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As a member of the class of parallel manipulators, flexure jointed hexapods are great
candidates for micro-precision applications in which only a very small workspace is re-
quired. This dissertation makes four major contributions to the research of flexure
jointed hexapods. First, new decoupling algorithms are proposed. They exploit the
properties of the joint space mass-inertia matrix of flexure jointed hexapods, loosen and
remove the severe constraints imposed by previous methods on the allowable geometry,
workspace, and payload. Second, a new identification algorithm is derived to estimate
the joint space mass-inertia matrix, which plays a crucial role in the computation of
decoupling transformations. The new identification algorithm, using an optimization
criterion differing from the least squares criterion, also applies to a class of problems of
estimating symmetric and positive definite matrices. Third, the relationships between
different decoupling algorithms, disturbance rejection and robust stability is discussed.
It is proven that optimal robustness can be achieved by choosing a unitary decoupling
matrix. Finally, an approach for constructing optimal Jacobians for prioritized manip-
ulations is described. A prioritized manipulation is a task in which some degrees of
freedom (DOF) in the Cartesian space are more important than the rest. Thus the
DOF can be divided into major DOF (MDOF) and secondary DOF (SDOF). Jacobians
are constructed to achieve MDOFs while trading-off SDOFs with obstacle avoidance,

fault tolerance, or joint motion optimization.
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Chapter 1

Introduction

In various applications such as micro-manipulation, laser weapon pointing, space-
based interferometers, reconnaissance cameras, optical and electron microscopy, optical
communication, and remote sensing the presence of mechanical vibrations induced or
transmitted in the system structure is almost inevitable. Consequently, the performance
of the system depends critically on the ability of the existing sensor-actuator-controller
architecture to provide vibration isolation and precise motion control. As great candi-
dates for these applications, flexure jointed hexapods (Stewart Platform) can provide six
degree-of-freedom (DOF) active and passive vibration isolation, six DOF high precision
motion control, and fault tolerant vibration isolation and motion control (if less than

six DOF's are required).

1.1 UW/’s Flexure Jointed Hexapods

Several researchers have developed flexure jointed hexapods for micro-precision applica-
tions in which only a very small workspace is required ([39], [37], [1], [11], [12], [36], [25],

[32]). UW’s hexapods are flexure jointed hexapods. Figure 1.1 shows the structure of



one of the UW’s two flexure jointed hexapods. Like any hexapod, it consists of a base
attached to a base plate, a payload plate, and six struts (also called legs). Each strut
contains springs which passively reduce vibrations from the base to the payload plate.
A voice coil motor is also embedded into each strut. Thus the hexapod can slightly
change the length of it legs to allow additional active vibration reduction and precise

pose control of the payload plate in up to six DOF's.

Baze Flate I‘a

Ny

Figure 1.1: One of the UW’s two flexure jointed hexapods.

Compared to non-flexure jointed hexapods, flexure jointed hexapods have several

distinct characteristics [27]:

1. They employ flexure joints to avoid the extremely nonlinear micro-dynamics of
joint friction and backlash. As a result, the flexures greatly alter the dynamic

behavior.

2. The base motion is a significant contributor to the overall motion, even when the



base is subjected only to ambient seismic vibrations.

3. Because the workspace is so small, linearized dynamic models are highly accurate.

This facilitates the analysis and design of the hexapod control system.

Problem #1: 6-Axis

Vibration Isolation

Problem #2: 6-Axis Micro-Manipulation

and Platform Stabilization

Sensitive Instruments

§§ Vibrating Machinery

S

hexapods

< Quiet Bus

) &

Vibrating Bus

)E

Figure 1.2: Problem #1: Vibrating machinery must be isolated from a precision bus
(this is termed the dirty box problem because the machinery mounted on the hexapod
“box” is mechanically “dirty”, i.e. vibrating). Problem #2: A precision payload must be
manipulated in the presence of base vibrations and/or exogenous forces (this is termed

the quiet bozx problem).

For vibration isolation, flexure jointed hexapods have been developed to meet two

principle needs, depending on what is mounted to the hexapod “box”. Figure 1.2 defines

the two general problems, namely the “quiet box” problem and the “dirty box” prob-

lem. Generally, the “quiet box” problem uses payload acceleration, velocity, or position

measurements to control the payload motion. The “dirty box” problem uses base force

feedback to minimize the transmission of forces to the base.



Payload

Spherical
Flexure Joints

Figure 1.3: A flexure jointed hexapod (or Stewart Platform). {P} is a Cartesian coor-
dinate frame located at, and rigidly attached to, the payload’s center of mass. {B} is
the frame attached to the (possibly moving) base, and {U} is a Universal inertial frame
of reference.

Linear Actuator
& Flexure Joint \

1.2 Dynamic Modeling of Flexure Jointed Hexapods

This section summarizes the dynamic models of flexure jointed hexapods [26] for vibra-
tion isolation and pointing purposes. Figure 1.3 illustrates the structural diagram of
a general flexure jointed hexapod. Like any hexapod, it consists of a base, a payload,
and six struts that can change their lengths using the linear actuators inside them. The
struts, which have spherical joints at both ends, connect the payload to the base.

In the joint space, the dynamics of a flexure jointed hexapod are written as [26]

— — — - =

fo="Ffm—K{l-1)— | (1.1)

GURPM, BRI ! + YRI"M,)I + YRI"Br YRI"K (- I,) =

URITf,, — (YRI™M, + YRPM,UR I Iz )G, + F. +G+C (1.2)

where



e J is the 6 x 6 hexapod Jacobian relating payload Cartesian movements, expressed

in the { P} frame, to strut length changes in the joint space,

e YR is the 6 x 6 rotation matrix from the base frame, { B}, to the Universal inertial
frame of reference {U} (it consists of two identical 3 x 3 rotation matrices forming
a block diagonal 6 x 6 matrix). Similarly, BR is the rotation matrix from the

payload frame to the base frame, and YR =% RER,
e J. and Jp are 6 X 6 Jacobian matrices capturing base motion,

e "M, is the 6 x 6 mass-inertia matrix of the payload, found with respect to the

payload frame, { P}, whose origin is at the hexapod payload’s center of mass,
e M, is a diagonal 6 x 6 matrix containing the moving mass of each strut,

e B and K are 6 x 6 diagonal matrices containing the damping and stiffness, respec-

tively, of each strut,

e [is the 6 x 1 vector of strut lengths, and l_,: is the constant vector of relaxed strut
lengths,

e f, is the 6 x 1 vector of forces exerted at the bottom of the strut,

e f. is the 6 X 1 vector of strut motor forces,

e g, is a 6 x 1 vector of base accelerations along each strut plus some Coriolis terms,

o F. isa6x 1 vector of payload exogenous generalized forces applied at the origin

of the {P} frame,



e Cisa6x 1 vector containing all the Coriolis and centripetal terms,
e Gisa6x1 vector containing all gravity terms.

Since the struts can only move very small distances, the Jacobian (J) and the rotation
matrix (BR) can be considered constant, and Coriolis and Centripetal terms are often
negligible.

Note that the base motions play a role in the dynamic model (1.2) both explicitly
(é’s, YR, and YR) and implicitly (through l_: l_: and l_j The relations among payload

motion, base motion and strut dynamics can be described as [26]

I = p—4q, (1.3)
I = p,—q, (1.4)
I = p,.—q, (1.5)

o d ] RV — = d A -7 — . .
151, .y Uh P [41q, ..., Ut Gs] , D; denotes the three dimensional

attachment point of the i strut to the payload and §; denotes the attachment point of
the ** strut to the base (Figure 1.3), @; is the unit direction vector of the i** strut (j;,
¢;, and ; are expressed in the same coordinate frame).

Substituting (1.3-1.5) into (1.1-1.2) and rearranging terms produces the following

dynamic equations

— — -

fo=fu K@~ 1) —B@, —q,) (1.6)

URPM,ER' I + URI™M,)p, + YRITBP, + URITKp, = URIT f,.+

(URPM, BRI — YURPM,YR" I 5 1), + YRITBG, + YRITK(G, + Ir)+



—

F.+G+C . (1.7)

For the small movements possible in flexure jointed hexapods, J, J., Jp, and R are
all nearly constant. For small base motions, 3R, ¥R, and G are constant, while C can
be neglected because large velocities cannot be attained in the small distance moved.
Large base motions can be treated by incorporating 4R and feeding forward G and C
terms.

By letting the spring compression absorb the static gravity forces (for small base
motions) or the static part of gravity forces (for the large base motions), both I, and G

terms can be removed. Thus (1.7) can be written as the following equation

URPM,ER I + YURITM,)p, + YRITBp, + YRITKp, = YRIT f,,+

(URPM,EBR"J-! — YURPM,YR" I I5 1), + URITBG, + YRITKG, + F. + AG(1.8)

where AG is the dynamic part of gravity forces. For small base motions, AG = 0.

Multiplying both sides of (1.8) by J TYR", we get
M7, + Bp, + Kp, = fm + Myd, + BG, + Ki, + 3 TER' (F. + AG)  (1.9)
where

= JTBRPM,ER'I ! + M, (1.10)

M, = J7BR’M, BRI — J7TERP M, YR I I 5" (1.11)

Thus the dynamic model for vibration isolation (“quiet box” and “dirty box”) is given

by (1.6) and (1.9).



Let

X = 02,0y, 0., To, Ty, T2]" (1.12)

represent the Cartesian space movements (rotation and translation) of the payload plate.
0., 0,, and 0, are the amount of rotation along x, y, and z axis, respectively. T;, T, and
T, are the amount of translation along z, y, and z axis, respectively. Then the dynamic
model for pointing is

X=J"'(M,s* +Bs+K)'f,. (1.13)

In many pointing applications, only part of the six DOF's are needed. For example, only
0, and 0, are the pointing DOF's for the UW’s hexapod. In this case, the dynamic model

can be written as

100000 .
Xa = J'M,s* +Bs+K) ' f, (1.14)

010000

where Y, =
Oy

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows:

e Chapter 2. Decoupling the Dynamics of Flexure Jointed Hexapods
By exploiting properties of the joint space mass-inertia matrix of flexure jointed
hexapods, new decoupling methods are proposed. The new decoupling meth-

ods, through a static input-output mapping, transform the highly coupled system



dynamics into independent single-input single-output (SISO) channels. Controls
for these SISO channels are far simpler than their multiple-input multiple-output
(MIMO) counterparts while facilitating advanced control features such as adap-
tation, fault tolerant, iterative learning, etc. Prior decoupling control methods
imposed severe constraints on the allowable geometry, workspace, and payload.
The new methods loosen and remove these constraints, thus greatly expanding the

applications.

Chapter 3. Estimation of Symmetric, Positive Definite Matrices from
Imperfect Measurements

To apply the decoupling algorithms proposed in Chapter 2, the joint space mass-
inertia matrix (M,) of the flexure jointed hexapod must be known. There are two
ways of obtaining M,,. One way is to calculate M, from the design parameters of
the hexapod. The other is to identify M, from measurements. The former method
requires exact values of M, “M,, BR, and J, which in practice are laborious to
compute and can introduce errors. In this chapter, a new identification algorithm is
proposed to directly estimate M,, from noisy measurements. The algorithm applies

to a class of problems for estimating symmetric and positive definite matrices.

