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Abstract

One of the most important tasks in correctly annotating genes in higher organisms is to accurately locate the DNA splice sites. Although
relatively high accuracy has been achieved by existing methods, most of these prediction methods are computationally extensive. Due to the
enormous amount of DNA sequences to be processed, the computational speed is an important issue to consider. In this paper, we present a new
machine learning method for predicting DNA splice sites, which first applics a Bayes featurc mapping (kernel) to project the data into a new
feature space and then uses a linear Support Vector Machine (SVM) as a classifier to recognize the true splice sites. The computation time is linear
to the number of sequences tested, while the performance is notably improved compared with the Naive Bayes classifier in terms of classification
accuracy, precision, and recall. Our classification results are also comparable to the solution quality obtained by the SVMs with polynomial
kernels, while the speed of our proposed method is significantly faster. This is a notable improvement in computational modeling considering the

huge amount of DNA sequences to be processed.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The advances in sequencing technologies have resulted in a
large amount of DNA sequence information and therefore a
dramatic increase in the size of genetic and genomic databases.
The genome sequence information is produced as sequences of
base pairs. However, no real knowledge of how the genome
works is revealed unless different regions of the genome and
their functions are characterized. Therefore, an important goal
in bioinformatics is to accurately annotate the genome
sequence information within an acceptable timeframe. Many
computational efforts have recently been explored for
predicting gene structures (Burge & Karlin, 1997) from DNA
sequences and aiding the extensive analysis of the genome
sequences, including recognizing translation initiation site of
genes (Zien, Ratsch, Mika, Scholkopf, Lengaver & Muller,
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2000), discovering transcriptional factor binding sites in
promoter sequences (Lim, Sim, Chung, & Park, 2003), and
identifying DNA splice sites (Jones & Watkins, 2000; Mache
& Levi, 2000; Weber, 2001).

Gene expression in eukaryotes starts with the transcription
of DNA sequences into mRNA sequences, followed by the
processing of pre-mRNAs to mature mRNAs, and then
the translation of mRNAs to proteins. Splicing is one of the
primary post-processing steps of pre-mRNAs in eukaryotes.
During splicing, the introns, the non-coding regions of genes,
are removed from the primary transcripts, and the exons, the
coding regions, are joined to form a continuous sequence that
specifies a functional polypeptide (See Fig. 1 for illustration).
The 5' side of the intron is a donor splice site and 3’ side is an
acceptor splice site. As most eukaryotic genes contain introns,
many of which interrupt an exon within a codon, an important
part of gene prediction in eukaryotes is therefore to predict
splice sites.

This paper focuses on the problem of identifying DNA
splice sites. Locating splice sites is an interesting problem to
address because of the special structure in sequences around
splice sites. The residual pairs GT and AG are often indicative
of donor and acceptor splice sites. However, this canonical
GT-AG rule does not always hold. Thus, it is natural to model
the prediction of splice sites as a binary classification problem,
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Fig. 1. The process of gene expression.

using DNA sequences with experimentally confirmed splice
sites as positive training examples and those DNA sequences
with GT-AG structure but confirmed not to be real splice sites
as negative training examples.

Artificial neural networks (Acir & Giizeli, 2004), Bayesian
classifiers (Stockwell, 1993), and SVMs (Min & Lee, 2005;
Shin, Lee, & Kim, 2005) are important expert systems that
have been applied to solve real world problems. Several of
these expert systems have been applied to many interesting
bioinformatics problems. For example Wang, Kuo, Chen,
Hsiao, and Tsai (2005) built a knowledge sharing system for
protein families (KSPF) using sequence pattern data mining
and knowledge management. In this paper, we focus on the
problem of recognizing true splice sites. Table 1 summarizes
selected models used in predicting splice sites and their
references. Although relatively high accuracy has been
achieved with the methods currently available, almost all of
the existing methods are computationally very demanding.

Table 1
Machine learning methods for splice sites prediction

Methods/models Refs.

