

forms the UFM a little in accuracy. This is because, unlike photographs, segmentation

of a clip art picture tends to be very accurate. Fuzzy features blur the boundaries of the

originally clear-cut regions, which makes accurately recognizing and matching similar

regions even harder.

CLUE also has several limitations:

• The current heuristic used in the recursive Ncut always bipartitions the largest

cluster. This is a low-complexity rule and is computationally efficient to imple-

ment. But it may divide a large and pure cluster into several clusters even when

there exists a smaller and semantically more diverse cluster. Bipartitioning the

semantically most diverse cluster seems to be more reasonable. However, an open

question is how to automatically and efficiently estimate the semantic diversity of

a cluster.

• The current method of finding a representative image for a cluster does not al-

ways give a semantically representative image. For the example in Figure 8.8(a),

one would expect the representative image to an image of a bird. But the system
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chooses an image of sheep (the third image). This discrepancy is due to the se-

mantic gap: an image that is most similar to all images in the cluster in terms of

a similarity measure does not necessarily belong to the dominant semantic class of

the cluster.

• If the number of neighboring target images is large (more than several thousand),

sparsity of the affinity matrix becomes crucial to retrieval speed. The current

weighting scheme given by (6.1) does not lead to a sparse affinity matrix. As a

result, different weighting schemes should be studied to improve the scalability of

CLUE.

For the proposed image categorization algorithm, the definition of DD function

may be improved. The current definition of DD function, which is a multiplicative model,

is very sensitive to instances in negative bags. It can be easily observed from (7.1) that

the DD value at a point is significantly reduced if there is a single instance from negative

bags close to the point. This property may be desirable for some applications, such

as drug discovery [68], where the goal is to learn a single point in the instance feature

space with the maximum DD value from an almost “noise free” dataset. But this is

not a typical problem setting for region-based image categorization where data usually

contain noise. Thus a more robust definition of DD, such as an additive model, is likely

to enhance the performance.

9.3 Future Work

In future work, we intend to pursue in the following areas:
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• Feature selection

One of the advantages of region-based image retrieval methods is that the size,

shape, and absolute and relative location of the regions can provide additional help.

But in the current image segmentation, location information is not fully exploited.

We plan to test other segmentation algorithms, such as the one described in [32],

which include the location information in the segmentation process.

• Learning techniques

One possible future direction is to integrate CLUE with keyword-based image re-

trieval approaches. Other graph theoretic clustering techniques [70] need to be

tested for possible performance improvement. CLUE may be combined with non-

linear dimensionality reduction techniques, such as the methods in [86] and [108],

to provide a global visualization together with a local retrieval. The current RP

learning scheme may be combined with boosting technique.

• Applications

We are planning to apply the proposed algorithms to special image databases in-

cluding digital imagery for art and cultural heritages, and biomedical images. In

terms of the size of images and the level of details required in image representa-

tion, these applications are more challenging than the experiments, on which the

proposed algorithms have been tested.
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