Chapter 4. Decoupled Control
In this chapter, we first discuss the relationships between different decoupling
algorithms and the disturbance rejection performance of the corresponding closed-

loop systems. Then, we briefly summarize the robust stability test for several



perturbation models. Finally, we show that optimal robustness can be achieved

by choosing a unitary decoupling matrix.

Chapter 5. Optimal, Fault Tolerant Velocity and Static Force Mapping
for Prioritized Manipulation

In many applications, some DOFs in the Cartesian space (operational space) are
more important than the rest in performing a task. For example, the rotations
along the x and y axes are the major concern for a pointing task, while rotation
along the z axis and translations have almost no influence on the pointing perfor-
mance. When pointing a camera at distant objects, orientation of the camera is
more important than position. In welding, rotations about the welding rod may be
irrelevant. We call these applications prioritized manipulation. The end-effector’s
DOFs during a prioritized manipulation can be divided into major DOFs (MD-
OFs) and secondary DOFs (SDOFs). MDOFs are more important than SDOFs
in performing a task. In this chapter, we describe an approach for sacrificing the
SDOFs for some particular reasons such as avoiding obstacles in the workspace,
optimizing certain kinematic performance indices, or tolerating actuator failures,

etc.

Chapter 6. Conclusions and Future Work
We summarize the main contributions of our research, and discuss how the results

might be improved by future work.

10



Chapter 2

Decoupling the Dynamics of Flexure
Jointed Hexapods

This chapter first discusses three constraints imposed by the prior decoupling algo-
rithms [27]. Then, we introduce new decoupling methods that relax the first constraint

and remove the remaining constraints.

2.1 Constraints of the Prior Decoupling Methods

MclInroy, et al. [27] proposed two decoupling algorithms, using J” or J=! as decoupling
transformations, which can be used in the “quiet box” problem (using payload acceler-
ation, velocity, or position measurements to control the payload motion) and the “dirty
box” problem (using base force feedback to minimize the transmission of forces to the

base). However three conditions must be met in order to make the algorithms apply:
e The strut mass, damping, and stiffness matrices are scaled identities, My = ml,
B =4I, K = kI
e The payload mass-inertia matrix (°M,) found with respect to the base frame {B}

is diagonal.

11



e J7J is diagonal over the whole workspace.

The first condition is easily satisfied whenever the struts are identical in construction
(they may differ in length) which is true and desirable for many applications. But there
are some applications that require different strut properties. For instance, in some
hexapods, three struts contributing to the translating movements are identical, and the
remaining three contributing to the rotating movements are also identical. But the strut
properties are different between the two groups. In this case, M;, B, and K are only
diagonal.

The second condition is slightly more restrictive. The payload mass-inertia matrix
(BM,,), found with respect to the base frame { B}, consists of two blocks, one expressing

mass and the other expressing inertial properties of the payload,

M, = ERM,ER'
mplsxs O3x3
= (2.1)
035 SRIZR
where m, is the payload mass, and I is the inertia tensor [7] of the payload with respect
to the payload frame {P}. The upper block, m,Isys, is always diagonal. The lower
block, ERCIERT, can be diagonal if there exists three orthogonal axes of symmetry with
the payload mass distributed symmetrically about these axes. It is then diagonal if { B}
is selected to have the same orientation as these axes. This condition can be satisfied as
long as the payload is a fixed rigid body. In this dissertation, the payload is supposed

to be a fixed rigid body. This assumption is made partly to simplify the approach and

partly because all known flexure jointed hexapods satisfy this constraint. Thus this

12



condition can usually be satisfied, although finding the principal axes of a payload is
laborious, especially when the payload changes often.

The last condition is by far the most restrictive. It relies heavily on the hexapod
geometric design. Three hexapod configurations satisfying the geometry requirements
are proposed in [27]. In all of these configurations, the payload’s center of mass must
be placed in some position determined by the corresponding hexapod geometry since
the Jacobian, J, is a function of the payload’s center of mass. Thus any changes to the
payload require at least the tedious procedure of computing and adjusting the position of
the payload’s center of mass by adding or reducing some counterweights. Furthermore,
this constraint significantly limits the location of the end effector, thus eliminating many
important applications. For example, the close quarters required for dual hexapods
performing micro-manipulation tasks prohibit the mass balancing required by earlier

methods.

2.2 Decoupling the Vibration Isolation Model

The new decoupling algorithm is based on the simultaneous diagonalization of M,,, B,
and K matrices. Instead of being scaled identities, M, B and K are only required to be
diagonal matrices satisfying B = aK, where « is a nonzero scalar constant. In addition,
the remaining much more restrictive conditions are removed. The algorithm is suitable

for both the “quiet box” and “dirty box” problems.

13



2.2.1 Simultaneous Diagonalization by Similarity

First, let’s consider the case where B and K are scaled identities (B does not necessarily
equal K). This happens when all six struts of the hexapod are identical in damping and
stiffness, while they may be different in mass and length.

From (2.1), it is easily seen that #M, is symmetric. This implies that

M, = @HEM, (3T + M7

= JTBM,I '+ M,

= M, . (2.2)

Hence the joint space mass-inertia matrix M, is symmetric. Thus it can be unitarily

diagonalized using the Schur Decomposition [13]
M, = VDV” (2.3)

where V is an orthogonal matrix (VV? = VTV = 1I), and D is a diagonal matrix.
Clearly, VIM,V =D, VI'BV = B, V'KV = K are simultaneously diagonalized.
For the “quiet box” problem, the dynamic model is described by equation (1.9).

Define a new input and a new output by

i = VT'f, (2.4)
g = V. (2.5)

Then (1.9) can be written as
Djj + By + Kj = i+ VI (M,q, + B, + Kq,) + VIITTYR' 7. (2.6)

14



Note that D, B, and K matrices are diagonal. Consequently, the dynamics from # to
i are LTI decoupled, and independent SISO controls can be designed. In addition to
simplifying nominal control design, this also facilitates fault tolerant controls [25]. Based

n (2.6), SISO LTI control algorithms can be designed to suppress the base movement
(5’5, é_'s, and ¢;) and exogenous force (.7?6) influences on the payload.

For “dirty box” vibration isolation applications, base forces are typically fed back,
rather than payload positions, velocities or accelerations. Assuming the base is station-
ary or can only move over small ranges, i.e., M, and YR in (1.9) can be regarded as
constant matrices. The algorithm may be re-formulated to cover “dirty box” problems
as follows. First, substituting (1.6) into (1.9), assuming /, and G terms cancel each other

(because of small base movements), and solving for o gives
fi = M,p, — M,q, - I "YRTF, . (2.7)

Since M, and YR are constant, equations (1.9) and (2.7) are LTI. Thus Laplace trans-

forms can be taken to yield

fo = M,s*5, — Mys’q, — I TYR' 7, (2.8)
(M, +Bs +K)j, = fon+ (Mys>+Bs+K)g, + T "YR' 7, . (2.9)

Then inserting (2.8) into (2.9) and rearranging terms yields
fo = Mps®(M,s® + Bs + K) ™' fr, — Mys’G+
M, s%(M,s> + Bs + K) ' (M,s2 4+ Bs + K),+
[M,s2(M,s?> + Bs+K) ' —IJJ-TYR" 7, . (2.10)

15



Define a new input and a new output

i = VIf, (2.11)
j = V' (2.12)
where V is defined by (2.3). Then (2.10) becomes
j=Ds*(Ds’ +Bs+ K) ' — VIM,s°¢,+
Ds?(Ds? + Bs + K) VT (M,s? 4+ Bs + K)7,+
[Ds?(Ds?+Bs+K)' —I[VIJ TUR" 7, . (2.13)

Since Ds?(Ds? + Bs —i—K)f1 is a diagonal transfer function matrix, once again, the
dynamics from # to  are decoupled. SISO LTI compensators from % to % can be designed
to suppress the base acceleration and exogenous force disturbances. Note that this can
be viewed in two ways. If F, is the dominant disturbance, then the control provides
dirty box isolation. If ¢, is the dominant disturbance, then the hexapod attempts to

quiet a vibrating structure.

2.2.2 Simultaneous Diagonalization by Congruence

In some applications, the struts have different physical properties, i.e., My, B, and
K matrices are only diagonal (not necessarily identities). Thus the algorithms in sec-
tion 2.2.1 are no longer valid. However, if the B and K are symmetric and satisfy the
condition B = aK where « is a nonzero scalar constant, then M,,, B, and K matrices

can still be simultaneously diagonalized.

16



Equation (2.2) shows that M, is symmetric. In fact, M, is also positive definite.
This fact comes from the intrinsic physical properties of the M, matrix. The kinetic

energy of the payload is defined by
X M,x (2.14)

where K, is the kinetic energy of the payload, )'(' is the payload’s generalized, or spatial
velocity. Since K, > 0 for all )_(’ # 0, it can be concluded that M, is positive definite.
Since M, is positive definite and B is symmetric, there exists a nonsingular matrix
C such that C"M,C and C"BC are both diagonal [16]. Moreover, C can be calculated
as follows. First, calculate the Schur decomposition of M,,, which is given by (2.3). Since
M, is positive definite, all the diagonal entries of D are positive. Next, define a new

matrix by

B, =D :V'BVD :. (2.15)

It is obvious that B, is symmetric, thus the Schur decomposition is given by
B, = UAU” (2.16)

where U is an orthogonal matrix and A is a diagonal matrix. Finally, the simultaneous

diagonalization matrix, which is invertible, is given by
C=VD:U . (2.17)
It can be easily shown that C"M,C = I and C"BC = A. Furthermore, if B = oK,

then CTKC = iA. Thus, C simultaneously diagonalizes M,,, B, and K matrices.

17



For the “quiet box” problem, a new input and a new output are defined by

i = C'f, (2.18)
7 = C'p,. (2.19)
Then (1.9) can be written as
.1 - . )
G AT+ AT = C"ITYR'F, + C"(M,q, + B7, + Kq,) . (2.20)

The dynamics from @ to ¢ are LTI decoupled. Based on (2.20), SISO LTI control
algorithms can be designed to suppress the base movement (é’s, ('j's, and ¢;) and exogenous
force (F,) influences on the payload.

Similarly, for the “dirty box” problem, a new input and a new output are defined

C” fm (2.21)

£
I

j = C'f;. (2.22)

Then (2.10) can be written as

-1

1
7= s?(Is* + As + aA) i — CTM,s*q,+
s?(Is* + as + éA)ACT(qu2 + Bs+ K)g:+
[s°(Is* + As + LA) ' —T]CTI TYR' 7, . (2.23)
Since s%(Is* + As + éA)_1 is a diagonal transfer function matrix, once again, the dy-

namics from 4 to i are decoupled. SISO LTI compensators from @ to ¢ can be designed

to suppress the base acceleration and exogenous force disturbances.

18



2.3 Decoupling the Pointing Model

Although all the derivations are based on the pointing model given by (1.14), the results
of this section can be easily extended to other models in which only part of all six DOF's
in the Cartesian space are concerned.