Statistical methods
-Logit linear model
-Quadratic discriminant
analysis

-Naive Bayes classifier

Brendel & Kleffe, 1998
Zhang & Luo, 2003

Degroeve, De Baets, Van de Peer, & Rouz, 2002

Decision trees:
-Maximal dependence
decomposition (MDD)
-MDD with Markov
model

-C 4.5 induction tree

Artificial neural networks

Burge & Karlin, 1997
Pertea, Lin, & Salzberg, 2001

Patterson, Yasuhara, & Ruzzo, 2002

-Percepton Weber, 2001

-Multi-layer Mache & Levi, 2000; Reese, Eeckman, Kulp, &

Backpropagation Haussler, 1997; Sonnenburg, Ratsch, Jagota, &
Muller, 2002.

SVMs

Degroeve ef al., 2002
Jones & Watkins, 2000; Patterson et al., 2002;
Zien et al., 2000

-Linear kernels
-Polynomial kernels

Consequently, splice site prediction continues to be a major
bottleneck in gene annotation.

In this study, we employ a linear SVM, which is
computationally less extensive than SVMs with polynomial
kernels, to recognize true splice sites. However, the DNA
sequence information is given as strings while the SVM
classifier can only take numerical inputs. Thus, the very first
step is to encode or map the DNA sequences into numbers. A
widely used encoding method is sparse encoding, where each
letter in the DNA sequence is represented in four bits. But with
this encoding method, the sequence data are in general linearly
inseparable by SVMs. Instead, a novel mapping/encoding
method derived from Bayes’ rule is used to project the data into
a new feature space where the true splice sites and the false
splice sites can then be classified by linear SVMs. An
advantage of the Bayes encoding method is that it takes into
consideration the natural mutations in the DNA sequences with
a probabilistic encoding framework. Experimental results have
shown that the performance of our proposed method is
comparable to that of SVMs with polynomial kernels in
terms of accuracy, precision and recall, while the speed of our
method is significantly faster. The computation time is linear to
the number of sequences tested, while the performance is
notably improved compared to the Naive Bayes classifier in
terms of accuracy, precision and recall. Considering the
overwhelming amount of DNA sequences that needs to be
processed, the increased speed of our method is a very
desirable property.

The rest of this paper is organized as follows. In Section 2,
we give an introduction to SVMs. In Section 3, the Naive
Bayes classifier is explained, and the Bayes feature mapping
method is explored. In Section 4, we describe our experiment
with splice site prediction and our theoretical analysis of the
proposed method. In Section 5, the experiment results are
presented. Finally, we give the conclusion in Section 6.

2. Support vector machines

Support Vector Machines (Vapnik, 1998) are powerful
pattern recognition techniques that have been successfully
applied to many machine learning tasks such as classification
(Scholkopf, Burges, & Smola, 1999) and regression (Smola &
Scholkopf, 2004). They have outperformed many other
machine learning methods such as artificial neural networks
and k-nearest neighbors and attracted a great deal of attention
from the machine learning community because of many needed
properties, including good generalization performance, robust-
ness in the presence of noise, ability to deal with high
dimensional data, and fast convergence. Classification pro-
blems are very common in bioinformatics and many of them
involve high-dimensional and noisy data, with which SVMs
are known to perform well. Applications of SVMs in
bioinformatics include but are not limited to protein structure
prediction (Hu, Pan, Harrison, & Tai, 2004), protein/gene
function classification (Cai, Han, Ji, Chen, & Chen, 2003),
protein subcellular localization prediction (Hua & Sun, 2001),
splice site prediction (Degroeve et al., 2002; Jones & Watkins,
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Fig. 2. Iustration of support vector machines.

2000; Patterson et al., 2002; Zien et al., 2000), and microarray
data analysis (Brown, Grundy, Lin, Cristianini, Sugnet, Furey,
Ares, & Haussler, 2000). Interested readers can refer to Noble
(2004) for a comprehensive review.

We only provide a brief introduction of SVMs here. More
detailed information can be found in Cristianini and Shawe-
Taylor (2000); Burges (1998). Suppose we are given a set of
examples X; (i=1,..., N), with corresponding labels y; €{-1, 1}
(i=1, ..., N), where -1 and 1 stand for the negative and positive
classes, respectively. For a linearly separable set of data, there
exists a set of separating hyperplanes (w.X) + b= 0, where w is
a weight vector and b is the bias or threshold. SVMs find a
unique separating hyperplane between the two classes in input
space that maximizes the margin between the hyperplane and
the classes. Fig. 2 is an illustration of how the separating
hyperplane partitions the data.

The margin can be expressed as 2/||w||>. The objective is
then to minimize the squared Euclidean norm of #, ||w||*. The
weight vector is generally expressed in terms of the linear
combination of the training patterns: w =Y % a,-yi)_f ; (0520).
When «;>0, the corresponding pattern or support vector
contributes to the hyperplane. With the maximal margin
hyperplane as the decision hyperplane, the decision function
can be written as: f(X) = sgn(>", a;y,X;.X + b)), where for a
number x, sgn(x) is 1 if x is larger than 0 and is — 1 otherwise.
For linearly separable data, the weight vector w can be
obtained from the labeled training examples. Then the
classification can be directly calculated with the above decision
equation.

However, in many cases, the data are linearly inseparable.
One way to solve this problem is to perform a nonlinear
mapping of the input data into a new feature space, usually with
a higher dimension, where the input vectors are linearly
separable. Unfortunately, it is sometimes difficult to define the
mapping function explicitly. Since only the dot product of the
two new feature vectors under the new feature space is needed
to calculate the decision function, an alternative way to solve
the problem is to directly define the dot product under the new
feature space with some kernel functions. Two typical kernel
functions are:

-

Polynomial kernel : K(X;, X)) = (X;.X; + 1)? ')

Gaussian kernel : K()—fi,)—fj) = exp(—l|X; —)?jllz) (2)

where d is the order of the polynomial kernel that may be set to
any positive integer, exp(x) is an exponential function of x, and
r is a measure of the radius of the Gaussian kernel.

3. The Proposed algorithm-SVMs with Bayes kernel

Fig. 3 depicts a generic framework of the classification
process used in this study. The proposed algorithm is a hybrid
of SVMs and a Bayes feature mapping (denoted as SVM-B).
SVMs are a binary classification method that discriminates one
set of data points from another. They only take numerical data
as input. However, the DNA sequences are given as strings of
nucleotides {A, 7, C, G}. When using computational tools to
analyze and classify the sequence data, an important step is
encoding the sequences with numbers.

3.1. Sparse encoding

Sparse encoding is a widely used encoding schema which
represents each nucleotide with 4 bits: A->1000, C— 0100,
G— 0010, and T— 0001 (Jones & Watkins, 2000). Suppose we
have a DNA sequence of AATCGTCAGT. With the sparse
encoding, the sequence is  represented as:
1000]1000}000110100]0010[0001]0100]1000]0010]0001.
Where |’ is a virtual separator used for illustration only and not
shown in the actual encoded text.

With the sparse encoding method, the sequence data are in
general linearly inseparable by SVMs for the problem of
classifying true and false splice sites. Therefore, we need to
employ either some mapping method or some kernel to make
the data linearly separable. The use of kernel methods such as
polynomial kernels uswally introduces more computational
complexity. On the other hand, the sparse encoding method
results in identical distance metric measurements even though
the nucleotides may not be biologically identical. When two
sequences are compared, they either match or mismatch at a
certain position with no intermediate degrees of similarity.