Meclnroy et al. [25] proposed a decoupling algorithm for the pointing model based

on the Jacobian matrix. The decoupling transformation is defined by

fro=1 . (2.24)

0 0

Substituting (2.24) into (1.14), it is easy to show that the dynamics from @ to ¥, are
decoupled. However, the same three conditions in Section 2.1 must be met in order to
make this algorithm apply.

The new decoupling algorithm only requires that M,, B, and K be symmetric

matrices satisfying B = oK. First, rewrite (1.14) as

100000 .
X (I™,3s* +I"BIs +IJ"KJI)"'I7 f,,.. (2.25)

010000

=
S
I

Since M, is positive definite, and J is invertible, J*M,J is positive definite. More-

over, J'BJ and J'KJ are symmetric with J'BJ = oJ"KJ. Thus J'M,J, J*BJ and
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JTKJ can be simultaneously diagonalized by congruence (for the same reason as in

Section 2.2.2), i.e., we can find an invertible matrix C such that

J’M,J = cc’ (2.26)

J'BJ = CAC” (2.27)
1

J'KI = aCACT. (2.28)

Substituting equations (2.26,2.27,2.28) into (2.25), we get

100000 1 .
Xa = CTIs®+As+—A)'C I f,. (2.29)
(0%

010000

Clearly, D(s) = (Is> + As 4+ ~A)~! is a diagonal transfer function matrix. Let D(s) =

dia’g[dl(s)’ T d6(s)]? C'= [61: T gﬁ]a then

e B
Xo = D(s)C'IT f,,. (2.30)
_q_'
Co
a
Let be partitioned as [C;C,] where C is a 2 X 2 matrix. If C; is invertible,
&
we can define
Xa = Ciyf (2.31)
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10
01
- 00
fm = J7C . (2.32)
00
00
00
Substituting it into (2.30) gives
10
01
00
= c;l[c1 CZ]D(s)c—lJTJ—TC il
00
00
00
dl(S) 0
= . (2.33)
0 dQ(S)

It is clear that the dynamics from 4 to ¢ are decoupled.

2.4 Experimental Results

The decoupling algorithms have been experimentally verified on one of the UW’s mutu-
ally orthogonal hexapods. The mechanical parts of the hexapod are all custom machined

based on a NASA Jet Propulsion Laboratory design. All six struts are identical. A 200
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MHz Gateway 2000 Pentium II computer running the QNX real time operating sys-
tem sends commands through Computers Boards 16 bit DAC converters to Techron
linear current amplifiers. These power BEI voice coil actuators provide base forces ( f;)
measured by PCB quartz force rings mounted on the bottom end of each strut. The
payload accelerations along the strut directions () are measured by KISTLER-BEAM
accelerometers mounted on the top of the spherical joints connecting the payload. The
force and acceleration signals are sampled by the control computer’s 16 bit analog to
digital converters at a rate of 5kHz. Each strut has a maximum stroke of + .025 inches.

The performance of the new algorithm in Section 2.2.1 is compared to that obtained

using the algorithm in [27]. In [27], a new input and a new output are defined as

i = J'f, (2.34)

j =3 (2.35)

Bode magnitude plots from wu; (input of channel 5) to % (all six channels) are shown in
Figure 2.1.

Using the M, matrix calculated from the design parameters of the hexapod, a new
input and a new output are defined using (2.4) and (2.5). Bode magnitude plots from
us to ¢ are shown in Figure 2.2.

Finally using the identified joint space mass-inertia matrix ( where the identification
algorithm used is that discussed in Chapter 3), Mp, a new input and a new output are

found from (2.4) and (2.5). Bode magnitude plots from us to ¢ are shown in Figure 2.3.
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20

Frequency [Hz]

Figure 2.1: Using J7 as decoupling matrix. The payload’s center of mass does not
coincide with the center of the cube formed by six orthogonal struts. Bode magnitude
plot and coherence from us to 4. ys is denoted by ”+” signs.
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Figure 2.2: Using VT as decoupling matrix (V7 is calculated from M,). The payload’s
center of mass does not coincide with the center of the cube formed by six orthogonal
struts. Bode magnitude plot and coherence from us to ¥. y5 is denoted by ”+” signs.
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Figure 2.3: Using V7 as decoupling matrix (V7 is calculated from M,). The payload’s
center of mass does not coincide with the center of the cube formed by six orthogonal
struts. Bode magnitude plot and coherence from us to ¥. ys is denoted by ”+” signs.

In the experiments, the counterweight placed on the payload is removed. Thus
the payload’s center of mass doesn’t coincide with the center of the cube formed by
the orthogonal struts. This explains the results in Figure 2.1. We can see that using
decoupling transformations (2.34) and (2.35), there are still strong couplings among all
six channels. The input channel (channel 5) is difficult to distinguish from the others.
However, using the calculated My matrix and the new decoupling transform (2.4) and
(2.5), channel 5 is 3 times (10 dB) stronger (Figure 2.2). When the estimated joint
space mass-inertia matrix M, and the new decoupling transform (2.4) and (2.5) are
used, channel 5 is almost 10 times (20dB) stronger across nearly all frequencies (in
Figure 2.3). In addition, in all three experiments, the transfer function estimate for

channel 5 displays much more coherence than the other channels. Moreover, among
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the transfer function estimates for channel 5, the estimated transfer function using the
identified decoupling matrix shows the best coherence.

Using the same experimental setup, the decoupling algorithm for the pointing model
is also verified. The results using the old method (2.24) are shown in Figure 2.4. As we

can see, there are strong couplings between two channels.

60

40~

20

Magnitude [dB]

Coherence

Frequency [Hz]

Figure 2.4: Using the first two columns of J as decoupling matrix. The payload’s center
of mass does not coincide with the center of the cube formed by six orthogonal struts.
Bode magnitude plot and coherence from u; to #. y; is denoted by ”+” signs.

The results of the new decoupling algorithms given by (2.31) and (2.32) are shown
in Figure 2.5. There is an average of 20dB of difference between two channels in the

frequency range [1, 20]Hz which is the range that the pointing control system is expected

to work in.
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Figure 2.5: Using new decoupling matrix. The payload’s center of mass does not coincide
with the center of the cube formed by six orthogonal struts. Bode magnitude plot and
coherence from u; to 3. y; is denoted by ”+” signs.

26



Chapter 3

Estimation of Symmetric, Positive
Definite Matrices from Imperfect
Measurements

In a number of contexts relevant to control problems, including estimation of robot
dynamics, covariance, and smart structure mass and stiffness matrices, we need to solve
an over-determined set of linear equations AX ~ B with the constraint that the matrix
X be symmetric and positive definite. In the classical least squares method the measure-
ments of A are assumed to be free of error, hence, all errors are confined to B. Thus,
the “optimal” solution is given by minimizing the optimization criterion [|[AX — BJ|J4.
However, this assumption is often impractical. Sampling errors, modeling errors, and,
sometimes, human errors bring inaccuracies to A. In this chapter, we introduce a differ-
ent optimization criterion, based on area, which takes the errors in both A and B into
consideration. Under the condition that the data matrices A and B are full rank, which
in practice is easy to satisfy, the analytic expression of the global optimizer is derived. A
method to handle the case that A is full rank and B loses rank is also discussed. Exper-

imental results indicate that the new approach is practical and improves performance of
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estimating symmetric and positive definite matrices.

3.1 Related Work

Estimation of symmetric positive definite matrices is required when solving a variety
of control problems including robotic control, smart structure control, and intelligent
control. In robotics, the mass-inertia matrix of a robotic system is in the symmetric
positive definite class, and the accuracy of its estimate directly affects control perfor-
mance [38][33][6]. Similarly, controlling vibrations and precise positions of “smart” struc-
tures often requires estimation of the structure’s mass and stiffness matrices [28] [30];
both are symmetric and positive definite. In intelligent control, control decisions are
often made based on estimation of a covariance matrix [35|[24][17], which is, of course,
symmetric and positive definite. Estimation of symmetric positive definite matrices also
appears, to a lesser extent, in fields outside control including the educational testing [9]
and matrix modification problems [10]. Most of the above examples can be formulated

directly or indirectly into finding an optimal solution of a set of linear equations

AX ~B (3.1)

where A, B € R™*" are given, X € P is the fitting matrix, IP is the set of symmetric and
positive definite matrices with size n X n. For example, the estimation of the joint space
mass-inertia matrix of a flexure jointed hexapod (Stewart Platform) [6] and stiffness
matrix directly fit into (3.1). The covariance matrix estimation problem and the matrix

modification problem (with symmetric positive definite constraint) can be regarded as
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extracting a symmetric positive definite matrix (C*) from a symmetric but indefinite
matrix (C). Thus it can be formulated as solving CX ~ I where X € P, I being the
identity matrix of size n x n. The “optimal” (under certain criterion) C* is given by
Cr=X"1

There is a rich resource of prior work on this type of problem. Space limitations do
not allow us to present a broad survey. Instead we try to emphasize some of the work
that is most related to our work. Higham [14] and Brock [3] find an optimal symmetric
estimate using the least squares approach (Symmetric Procrustes Problem). Although
the positive definite constraint is not considered in their methods, Higham shows that
the estimate will be positive definite (semi-definite) if the data matrix ATB + BTA
is positive definite (semi-definite). If A”B + BT A is indefinite, then nothing can be
concluded about the definiteness of the estimate. Hu [18] presents a least squares based
method to handle the positive definite constraint. In his method, the upper and lower
bounds for each entry of the fitting matrix must be given explicitly as the constraint.
A non-negative scalar is also introduced as a constraint, which measures the degree of
positive definiteness. Using the least squares criterion, ||[AX — B||%, the problem can
also be cast as a semi-definite program [41] by specifying lower (and/or upper) bounds
of the eigenvalues of X.

Nevertheless, in many applications, there is a question of the suitability of the least
squares criterion ||[AX — BJ|%. In the classical least squares approach, the measure-
ments A are supposed to be free of error, hence, all errors are restricted to B. However,

this assumption is frequently impractical. Sampling errors, modeling errors, and, some-
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times, human errors bring inaccuracies to A. For example, in the estimation of a flexure
jointed hexapod’s joint space mass-inertia matrix [6], A and B contain the measure-
ments of payload accelerations and base forces, respectively. As a result, sampling and
instrument noise appear in both A and B. Similar phenomena happen in identifying a
robot dynamic model [20]. Thus, it is natural for one to expect improved performance
by employing a criterion that is capable of describing the errors occurring in both mea-
surement matrices, rather than using the least squares criterion in which only the errors
in B are considered.

In this chapter, we present a new method of solving an over-determined set of linear
equations (3.1) with X being symmetric positive definite, and both A and B containing

errors.