Input/Output Procedure Methods
String of Nucleotides - * Dsmall
A T,CG * Dlarge
{A, T, C,G} l
« Training data sef + Ten
« Testing data set } Data Preparation Validation

String of { » Sparse Encoding
Numerical data « Bayesian Mapping
l- """"" "
. ' !
Weight Vector — ! Classifiers:
1 ! « Naive Bayesian
P — ! * SVM-L
1 ! * SVM-P (d=2, 3)
H 1 + SVM-B
“+9, 01_“-” — : :
Rt o e : * Accuracy
- - * Precision
tp, tn, fp, fn s | Analysis/Evalvation { « Recall
* F-measure

Fig. 3. Sketch of the classification algorithm.
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For example, the distance between sequences ACC and ATT is
considered the same as the distance between ACC and AGG—
both have one matched nucleotide and two unmatched.
However, in reality, there are always mutations in DNA
sequences, with some forms of variation being more tolerable
than others. A biologically more intuitive distance metric may
assign a higher similarity score to the pair (ACC and AGG) than
to (ACC and ATT). Therefore, we explore a new way of
encoding DNA sequences.

3.2. The Bayes kernel

The Bayes feature mapping method is built from Bayes’
rule. Suppose we have a set of examples E={X;, X,,..., Xy/.
Let X;={a,..., a,J(X; € E) denote a DNA sequence, where
each g;(j=0, 1, ..., n) is anucleotide. Each X; € E falls into one
of two categories: ¢; or ¢_1, where ¢; stands for true splice
sites, and ¢_ for false splice sites. According to Bayes’ rule, the
posterior probability of the category membership for each
DNA sequence can be expressed as:

P(X,']C1)P(C1)

P(c |Xz = 3
eilxy == ©
P(Xile_)P(c_y)
Pley|X) = ——————— 4
(e 1X) 20X “
Assume that g; (j=1, 2, ..., n) are independent of each
other. Thus, we get
PXile)) = [ [ P@ler) ()
j=1
PXley) = [[ Paler) (6)
j=1

After a few manipulations of the above equations, Egs. 3
and 4 can be reformulated as:

log(P(c11X) = > log(P(ajlc))) —log(P(X)) +a 7
j=1

n
log(P(c,1X;)) = Zlog(P(ajIC-O) —log(P(X;)) + b (®)
j=1
where a=log(P(c;)) and b=log(P(c—-,)). With the Naive
Bayes classifier, the classification decision is to maximize the
log likelihood. X; is assigned to the class ¢; (k=1 or —1) that
would maximize log(P(c,|X;)). Thus, the decision function can
be expressed as:

f(Xp) = sgn(log(P(c,1X)) —log(P(c X)) ©

Assuming uniform priority, i.e. P(c;)=P(c ) and thus g=
b, we get:

f(Xi>=sgn( log(P(a,-lco)) =Y logP(ale_))  (10)
=1 j=t

J

Eq. (10) can be reformulated as
(11)

where W= {w|,w,,...,wy,} is the weight vector, and p=
{p1,P2s ... P2y} is the posterior probability vector.

To estimate the probability for a set of DNA sequences, we
need to first derive the positional profile of the data set. The
positional profile of an alignment of DNA sequences with
length [ is defined as a [4X!] matrix (py;), where py,; is the
frequency of nucleotide N in the ith position of the alignment.
Once the positional profile is known for the DNA sequences,
the p; value can then be obtained by looking up the positional
profile. See example 1 for a detailed illustration.

f(x) = sgn(w.p)

Example 1. : The Estimation of P; values
Assume that we have the following set of DNA sequences to
be analyzed:

TTCTTTTAGG
ACTTACTCTT
CATCCGTAAT
AAATGACTAT

Since the length of each DNA sequence is 10, the positional
profile is a 4X10 matrix P. To arrive at the profile, we first
consider the observed frequency of nucleotide A at position 1,
which is 2/4=0.5. Thus, we obtain P, ;-0.5. Similarly, the
entry for Py ;=1/4=0.25. The remaining entries for Py, are
calculated in the same manner. Table 2 shows the positional
profile for this set of DNA sequences. Suppose the DNA
sequence that we would like to encode is: ATTCGACAAC.
For each nucleotide at each position, we look at Table 2 to
obtain its corresponding Pi value. For instance, P; is P, 1,
which is 0.50. P, is Py,, which is 0.25. Therefore, the encoding
for that DNA sequence is: 0.50, 0.25, 0.50, 0.25, 0.25, 0.25,
0.25, 0.50, 0.50, 0.00.

In the Naive Bayes classifier, we have w;.1 for i €{1, ...,
n), wi——1fori€{n+1, ..., 2n}, p=P@x: | ¢)) for i {1, ...,
n}, and p;=P(x;,lc.1) fori€ {n+1, ..., 2n}. Suppose we have
the positional profiles generated from the positive examples
and negative examples as shown in Table 3 (a) and (b),
respectively.

Assume that we want to encode the following DNA sequence:
ATTCGACAAC. We first look up the corresponding P(N,1)
values from the positive positional profile and then the negative
profile. Table 4 shows these values. The Bayes feature mapping
considers both positive and negative encodings. Thus, we obtain
the encoded code as a vector of length 20: [0.5, 0.25, 0.50, 0.25,

Table 2
Example of position profile

Nucleotide Position (i)
m 12 3 4 5 6 1 & 9 10

0.50 050 0.25 0.00 025 025 000 050 050 0.00
025 025 025 025 025 025 025 025 000 0.00
0.00 0.00 0.00 0.00 025 025 0.00 000 025 025
025 025 050 075 025 025 075 025 025 075

Q0>
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Table 3
Positional profile for example 2

Nucleotide(n) Position (i)
1 2 3 4 5 6 7 8 9 10

(a) Positive positional profile

A 0.50 0.50 025 0.00 025 025 0.00 0.50 0.50 0.00
C 025 025 025 025 025 025 025 025 0.00 0.00
G 0.00 0.00 0.00 0.00 025 025 0.00 0.00 025 0.25
T 025 025 050 0.75 025 025 0.75 0.25 025 0.75

(b) Negative positional profile

A 025 050 050 000 025 025 050 0.25 050 0.00
C 025 000 025 025 025 050 025 025 025 0.50
G 025 0.25 0.00 025 050 0.25 0.25 0.50 0.00 0.50
T 025 025 025 050 0.00 0.00 0.00 000 025 0.00
Table 4

Encoding using bayes feature mapping

Position (i) 1 2 3 4 5 6 7 8 9 10
Nucleotide A T T C G A C A A C

P; (positive)®  0.50 0.25 0.50 025 0.25 025 0.25 0.50 0.50 0.00
P; (negative)® 025 025 025 025 050 025 025 025 050 0.50

* This is the P(a;|c;) value in Eq. (10).
b This is the P(ajlc—1) value in Eq. (10).

0.25, 0.25, 0.25, 0.5, 0.5, 0.0, 0.25, 0.25, 0.25, 0.25, 0.50, 0.25,
0.25, 0.25, 0.5, 0.5]. This vector, representing features of the
DNA sequence, is then input to the SVM classifier.

Example 2. : Illustration of Bayes feature mapping

The Naive Bayes classifier is guaranteed to be optimal
only when the attributes are independent in the given class.
However, assumption of independence may not always hold.
Thus, the estimation of the distribution of X; may not be

Training Set

accurate. In addition, the Naive Bayes classifier assumes
each position is equally important, which might not be true
in the case of splice site prediction. Some positions may be
essential while others may be trivial. The idea here is to use
the Bayes mapping to project the data into a new feature
space and then use linear SVM to determine the optimal
weight vectors. We expect this to improve the classification
accuracy gained by the Naive Bayes classifier while
maintaining the simplicity in computation. A numerical
illustration of the prediction process using the proposed
SVM-B is given in Fig. 4.