3.2 Problem Formulation

A simple example will be more intuitive than a complex one for illustrating and un-
derstanding the motivation for the new optimization criterion. So let’s consider the
following problem with only one variable: estimating a single parameter from a set of
over-determined equations

ar ~ b

where @ = [a1, a9, -, am|’, b = [by, b, -, bn]" € R™ are known data vectors with
@@ > 0 and b7b > 0, x € R is the variable to be estimated. Using the classical least

—

squares approach, the solution is the minimizer of the optimization criterion (5 —az)" (b—
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[o]

0 1 a; a

Figure 3.1: Geometric interpretations of one parameter estimation using the least
squares, the total least squares, and the new approaches.

az) or equivalently > | (b; — a;2)%. Geometrically, as shown in Figure 3.1, this criterion
is the summation of the squared vertical “errors” (the distance from a data point (a;, b;)
to the fitting line along the direction of the b axis). This criterion is reasonable if the
errors only occur in the data vector g, because we are making predictions based on @
that is free of error. If the errors are confined to d@, and b is free of error, the least squares
b

approach is still appropriate, because we can minimize (& — 2)7(d — g) or equivalently

Sty (a; — %)%, which will give the estimate of £. As shown in Figure 3.1, this time, the

least squares solution minimizes the summation of the squared horizontal “errors” (the

distance from a data point to the fitting line along the direction of the a axis).
However, in many applications, both @ and b are measurements containing errors.

Under this scenario, a more appropriate approach of fitting is the total least squares

method [40] (termed orthogonal regression or errors-in-variables regression in the statisti-
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cal literature). For the above single parameter estimation problem, the total least squares

(bi—a;z)?
(1+z%)

solution minimizes Y *, , which, as shown in Figure 3.1, is the summation of the

squared minimum “errors” (the minimum distance from a data point to the fitting line).

(bi—aiz)? _ (bi—aiz)*(a;i—2)>
(1+z?) (bi—a;z)2+(a;—24)2’

From the properties of the right triangle we can easily derive
i.e., the minimum “error” contains the information of both the vertical “error” and the
horizontal “error”.

Motivated by the above geometric interpretations of the least squares and the to-
tal least squares methods, we introduce a new optimization criterion, the area crite-
rion, which is defined as the summation of the areas of the “error rectangles”, i.e.,
S b — aiz|la; — %|. As shown in Figure 3.1, the ith “error rectangle” is constructed
by the ith vertical and ith horizontal “errors”. Considering the symmetric and posi-
tive definite constraints (in this example, it implies z > 0), the area criterion can be

equivalently written as

m

3 b; Zm b;
=1 |bz - ail‘| " ; - =1 (aix - bZ) <a/i - ;>
. b
= (ay" —b) (a - ?>
(12
. b
= ay — —
Y 2

where y € R, y # 0, z = yy’ = ¢2

Note that we have transformed the positive
constraint on z to the invertible constraint on y.
Now let’s consider the original problem given by (3.1). The area criterion is then

extended as Tr[(AX — B)T(A — BX™')] where AX — B represents the errors in B

from the predictions based on A, and A — BX ™! represents the errors in A from the

32



predictions based on B. Using the properties of matrix calculus and the well known fact
that X = YY? for any X € P, where Y € I and I is the set of real invertible matrices,
the above extended area criterion can be equivalently written as ||[AY —BY ~T||2. Thus,

we can define an optimization problem as follows.

Definition 3.1 (Symmetric Positive Definite Estimation problem, SPDE) For an over-
determined set of m linear equations AX ~ B, where A,B € R™" are given, X € P is

the fitting matriz, let the area criterion, f : 1 — R, be defined as
f(Y) =AY -BY 7|5 (3.2)

with || - || being the Frobenius norm of a real matriz. The SPDE problem seeks to

manimaize the area criterion on I. The symmetric positive definite estimate X* is given

by X* = Y*Y*T where Y* is a minimizer of (3.2).

3.3 Finding the Optimizer

To simplify derivations, we introduce two optimization criteria which differ from (3.2)

by only a constant.

Lemma 3.2 Let g: 1 — R and h : P — R be defined by

gY) = Tr(Y'PY+Y'QY ™), (3.3)

h(X) = Tr(PX+X7'Q) (3.4)
where P = ATA and Q = BTB. Then minimizing f(Y) on I, minimizing g(Y) on I,
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and minimizing h(X) on P are equivalent, i.e., Y* € 1 minimizes f(Y) if and only if

Y* minimizes g(Y) if and only if X* = Y*Y*T € P minimizes h(X).
Proof: From the identities in matrix calculus, we have
fY)=g(Y) - 2Tr(A'B) = h(X) — 2Tr(ATB) (3.5)

where X = YYT. O

In the following two theorems, we assume that Rank(A) = Rank(B) = n, i.e.,
P,Q € P. This assumption is easy to satisfy in most applications. At the end of this
section, we show that with only minor modification the results can be easily extended
to the case that A is full rank and B loses rank.

Lemma 3.2 implies that it is sufficient to derive the normal equation for one of the
optimization criteria (f(Y), g(Y), or h(X)). We derive the normal equation for g(Y)

as follows.

Theorem 3.3 Let g(Y) be defined by (3.3). If Y* is a minimizer of g(Y), then it
satisfies

Y'Y'PY'YT = Q. (3.6)
Proof: Let ¢’ : X x X — R be defined as
' _ T T
J(Y,Z) = Te(YTPY + ZQZ")

where X is the set of real n x n matrices. Then minimizing g(Y) on I is equivalent to
minimizing ¢'(Y,Z) on Xx X with the constraint YZ = I where I € R"*" is the identity

matrix.
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Let Y, Z, \ S X, Y = [:ljl, gg, ey, ,g'n]T’ and Z = [51, 52, ey, En] Let yij, Zij, and Qﬁij
be the ijth entries of Y, Z, and W, respectively. The Lagrangian, L : X x X X X — R,

associated with the constraint YZ =1 is defined as
L(Y,Z, %) =Tr[Y'PY + ZQZ" + ¥(YZ - 1)].

Setting the partial derivatives of L with respect to y;;, 2i;, and 1);; to 0’s for all 1 <

1,7 < n gives,

2Y'P+Z¥ = o0, (3.7)
2QZ" + Y = 0, (3.8)
YZ = L (3.9)

Solving (3.7-3.9) for Y gives (3.6). O

Theorem 3.3 and Lemma 3.2 imply two facts:

1. Any symmetric and positive definite estimate, X*, of the SPDE problem must
satisfy

X*PX* = Q (3.10)

where X* = Y*Y*7 Y* is a solution of (3.6).
2. Any minimizer for (3.4) must also satisfy (3.10).

However, we still need to show that the solutions (or a solution) of (3.6) minimize(s)
(3.3). From Lemma 3.2 and the above facts, this is equivalent to verifying that the
solutions (or a solution) of (3.10) minimize(s) (3.4), which is proven in the following

theorem.

35



Theorem 3.4 The unique minimizer of (3.4), which is the unique solution of (3.10),

s given by

X" =UpEp'UgZqUiEs Up
where

P = UpXiUj,

Q = ZpULQUpZp = UQEgUg

are the Schur decomposition of P and Q respectively, and

S = diagly/Ap /X3, VB
Yq = diag[\/)\T,\/)\T,"', Xé]

where \s’s and )\g s are eigenvalues of P and Q, respectively.

Proof: Substituting (3.12) into (3.10) gives

X*UpXpULUpEpULX* = Q.

(3.11)

(3.12)

(3.13)

(3.14)

Left multiplying both sides of (3.14) by ¥pUp, right multiplying both sides of (3.14)

by UpXp, substituting (3.13) into (3.14), and collecting terms, we have

(ZpUpX*'UpZp)’ = (UQEQUE)Q.

It is clear that (UQEQUE)2 € P,and X* € Piff ZpULX*UpXp € P. Since a symmetric

positive definite matrix has a unique symmetric positive definite square root, we have

TpUpX UpEp = UgEaUyg.
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Solving (3.15) gives (3.11).
Next we will show that the X* given by (3.11) minimizes h(X). Let the Schur
decomposition of X € P be

X = UxZ5U% (3.16)

where x = diag[\/Ax, VA%, -+, v/ Ak]| with A% being the ith eigenvalue of X. Equa-

tion (3.13) can be written as
Q =UpZ;'UgZqUqsUgEqUgEs Up. (3.17)
Substituting equations (3.12,3.16,3.17) into (3.4), we have

WX) = Tr(UpEZpUpUxExUx + UpEp' UgEqUaUg B Ug B5 Up Ux 23 Uy)
= Tr[(ZpUpUxEx)(ExUxUprZe) + (UgZqU T UpUx %)
(ZX'UxUpE3'UgZqUQ)]
= Tr[(ZpUpUxZx — UgEqUgsE5 ' UpUx B (ZpUp Ux Ex —
UQEQUEE;U{,UXE;J)T +ZpUpUxEx Ty Ux UpEp' Ug Zg Ug +
UgZqUga e UpUxEy ' Ex U UpEp]

= |ZpUpUxEx — UgZgUqaSs ' UpUxEx ' [I7 + 2 Tr(Zg). (3.18)
It is clear that h(X) achieves the global minimum when
TpUpUxEx = UgSqUgsEp UpUx Sy, (3.19)

and X* is the only solution to (3.19). O
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Corollary 3.5 The symmetric positive definite estimate, X*, of the SPDE problem is

given by equation (3.11). The minimum of the area criterion, f(Y), is 2Tr(Xg— A'B).
Proof: It follows directly from the Definition 3.1 and equations (3.5,3.18). O

Remark 3.6 Actually, the set of linear equations (3.1) to be solved need not be over-
determined. All the above results still hold when m = n provided that Rank(A) =

Rank(B) = n.

Remark 3.7 Theorem 3.4 says that h(X) has a unique minimizer on P. But the mini-
mizers of f(Y) or g(Y) on I are not unique. In fact, it is easy to show that if Y* € I
is a minimizer of f(Y) or g(Y) then Y*U is also a minimizer of f(Y) and g(Y) for
any orthonormal matriz U. Thus f(Y) and g(Y) have infinitely many minimizers on
I. Moreover, all these minimizers are related to the unique minimizer, X*, of h(X) on
P by Y*Y*T = X*. Consequently, the symmetric positive definite estimate of the SPDE

problem is unique.

In the above discussions the data matrices A and B are assumed to be full rank.
If either A or B lose rank, the method described above can’t produce a symmetric
positive definite optimizer. However, if B loses rank and A remains full rank, i.e.,
P € P and Q € P (the set of symmetric positive semi-definite matrices), we can still find
a positive semi-definite optimizer provided that h(X) is optimized on @Rank(Q) (the set
of symmetric positive semi-definite matrices with rank equal to the rank of Q), and X!
in h(X) is replaced by X (Moore-Penrose pseudo-inverse of X). The result is given as

follows.

38



Corollary 3.8 If P € P, Q € P, Rank(Q) = 1, then the X* € P, given by equation
(8.11) minimizes the optimality criterion h(X) = Tr(PX +X*Q). The global minimum

of h(X) on P, equals 2Tr(Xq).

Proof: The proof is similar to that of Theorem 3.4. O

3.4 Numerical Results

In this section, two numerical examples of estimating symmetric positive definite ma-
trices are given. The least squares (LS) estimates [14] and the estimates using the new
(SPDE) method are compared.

The first example is the identification of the joint space mass-inertia matrix, M,,
of a University of Wyoming (UW) flexure jointed hexapod [6]. In the vibration isola-
tion control of the flexure jointed hexapod, the performance depends critically on the
precision of the decoupling matrix which is calculated from the joint space mass-inertia
matrix of the hexapod. Although M, can be calculated from the design parameters of
the hexapod, it is laborious to do so and can introduce errors due to manufacturing
variances and payload changes. Thus a better approach is to estimate M, from the
measured payload accelerations and base forces.

The relationship between payload accelerations and base forces is described as
AM, ~ B! where A contains the payload accelerations, B contains the base forces, and

there are sampling and instrument noise in both A and B. The matrix data given below

!Here we assume the base is kept stationary and there are no exogenous generalized forces exerted
on the payload when doing the identification experiment. These constraints can be easily satisfied.
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is calculated from the real design parameters of the UW’s flexure jointed hexapod.

4.688  0.198 —0.404 1.798 —-0.405 0.611
0.198 4.688 0.611 —0.405 1.798 —0.404
—0.404 0.611 4.688  0.198 —0.404 1.798
1.798 —-0.405 0.198 4.688  0.611 —0.404

—-0.405 1.798 —-0.404 0.611 4.688  0.198

0.611 —-0.404 1.798 —-0.404 0.198  4.688

Six PCB load cells measure force and six Kistler accelerometers measure acceleration
to provide the data. For both methods, 100 experiments were performed and the absolute
mean and the standard deviation of the estimation errors for 21 independent parameters
(since M is a 6 x 6 symmetric matrix) are shown in Figure 3.2. Compared with the LS
method, the SPDE method provides more precise estimates for all 21 parameters.

In the second numerical example, we are trying to estimate a 2x2 symmetric positive
definite matrix, X, from a set of linear equations (A+V,)X ~ B+V, where A+V, and
B + V,, are noise-corrupted data matrices,V, contains normal distributed noises with 0
mean and standard deviation STD{v,} = 1, V,, contains normal distributed noises with

0 mean and standard deviation, STD{v,}, varying from 0 to 1.9 in the experiments,
T T

3 1 o =3 1 -1 17 -8 1 =2
X:[ﬁﬂz]]: ,A: ,B: . At

11 2 1 -2 1 7 -2 -1 0

each value of STD{wv,}, the absolute mean and the standard deviation of the estimation
errors for z11, 12, and x9, are calculated for both methods based on 1000 experiments.
As shown in Figure 3.3, the SPDE method outperforms the LS method significantly

at large values of STD{v,}. This is reasonable because the area criterion includes the
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Figure 3.2: Comparison of .S and SPDE methods: absolute mean and standard devi-
ation of the estimation errors of M,,’s entries. Mean{} and STD{} stand for the mean
and the standard deviation, respectively.

information of both V;, and V, while the least squares criterion only considers V. For
the same reason, we can’t expect performance improvements when STD{v,} equals 0 or

is much smaller than STD{wv,}, which is also verified by Figure 3.3.
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Chapter 4

Decoupled Control

In this chapter, we first discuss the relationships between different decoupling al-
gorithms and the disturbance rejection performance of the closed-loop systems. Then
the robustness of the system with respect to several perturbation models is briefly pre-
sented. Finally, we show that optimal robustness can be achieved by choosing a unitary

decoupling matrix.

4.1 Decoupling and Disturbance Rejection

One of the most important goals of feedback control is disturbance rejection. The
diagram of a general closed-loop control system is shown in Figure 4.1. P(s) is the
plant transfer function matrix, K(s) is the controller, 7 is the command signal, @ is the
controller output, J, is the plant input disturbance, i, is the plant input control signal,
d is the plant output disturbance, ¥ is the plant output, 7 is sensor noise. Note that in
this chapter we assume that P(s) is a square transfer function matrix, i.e., the number
of inputs of the plant equals the number of outputs of the plant.

Based on Figure 4.1, we make the following definitions,
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Figure 4.1: A general closed-loop system.

Input loop transfer matrix

Output loop transfer matrix

Input sensitivity matrix

Si(s) = [T+ La(s)]
Output sensitivity matrix

So(s) = [T+ Lo(s)] ",

Input complementary sensitivity matrix

To(s) =T —S,(s) = L,(s) [T+ Lo(s)] -
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If the closed-loop system given by Figure 4.1 is internally stable !, then it satisfies

7 = To(s)(F =) + So(s)P(s)d; + So(s)d (4.7)

= S,(s)K(s)(7 — 71) — Si(s)K(s)d + Si(s)d;. (4.8)

It can be shown [46] that good disturbance rejection at the plant output ¢ and the plant
input 1, for plant input disturbance J; and plant output disturbance d require in some

frequency range, typically some low-frequency I; = (0, w;),

o[Lo(jw)] > 1 (4.9)
olLi(jw)] > 1 (4.10)
oK(jw)] > 1 (4.11)

for allw € Ij, where g[A] represents the minimum singular value of matrix A. Good sen-
sor noise (77) rejection at the plant output and the plant input require in some frequency

range Ih = (wha OO),

o[Lo(jw)] < 1 (4.12)
o[Li(jw)] < 1 (4.13)
sK(jw)] < b (4.14)

for all w € I, where G[A] represents the maximum singular value of matrix A, and b is

some positive real number. In addition, o[L,(jw)] and &[L,(jw)] correspond to distur-

!Internal stability [46] is a basic requirement for a practical feedback system. It guarantees that all
signals in a system are bounded if the input signals, at all locations, are bounded.
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bance rejection performance at the plant output, o|L;(jw)] and &[L;(jw)] correspond to
disturbance rejection performance at the plant input.

For a single-input single-output (SISO) plant, P(s) is a scalar system. It is clear that
L,(s) = P(s)K(s) = K(s)P(s) = L;(s). Thus good disturbance rejection at plant input
implies good disturbance rejection at plant output, and vice versa. For multiple-input
multiple-output (MIMO) plants, however, P(s) and K(s) in general are not commutable
in multiplication. Thus, in general, o[L,(jw)] # ¢[L;(jw)] and &[L,(jw)] # &[L;(jw)].
As a result, good disturbance rejection at plant output (input) doesn’t imply good
disturbance rejection at plant input (output). The following theorem gives a class of

plants that are symmetric in disturbance rejection performance.

O~ 4
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Figure 4.2: A general decoupled control system.

Theorem 4.1 Consider the closed-loop system given by Figure 4.2. Let K(s) be a di-
agonal transfer function matriz. If there exists invertible matrices D1, Dy € C**™ such
that D1P(s)Dy = A(s) is diagonal and D1Dy = D is diagonal, then the disturbance re-
jection performance of the closed-loop system at the plant output i is the same as that at
the plant input 4, for plant input disturbance J;, plant output disturbance cf, and sensor

noise 1.
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Proof: In Figure 4.2, the controller, K'(s), of the closed-loop system is defined as
K'(s) = DoK(s)D;. (4.15)
Thus from (4.1) and (4.2), the input and output loop transfer matrices are

Li(s) = K'(s)P(s) = DyK(s)D;P(s), (4.16)

L,(s) = P(s)K'(s) = P(s)D.K(s)D;. (4.17)
It is sufficient to show that L,(s) = L;(s) which are derived as follows

DlLi(S)DQ = DlDzK(S)Dlp(S)DQ

= DK(s)A(s), (4.18)

= A(s)K(s)D. (4.19)

It is clear that L,(s) = L;(s) because D, K(s), and A(s) are diagonal. O

4.2 Decoupling and Robustness

In most control systems, the controller is designed based on the model of the plant. The
quality of the model depends on how well its response matches that of the real plant.
However, for almost all practical systems, no single fixed model can respond exactly the
same as the true plant. One way to mitigate this discrepancy is to use a set of models
to describe a given plant. Consequently, it is desirable that the controller could do its

job for all models in the model set, i.e. the closed-loop system is robust.
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Figure 4.3: A general closed-loop system with model perturbation.

Consider the closed-loop system in Figure 4.3. & is an uncertainty model set.

P(s) € S is the nominal design model. K(s) is the controller. We define
e Nominal Stability: K(s) internally stabilizes P(s).
e Robust Stability: K(s) internally stabilizes every plant in S.

Different types of uncertainty can be characterized by different perturbed model

sets. Here we focus on the following four commonly used uncertainty models sets
1
S = {[I + Wi(s)A(s)Wo(s)|P(s) : A € RH, ||Al|oo < ;,'y > O} . (4.20)
1
S = {P(s) T+ W;i(s)A(s)Ws(s)] : A € RHy, ||A|lo0 < ;,'y > 0} . (4.21)
1
Sy = {[I +W1($)A(8)W2(8)]_1 P(s): A € RHy, ||Alle < ;,’y > O} , (4.22)
1
Sy = {P(s) [I+Wi(s)A(s)Wa(s)] ' : A € RHoo, | Alloo < ;,7 > O} (4.23)

where R H , is the set of all proper real rational stable transfer function matrices, Wi (s)

and Wy(s) € RH, are weighting matrices. It is important to note that

e S represents output sensor errors, high frequency unmodeled dynamics, and right-

half plane (rhp) zeros,
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e S, represents input actuator errors, high frequency unmodeled dynamics, and rhp

Zeros,

e S; represents low frequency parameter errors and rhp poles,

e S, represents low frequency parameter errors and rhp poles.

From the Small Gain Theorem [46], the robust stability tests for S;-S, are derived as

[Wa(s)To(s)Wi(s)llo < 7 (4.24)
[W3(s)Ti(s)Wils)llo < 7 (4.25)
[W2(s)So(s)Wi(s)[leo < 7 (4.26)
[W2(s)Si(s) Wi(s)lle < 7 (4.27)

For SISO plants, T;(s) = To(s), and S;(s) = S,(s). Thus the closed-loop system
has robust stability with respect to S; (S3) iff it has robust stability with respect to S,
(S4). But for general MIMO plants, this nice property doesn’t hold. However, there
are a class of MIMO plants for which the closed-loop system can be designed to be

symmetric in robust stability.
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Figure 4.4: A general decoupled control system with model perturbation.

49



Theorem 4.2 Consider the closed-loop system given by Figure 4.4. Let K(s) be a di-

agonal transfer function matriz. If there exists invertible matrices D1, Dy € C**™ such

that D1P(s)Dy = A(s) is diagonal and DDy = D is diagonal, then

e the closed-loop system is robustly stable for SN (S1US,) if and only if it is robustly

stable for SNS; or SN Sy

e the closed-loop system is robustly stable for SN (S3USy) if and only if it is robustly

stable for SNS3 or SN S,

Proof: In the proof of Theorem 4.1, we have shown that L,(s) = L;(s). Together with

(4.3), (4.4), (4.5), and (4.6), we have

As a result,

[Wa(s)To(s)Wi(s)lloo <7 = [[Wa(s)Ti(s)Wi(s)lloo <7

[W2(5)So(s)Wi(s)lleo <7 <= [[W2(s)Si(s)Wi(s)[lec <17

This completes the proof. O

20

(4.28)

(4.29)

(4.30)

(4.31)



4.3 Unitary Decoupling and Optimal Robust Con-

troller

The Small Gain Theorem tells us that the smaller the value of ||[W,T,(s)Wi(s)||« the
larger the permissible ||A||, for uncertainty model set S;, i.e., the more robust the
system is to S;.

For the closed-loop system shown in Figure 4.3, we call \;[P(s)K(s)],i =1,---,n
the open-loop characteristic functions which are the eigenfunctions of P(s)K(s). A;i(s)’s
describe the dynamic performance of the closed-loop system, and are therefore impor-
tant design parameters. Zhang [45] proved that for the closed-loop system shown in
Figure 4.3, among all the controllers that satisfy the given open-loop characteristic
functions, ||[W3T,(s)Wi(s)||e achieves minimum if P(s)K(s) is normal 2 where S = S,
W (s) is diagonal, Wy(s) = L.

Based on the above property, the following theorem describes the relationship be-

tween decoupling transformations and the optimal robust controller.

Theorem 4.3 Consider the closed-loop system given by Figure 4.3 where § = &;.
Ai(s),i = 1,---,n are given open-loop characteristic functions. Define the set of fea-
sible controllers as K = {K(s) : Ni[P(s)K(s)] = \i(s),i =1,---,n}. If there exists a
controller K'(s) = DoK4(s)D; € K, where Dy, Dy € C™™ are invertible matrices,

Ky(s) € RH, is diagonal, such that D1P(s)Dy = A(s) is diagonal, D, = D;' = DY

2A matrix A is normal if and only if A¥ A = AA¥, where H denotes the conjugate transpose.
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then

in W1 (s)P(s)K(s) [T+ P()K(s)] " lloo = [W1(s)P(s)K'(s) [+ P()K'(5)] " lloe

(4.32)
where the weighting matric W1(s) € RH is diagonal.
Proof: It is sufficient to show that P(s)DyK,(s)D; is normal.
Since
D,Df =1 (4.33)
D,P(s)D;K4(s)D;D; = D;P(s)D,K,(s)D;D¥
= A(s)Kq(s) (4.34)

P(s)DyK,(s)D; is unitarily diagonalized, thus is normal. O

Remark 4.4 Theorem 4.3 tells us that if we can find a unitary constant transforma-
tion matriz to decouple the plant, and use SISO techniques to design the compensator
(D1P(s)Dy and K4(s) are diagonal) so that the performance is satisfied (in terms of
open-loop characteristic functions), then the closed-loop system also has the best robust-
ness with respect to uncertainty model set Sy (and from Theorem 4.2, Ss) compared with

all the other controllers that generate the same open-loop characteristic functions.
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Chapter 5

Optimal, Fault-Tolerant Velocity
and Static Force Mapping for
Prioritized Manipulation

From a kinematic viewpoint, a manipulator is redundant if the number of joints
is greater than the number of degrees of freedom (DOFs) of its end-effector. This
extra freedom offers many advantages over conventional nonredundant manipulators
including kinematic singularity avoidance, fault tolerance, workspace obstacle avoidance,
energy (joint torque) minimization, joint limit avoidance, and dexterity improvement [2],
[4],15],[15],[19], [23],[22],[34], [44], etc.

In all the references listed above and most of the other previous work on redundant
manipulators, the redundancy comes from the joint space (redundant joints). However,
in many applications the redundancy can also occur in Cartesian space (operational
space) [31]. For example, in welding, rotations about the welding rod may be irrelevant.
Similarly, when pointing a camera at distant objects, orientation is more important than
position. Thus the DOFs related to orientation (for welding) or position (for pointing a

camera) can be viewed as redundant in the sense that they can be sacrificed for some par-
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ticular reasons such as avoiding obstacles in the workspace, optimizing certain kinematic
performance indices, or tolerating actuator failures, etc. We call these manipulations
prioritized manipulations. Since prioritized manipulations may be performed either by
kinematically redundant or “ordinary” manipulators, the theory developed here is ap-
plicable to both. A manipulator performing prioritized manipulation tasks is called a
prioritized manipulator. The end-effector’s DOF's during a prioritized manipulation can
be divided into major DOFs (MDOFs), which are more important in performing a task,
and secondary DOFs (SDOFs), which are less important in performing a task. Explicit
treatment of these redundancies is important because different motions along the SDOF's
may require significantly larger joint velocity or torque. In general, both MDOFs and
SDOFs can be a mixture of position and orientation.

Motivated by the optimal fault-tolerant pointing application of a Stewart platform
([21],[25]), this work focuses on the optimal fault-tolerant velocity and static force map-
ping for prioritized manipulations. The main goal is to find velocity and static force
mappings that optimize different performance indices, satisfy certain constraints, and
can handle actuator failures. Two kinds of common actuator failures (position failure
and torque failure) are considered. The position failure acts as if the actuator is locked.
The torque failure occurs when the actuator can’t provide any torque actively. The
problem is solved in two steps: constructing the differential kinematics and static force
model (with or without actuator failures) followed by finding the optimal mappings for
the given differential kinematics and static force model.

The remainder of this chapter is organized as follows. In Section 5.1, we first summa-
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rize the differential kinematics and static force model of a prioritized manipulation based
on Wen and Wilfinger’s work ([43],[42]). Then we develop a reconfiguration method to
treat the position and torque failures. Section 5.2 derives the optimal velocity and static
force mappings based on several performance indices. Section 5.3 uses a simple example

to illustrate the techniques of Section 5.1 and 5.2.

5.1 Differential Kinematics and Static Force Model

A prioritized manipulation can be performed by a serial robot, a parallel robot, or in a
more general sense a constrained rigid multibody system (including a multi-finger hand,
multiple cooperative robots, and Stewart platform). Any of these manipulators may also
be kinematically redundant. In Section 5.1.1 the differential kinematics and static force
model for serial robots and general constrained rigid multibody systems are summarized
based on [7], [43], and [42]. In case of actuator failures, reconfiguration methods are
discussed in Section 5.1.2. To be consistent with [43] and [42], in this section, we use

the following terminology and notation:

torque
e Spatial (general) force at a given frame is an m x 1 vector

force

angular velocity
e Spatial (Cartesian) velocity at a given frame is an mx1 vector

linear velocity

e For a given matrix G, G denotes the transpose of the annihilator of GT (GG = 0).
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5.1.1 Nominal Model

Consider serial manipulators and general constrained rigid multibody systems without
any actuator failures. Let 0 denote the generalized coordinate, ga denote the angles of
active joints, 0_;, denote the angles of passive joints, and 7 represent the torque exerted
by active joints. For serial manipulators all joints are active joints, i.e. 0 = 0;. In case

of general constrained rigid multibody systems, the joint angles are partitioned as

-

S O
f= . (5.1)

2

The differential kinematics and static force model of a serial manipulator [7] are

given by
7 = 3V, (5.2)
7 = JOTf (5.3)

where v € R™ is the spatial velocity of the end-effector, f € R™ is the spatial force
(the force that the manipulator exerts at the end-effector), é; € R" is the active joint
velocity, J(f) € R™™ is the Jacobian matrix . If J loses row rank, the manipulator
is in a singular configuration. This means that there is some direction or subspace in
Cartesian space along which it is impossible to move the end-effector no matter what
joint rates are selected. In the same direction (or subspace), the end-effector cannot
actively exert static forces as desired. That is, f could be increased or decreased in

some directions, which define the null space of J*', N'(JT), with no effect on the value

calculated for 7.

26



When the priority of the DOFs of the end-effector is considered, ' and f can be

ordered such that

B
7 = (5.4)
7,
B} fm
=" (5.5)
L fs -

with 7, € R™ (¥; € R™) denoting the end-effector velocity in the directions or sub-
space of MDOFs (SDOFs), f,, € R™ (f, € R™) denoting the end-effector force in the
directions (or subspace) of MDOFs (SDOFs), and m; +ms = m. Rearranging (5.2) and

(5.3), we have

/Um Jm =5
= 0, (5.6)
17‘5 Js
4 7,
T o= |JT J7 (5.7)
fs

where J,, € R™*" J, € R™*" A prioritized serial manipulator is in a singular
configuration if J,, loses row rank since MDOFs are what we really care about.
For a general kinematically constrained rigid multibody system, the differential

kinematics model becomes [43]

7 = Jr(0)0 (5.8)

with constraints

Jo(0)d=0 (5.9)



where 6 is given by (5.1). The static force model follows from the principle of virtual

work:

ml

=JLF+ It (5.10)

="}

Here 7 is the torque applied by active joints, fg is the “internal force”-the force that

enforces the constraint (5.9). Note that the passive joints can’t apply any torque actively.

=

In order to find a direct relationship between ¥ and 0_:1 (7 and f), we partition Jr

and J¢ according to the dimension of an and 0:,:

Ir = [JTa JTp:| (5.11)
Jo = |:Jc,a Jcp]. (5.12)

With some matrix operations, we get

7 o= 30,+35dc,E (5.13)
7 o= JTf+ 35 3L i (5.14)
where J € R™*" is the manipulability Jacobian defined as
J=1J7, — JTPJJCEPJCG, (5.15)
5 and 77 are arbitrary. Unlike serial manipulators, there are two kinds of singularities:
e Unmanipulable singularity corresponds to configurations at which J in (5.13) and

(5.14) loses row rank. This is the same as the singularity for serial manipulators.

e Unstable singularity corresponds to configurations at which JijCp # 0. Physi-
cally, an unstable singularity means that the end-effector can move even when all

active joints are locked.
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In (5.14), J(T;pﬁ is called the irresolvable internal force (or free internal force) which
belongs to N (Jgp). A more detailed treatment of the concept of velocity and force
manipulability can be found in [43] and [42].

If the priority of the end-effector’s DOFs is taken into account, we can order ¢ and

—

f in the same way as that in (5.4) and (5.5). Thus (5.13) and (5.14) can be rearranged

as
ﬁm Jm = ~ o
= R S (5.16)
Ts Js
T =
T o= |JT g7 + 3¢, 36,7 (5.17)
' fs

where J,,, € R™*" J. € R™*". Similar to the singularity of prioritized serial manipu-
lators, a prioritized constrained rigid multibody system is in an unmanipulable singular

configuration if J,, loses row rank.

5.1.2 Actuator Failures

A common failure for a robotic manipulator is due to actuators [29]. Examples include
motor winding failure, servo controller power failure, bearing failure, gearbox failure,
brake failure, etc. Most of the actuator failures can be characterized as either position
failure or torque failure. The former acts as if the actuator is locked, i.e. the joint can’t
change its angle or length. The latter occurs when the actuator can’t actively exert any
torque, i.e. the joint can only move passively. Many previous works, including [25] and

[34], focus on the position failure. In this section, we introduce a reconfiguration method
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which can handle the position failure and torque failure as well.

Position Failure

Physically, a joint can’t change its angle or length when position failure happens to the

actuator. This can be mathematically interpreted as
;=0 (5.18)

for some 7 € {1,---,n}. Suppose ¢ position failures occur. Without loss of generality,
we assume that failures happen in the first ¢ active joints. This can always be done
by arranging 0_; and the corresponding columns of J (for serial robots) or Jr and J¢
(for constrained rigid multibody systems). If a passive joint locks, then the analysis is
similar so it is excluded for brevity.

Let 0:; = [0441,- -, QH]T, 7= [Tg+1, s Tn]T consisting of angles and torques of active
joints without position failures. Considering ¢ constraints in the form of (5.18) with
1 =1,---,q, the kinematics and static force model for a prioritized serial manipulator,

(5.6) and (5.7), can be written as

T I | 3
= 0, (5.19)
175 js
. T 1
T o= |JT JT (5.20)
) fs

where J,, € Rm (-9 jg composed of the last n — ¢ columns of J,, defined in (5.6),

J, € R™*("=9) is composed of the last n — ¢ columns of J, defined in (5.6). Singularity

occurs when J,, loses row rank.
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Similarly, for a prioritized constrained rigid multibody system with position failure
in the first g active joints, we define jTa and jca to be the last n — g columns of J7;, and

J¢, respectively. It is straightforward to show that
J =177, - I, 3% Jc, (5.21)

consisting of the last n — ¢ columns of J given by (5.15). The differential kinematics and

static force model described by (5.16) and (5.17) can be written as

- Bu+315,30,6 (5.22)
7, J
7= gz ogr || | +353T 0 (5.23)
fs

where jm € R *("=9) consists of the last n — ¢ columns of J,, defined in (5.16), 35 €
R™2*("=9) consists of the last n — ¢ columns of J, defined in (5.16). The system is in an

unmanipulable singular configuration if J,,, loses row rank. Unstable singularity occurs

if 3, 3¢, # 0.

Torque Failure

When torque failure happens to an actuator, the actuator can’t exert any torque actively,
which implies that the corresponding active joint can’t move actively. Note that this
doesn’t mean that the joint can’t move. In fact, an active joint with torque failure can
move freely but passively. Thus an active joint with torque failure becomes a passive

joint.
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Without loss of generality, we suppose that torque failures occur to the first ¢ active
joints. This means

For serial manipulators, (5.7) together with (5.24) imply that f € {.Jj, -, J,}* where

- Jm

J; is the ith column of in (5.6). Then clearly there exist task frame spatial
Js

forces (in span{jl, e jq}) that can’t be balanced by active torques alone. The same

situation occurs when a constrained rigid multibody system is in an unstable singular
configuration. Thus serial manipulators can’t resist any torque failures.
Next, we consider a constrained rigid multibody system with torque failures in the

first ¢ active joints. As mentioned above, this is equivalent to changing the first ¢ active

joints to passive joints. So we define 0, = [Ogs1,- -, On]T, 7= [Tat1s s Tn]T consisting
5 T
of angles and torque of active joints without torque failures, 8, = 6,,---,0,, H_Z to be

the angles of passive joints. Then we partition Jr and J¢ according to the dimension of
5; and 0:,:
JT = |: jT ij :| (525)

JC = |: jC’ ij :| (526)

where J 1, consists of the last n — g columns of J7; , J ¢, consists of the last n — g columns
of Jca, ij = |:ij1, tety, ijq, JTP]’ ij = [jcpl, Tty ijq: Jcp], ij and jcm are the ¢th
column of Jz, and J¢, respectively. Thus we can derive the differential kinematics and

static force model by replacing 0., Jr,, Iz, Je, Jép, jcp, and 32; in (5.15,5.16,5.17)

62



—_— e~

with 0:',1, jTa, ij, jca, jfcp, jcp, and jgp respectively. Finally, unmanipulable singu-
larities and unstable singularities can be analyzed following the same approach as that
given in Section 5.1.2. Unlike serial manipulators, constrained rigid multibody systems
can tolerate torque failures if J T]j;; =0.

If position failures occur in some joints, while torque failures simultaneously occur in

others, then the manipulation can be analyzed by applying both of the above techniques

serially.

5.2 Optimal Velocity and Static Force Mapping

For a kinematically redundant manipulator, there are infinite joint velocities that give the
same end-effector velocity. Utilizing this property, many different performance indices
can be optimized by adding terms in N'(J) to the joint velocities [4],[15],[22], [31]. For
prioritized manipulation, the redundancy occurs in Cartesian space. Similarly, this extra
freedom can also be used in optimizing certain kinematic performance indices.

Section 5.2.1 converts the trajectory planning problem for prioritized manipulation
into an optimization problem in A/(J). Analytical solutions to the problem are derived.
Section 5.2.2 finds a velocity mapping with minimum condition number for general

redundant manipulators.

5.2.1 Trajectory Planning for Prioritized Manipulation

In this section, we assume that the system is not at a singular position, i.e.:
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e For serial manipulators, J,, has full row-rank.

e For general constrained rigid multibody systems, J,, has full row-rank and J ijcp =

0. In addition, there are no irresolvable internal forces, i.e. N'(J¢,) = {0}.

Thus the differential kinematics and static force model for serial manipulators and gen-
eral constrained rigid multibody systems can be uniformly written as (5.6) and (5.7). If
there are joints failures then the models are reconfigured using the methods in Section
5.1.2.

Let the desired trajectory be given in terms of Cartesian space position y; =

)de
where Y4, and Y4 correspond to the desired MDOF position and SDOF
X‘ds
m
position, respectively. Let ¥ = be the actual position of the end-effector(s)
Xs
with ¥,, and X, representing MDOF position and SDOF position, respectively. dx =
OXm
= Y4 — X is the error between the desired position and the actual position
0Xs

where Y, is the position error in MDOF, § Y is the position error in SDOF. §x can be
assumed small if the control system does its job. Thus we can rewrite the differential

kinematics model (5.6) as

= 80,. (5.27)

where (50_; is a small displacement in joint space.
For a given (50;, the Cartesian space displacement of the end-effector(s) is deter-

mined by equation 5.27. However, in many applications, only the Cartesian space tra-
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jectory is specified, i.e., we need to compute (59} which can generate the given dy. If J is
invertible, the solution is given by 66, = J=1¢y. If J is not invertible, then 66, = J*+4y
is the minimum length joint space displacement that will produce a Cartesian space
displacement closest to, in the least squares sense, the given 0.

However, for prioritized manipulations, we don’t really need to find a solution which
minimizes the difference across all DOF's since MDOF's are more important than SDOF's.
In fact, by sacrificing the motions in SDOF's, we can further minimize the difference in
MDOFs. Moreover, additional constraints can also be satisfied to achieve joint lim-
its avoidance, workspace obstacle avoidance, and energy minimization, etc. For these

reasons, we formulate an optimization problem as follows

Problem 5.1 Consider the differential kinematics model (5.27). Given desired Carte-

O Xm .
stan space displacement X = € R™ and desired joint space displacement 06y,
0X's
find an actual joint space displacement 60, € R such that

6%m = J.n60,, (5.28)

and

IW1(660 — 80115 + W2 (35600 — 6%5)5 (5.29)
is minimized. W1 € R™*™ and Wy € R™*™2 qre weighting matrices.
Remark 5.2 In Problem 5.1, we try to find a joint space displacement which will pro-

duce the desired MDOF motion. At the same time, the performance criterion, given by

(5.29), is minimized. Two terms are included in (5.29). ||W1(60, — 66,)||% denotes the

65



magnitude of the joint space error where (59_:1 can be specified for joint limits avoidance or
energy minimization, etc. The error in SDOF motion is measured by ||W2(J855a—692's)||§
where 0Ys may be specified for workspace obstacle avoidance or dexterity improvement,
etc. Note that in general 66, and 0X have elements with different physical units. Adding
terms with different units gives a physically meaningless sum. The weighting matrices
are used to avoid this kind of inconsistent operation. Methods of finding appropriate

weighting matrices can be found in [8].

Depending on the weighting matrices, Problem 5.1 is solved by the following theo-

rems.

Theorem 5.3 If W, and Wy are nonsingular weighting matrices, the unique solution

for Problem 5.1 is

_|_
. N w.J,, W.J+
80, = {JI--Jn 5%m +
W,J,J,, W,J,J+
+
- w.J,, W, 0 50,
J,. . (5.30)

W,J.J,, 0 W, 6Xs

Proof: Given 0¥, € R™, all solutions of (5.28) are given by
80, = I+ 6%m + InC (5.31)

where Q? € R*~™ is arbitrary. Thus we have

W, (66, — 66,) W.J+ W, |. | W o 50,
- 5X‘m+ C_
W(3,60, — 6%,) W,J,J+ W13, T, 0 W, ||y
(5.32)
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It is clear that

L B} ) W1 (60, — 60,)
W1 (800 — 00a)l[5 + [|W2(J5000 — 0Xs [l = - (5:33)
W,(J,00, — 6X,)

2

W.J,,

Since has full column-rank, |[W1(86, — 66,)||2 + [[W2(J,00, — 6| is
W3, 3
minimized if and only if
n
. W, J,, W, J* W, 0 50,
(=— OXm — . (5.34)
WoJ,J, W,J,J+ 0 W, || dx,

Substituting (5.34) into (5.31) gives (5.30). O
Theorem 5.4 If W1 is invertible, Wy = 0, then the unique solution for Problem 5.1 is
60, = |I5 — T n(WiJ) YW T | 6% + Tpn(W1J,,) T W66, (5.35)
Proof: From (5.31) we have
W, (60, — 60,) = W, I 6%m + W1J,,C — W166,. (5.36)
Since W1J,, has full column-rank, |[W (66, — 66,)||2 is minimized if and only if
C= —(WiJn)* [W, I 6% — W16§d] . (5.37)

Substituting (5.37) into (5.31) we get (5.35). O

Theorem 5.5 If W1 = 0, W, is invertible, then the minimum norm solution for Prob-
lem 5.1 is

56, = [1- ij(JmK)+] [(Jjn 3, ATB)OX + ij+W25>2’s] (5.38)
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where

A = W, (5.39)
B = W,J,J . (5.40)

Proof: From (5.31) we have
W(3,00, — 0%,) = BOxm + AC — Wby, (5.41)

It is clear that ||[W(J,00, — 0,)||2 is minimized if and only if
C=—A"[BoXm — Wadis] + AT (5.42)

where ¢'is arbitrary. Substituting (5.42) into (5.31) yields

00, = (3} — JnAYB)d%m + I AT+ T, AYW0Y,, (5.43)

m

which tells that ||66,||2 is minimized if and only if

C=—(TnA)" (T3 = TnATB)OX + T AW, | + 77 (5.44)

where 7 € N'(J,,A). Substituting into (5.43) and rearranging terms, we get (5.38). O
A similar optimization problem can be formulated using joint torque and spatial

force as follows

Problem 5.6 Consider the static force model (5.7). Given desired spatial force f =
fim
fas

€ R™ and desired joint torque Ty, find an actual joint torque 7 € R™ such that

7= I8 fom + 3T f, (5.45)
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and
IWs(7 = 7015+ IWa(fs — fas)3 (5.46)
1s minimized. W3 € R™™ and W4 € R™*™2 qre weighting matrices.

The following theorems give solutions to Problem 5.6 for different weighting matri-

ces.

Theorem 5.7 If W3 and W4 are nonsingular weighting matrices, the unique solution

for Problem 5.6 is

- +
WsJ7 WsJ? . W3J? W; 0 Td
F=9J - JT fam+33
W, 0 W, 0 Wi || fa
(5.47)
Proof: From (5.45) we have
W (7 — Ta) A\ I W3IT | W; 0 Ty
— fam + fs— . (5.48)
W4(fs - fds) 0 W4 0 W4 fds
It is clear that
2
e S W3 (7 — Ta)
[Waz = 713+ IWalFs — )l = S e
W4(fs - fds)
W3JT L.
Since has full column-rank, ||W3(7 — 74) |3 + |[Wa(fs — fas)||3 is minimized
W,
if and only if
+
. W,JT W,RJT || W; 0 T4
fs=-— fam — : (5.50)
W, 0 0 W, Jas

Substituting (5.50) into (5.45) we get (5.47). O
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Theorem 5.8 If W3 is invertible and W4 = 0, the unique solution for Problem 5.6 is
7= [I5 — IV (WID) P W,IL ] fin + 3T (W3ID) YW, (5.51)
Proof: From (5.45) we have
Wi(7 — 72) = W3I], fim + W3IT f, — Wiy, (5.52)
Then ||[W3(7 — 7)||3 is minimized if and only if
Fo = —(WdT) (W, JT fo — WaTy) + 2 (5.53)

where Z € N(W3JT). Since W3 is invertible, N(W3JT) = N(JT). Thus substituting

(5.53) into (5.45) yields (5.51). O

Theorem 5.9 If W3 = 0, Wy is invertible, and J; has full row-rank, then the unique
solution for Problem 5.6 is

F=32 fom + 37 fus. (5.54)

Proof: |[W,(f, — fus)||2 = 0 if and only if f, = fy, (since W, is invertible) if and only
if J7f, = JTfy, (since J, has full row-rank) if and only if 7 = JZ fu. + J7 fy, (from

(5.45)). O

5.2.2 Isotropic Motion Planning
In this section, we consider the following problem

Problem 5.10 Let the differential kinematics model be 6 = 366, where J € R™™ has

full rank with m < n. Find a transformation matrix S € R™*™ such that, for any given
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0xX € R™, the joint space displacement 55@ = SOX generates 60X (06X = JSOX), and the

condition number of S is minimized.

Since m < n, here we are dealing with redundant manipulators. S is an inverse
differential kinematics transformation with minimum condition number. We attempt
to solve the original problem by utilizing the redundancy in the joint space. In our
approach, we restrict the joint space motion to a subspace. Mathematically, this can be

written as

86, = HE (5.55)

where H € R™™ Rank(H) = m, and E € R™ is arbitrary. Thus the Cartesian space

motion corresponding to 66, given by (5.55) is
5y = JHE. (5.56)

To ensure the Cartesian space movements in all m directions, JH must be full rank.

Thus from (5.56), £ can be represented by
€= (JH)"'6Y. (5.57)
Consequently, (5.55) can be rewritten as
86, = H(JH) "6y (5.58)

It is obvious that J66, = JH(JH) 1§ = 6 for any 5} € R™.

Based on (5.58), Problem 5.10 is reformulated as
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Definition 5.11 (Isotropic Motion Planning) Given a full rank matriz J € R™ "™ with
m < n, find a matriv H € R™™ such that Rank(JH) = m, and Cond[H(JH™)] is

minimized.
The problem is solved by the following lemma and theorem.

Lemma 5.12 Let Q™™ be the set of n x m real matrices with orthonormal columns.

Then

min Cond[H(JH) '] =

min
HeR7X™m  Rank(JH)=m HeOn*™, Rank(JH)=m

Cond[H(JH)™'].  (5.59)
Proof: For any H € R**™ the QR decomposition gives
H=QR (5.60)

where Q € O™ R € R™*™ is upper triangular. Since Rank(JH) = m, R is invertible.

Thus we have

H(JH)"' = QR(JQR)™
= QRR'(JQ)™

- QUQ)™. (5.61)
This completes the proof. O

Theorem 5.13 If J € R™*" is full rank, m < n, and o1 > 09 > --- > o, > 0 are the

singular values of J, then

min Cond[H(JH) ] = & (5.62)

HeQ"*m  Rank(JH)=m Om
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where t = min(n — m + 1,m). One of the minimizers is given by

H-= lvﬁci,mﬂ(ai)] | (5.63)

=1 O(nfm)xm

V is given by the singular value decomposition of J (J = UEV”). Gy (a) € Q™" s
the Givens rotation matriz with (i,i)th and (j,j)th entries equal cos(c), (i, j)th entry
equals sin(«), (j,1)th entry equals —sin(«), the other diagonal entries are 1s, and the

rest entries are 0s. o; = cos’l(‘;—";). Luxm € R™™ is the identity matriz.
Proof: Suppose m <n < 2m — 1, for any H € Q"™
HIH)"J"HJIH) ™ = (JH)T(JH) ™ (5.64)
Thus
Cond[H(JH) !] = Cond[(JH) '] = Cond[JH] (5.65)

for any H € R™*™.

From the Courant-Fischer theorem [13], we have

—

T

=T 1T
9 ) J'J
o = min max 5.66
ket SkCR™ 720, 7S, L1 &L (566)
1 JT )%
o = max min ¢ _,T_,x (5.67)
SrCR™ 2240, 7S, T T
where S, C R" denotes a subspace of dimension k, £k = 1,---,n. Thus
JHy
Opn—msl = Mmin  max I _,y||2 (5.68)
He0*™ g0, germ  [|7]]2
JHYy
Om = _Mmax  min | TELy] (5.69)

HeOxm g2, germ  ||§]l2

This implies that, for any H € 0"*™, Cond(JH) > 224,

m
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Let the singular value decomposition of J be given by

J=UxV"

Substituting equation (5.63) into (5.70) gives

JH = U diag[om, Om,* * » Oms On—m+1, On—m+2, " - *

Thus

Cond[H(JH)™'] = Cond(JH) = Zo—m+1

Om

Similarly, if n > 2m — 1,

Cond[H(JH) !] = Cond(JH) = Z= = 1.

m

This completes the proof. O

5.3 Numerical Results

| Q>/p/ ! "’
Mirr
T

pl‘ [1%x D2 LJas

alP Ha, %3

Figure 5.1: Four legged fast steering mirror.
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A four legged fast steering mirror, shown in Figure 5.1, is used to demonstrate the
ideas presented in this chapter. Four equal length legs are arranged on a cube. ay, as,
as, and a4 are linear actuators that can change the length of the legs. pi, p2, p3, and py
are spherical joints with 3-DOF’s. The 1-DOF hinges (q1, g2, g3, and ¢4) at the base can
only rotate towards the center of their cube face.

One possible application of a four legged fast steering mirror is fault tolerant point-
ing. It is not hard to show that the mirror has 3-DOF’s (rotation around z and y axes
and translation in the z axis). The two rotational DOFs play a dominant role in pointing
applications. Thus a four legged fast steering mirror performs prioritized manipulation
for pointing applications.

To simplify the computation, we assume the mirror and four legs currently construct
a cubic structure with length of edges equal to 1. The optimal velocity mappings defined

by (5.35), (5.38), and (5.30) are calculated for two cases:
e There is no actuator failure.
e There is a torque failure in actuator 1.

Let 6 = [66,,06,,02]" be the Cartesian space displacement, 66, = [6l1, 8y, 613, 6l4]"
be the joint movement. 66, (66,) is the angle of rotation around z (y) axis, dz is the
amount of translation along z axis, dl; represents the amount of changes in the length

of the ith leg. The weighting matrices are identities. 60, =0, 6xq = 0.

Case 5.1 No actuator failure.
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From the geometry shown in Figure 5.1 together with (5.15), we have

05 —-05 05 0.5
J=1 05 —05 —05 05 |- (5.74)

0.25 0.25 0.25 0.25

Using (5.35), (5.38), and (5.30) we get the same equation

—-0.5 0.5

—05 —05 | | 66,
0, = . (5.75)

0.5 =05 || o6,

0.5 0.5
00,
This tells us that for a given , the joint motion defined by (5.75) will produce
60,
00, .
the given MDOF motion ( ) and simultaneously minimizes ||§6,||3, ||6z]|3, and
00,

160all3 + [16]3-
Case 5.2 Torque failure in actuator 1.

Following the steps in Section 5.1.2, we can get

~1.0 1.0 0.0
J=1 00 =10 1.0 |- (5.76)
05 0.0 0.5
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00,
For a given

66,
from (5.35)

—-2.0

1.0

1.0

-1.0

—1.0

2.0

, the differential kinematics mapping that minimizes ||66,]|2 follows

The differential kinematics mapping that minimizes ||6z||3 follows from (5.38)

—0.5

0.5

0.5

—0.5

—0.5

0.5

56,
(5.77)
56,
56,
(5.78)
56,

The differential kinematics mapping that minimizes [|66,||2 + ||6z]|2 follows from (5.30)

—5.0

3.0

3.0

-3.0

-3.0

2.0

77

50,
(5.79)

56,



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The major contributions of this dissertation are summarized as follows

e Decoupling Algorithms
New decoupling algorithms exploit the properties of the joint space mass-inertia
matrix of flexure jointed hexapods, loosen and remove the severe constraints im-

posed by previous methods on the allowable geometry, workspace, and payload.

e Estimation of the Joint Space Mass-Inertia Matrix
To apply the new decoupling algorithms, the joint space mass-inertia matrix, M,
of the flexure jointed hexapod must be known. A new identification algorithm,
using an optimization criterion differing from the classical least squares criterion, is
proposed to directly estimate M, from noisy measurements. The algorithm applies

to a class of problems of estimating symmetric and positive definite matrices.

e Decoupled Control
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6.2

The relationships between different decoupling algorithms and disturbance rejec-
tion performance (and robust stability for different uncertainty models) of the cor-
responding closed-loop system is discussed. We prove that the optimal robustness

can be achieved by choosing a unitary decoupling matrix.

Optimal Jacobians for Prioritized Manipulation

In many applications, some DOFs in the Cartesian space (operational space) are
more important than the rest in performing a task. We call these applications
prioritized manipulation. The end-effector’s DOFs during a prioritized manipula-
tion can be divided into major DOFs (MDOFs) and secondary DOFs (SDOFs).
MDOFs are more important than SDOF's in performing a task. We describe an
approach for constructing Jacobians which achieve MDOF's and, at the same time,
trade-off SDOFs for some particular reasons such as avoiding obstacles in the
workspace, optimizing certain kinematic performance indices, tolerating actuator

failures, etc.

Future Work

Hexapod Geometry

By changing the geometry of the hexapod, the isotropic point (with respect to
translation or rotation) in the workspace can be adjusted accordingly. The current
UW hexapods use a mutually orthogonal geometry [27] (the center of the cube is

an isotropic point with respect to translations).
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Additional struts can also be introduced to facilitate fault tolerance. The current

geometry can’t resist torque failure.

Trajectory Planning
The techniques in the dissertation give locally optimal Jacobians. To achieve the
global optimum, the dynamics of the system must be considered. The calculus of

variations may be useful in solving this dynamic problem.

Sensor Fusion
Extra sensors, such as a fast steering mirror, could be introduced. This will increase
the system bandwidth, expand the possible applications, and further facilitate the

tolerance to faults.
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