4. Experimental design

We test the relative performance of the combined Bayes
Mapping and SVMs method (denoted as SVM-B) in
recognizing true splice sites, with a series of 10-fold cross
validation experiments. We compare the performance of the
proposed SVM-B method with Naive Bayes classifier, SVMs
with linear kernel (SVM-L) and SVMs with polynomial
kernels (SYM-P) with the d-value equal to 2 or 3. As a
benchmark, we use the traditional sparse encoding method
(Jones & Watkins, 2000) for these SVMs methods.

We report the results in terms of accuracy, precision, recall
and F-measure, the common measures used in data mining
research (Witten & Frank, 2000). These measures are defined
as follows:

Accuracy = (tp + m)/(tp + tn + fp + fn) (12)
Precision = tp/(tp + fp) (13)
Recall = tp/(tp + fn) (14)

Test Sample

e

- TTCTT..TAATA+
Original 'lacToclTTTCT+
DataSet 1 - o

I JCATCC..TACAT -
 JAGAAT..AAATA -
{ |AAATG. ATACA"

1

1

1
TGGCT..ACTAG || \

1

1

1

Positional R e e
Profiles
A:0.230.260.28 ... 0.28 027 0.26
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Fig. 4. Numerical illustration of the algorithm.
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Table 5
Tlustration used in measures
Real Predict

True False
True Tp Fn
False Fp tn

F —measure = (2 X Precision X Recall)/(Precision

+ Recall) (15)

where tp is the number of sequences with real splice sites which
are predicted to be true (true positives), tr is the number of
sequences without real splice sites which are predicted to be
false (true negatives), fp is the number of sequences without
real splice sites which are predicted to be true (false positives),
fn is the number of sequences with real splice sites which are
predicted to be false (false negatives). They are illustrated in
Table 5.

Accuracy represents the percentage of correct predictions.
Precision measures the ratio of the number of correctly
predicted splice sites to the total number of predicted splice
sites. Recall is the ratio of the number of correctly predicted
splice sites to the total number of real splice sites.

Larger values of accuracy, precision, and recall represent
good classification performance.

We formulate two categories of hypotheses to statistically test
the difference between SVM-B and benchmarked methods—
Naive Bayes classifier, SVM-L, SVM-P (d=2) and SVM-P (d=
3)—in terms of solution quality (prediction accuracy, precision,
recall), and computational efficiency (CPU times).

Hypothesis Ha: There is no difference in solution quality
obtained by SVM-B and benchmarked methods.

Hypothesis Hb: There is no difference in computational
efficiency between SVM-B and benchmarked methods.

Two data sets, Dsmall and Dlarge, obtained from the open
literature (Weber, 2001) are used for the experiments. They
contain 1000 and 10,000 nucleotide sequences of splice site data,
respectively. All the sequences are 50 bases long, and for each
sequence the GT-AG structure occurs in the middle. Both datasets

Table 6
Computational results for a small data set (Dsmall)

contain examples of true splice sites as well as false splice sites.
Each data set is randomly split into ten subsets of equal size. Each
time, one subset is used for testing, and the rest are combined and
used for training. First, the positional profiles are estimated for the
true splice sites from the positive examples in the training set and
for false splice sites from negative examples. We assume that the
sequences in the training set are representative of all DNA
sequences. Therefore, entries of the positional profiles for the true
and false splice sites can be approximated with the observed
frequency of occurrence of given nucleotides at given positions in
the positive and negative examples of the training set,
respectively. This is to estimate the posterior probability
P(xiklcj). G €{l,...n}.k€{A T, C, G},.je{1,— 1)) from the
training set, where c; means the true splice sites, c._ | means the
false splice sites, and x; represents the ith nucleotide. Then, the
logarithms of each posterior probability log(P(xlc))) are input to
alinear SVM. The open source software SVMlight, which can be
downloaded from hittp://www.support-vector.net, is used for the
SVM learning and classification (Joachims, 1999). Parameter C of
the SVM classifiers is empirically set to be 150 based on our
experiments (result not shown).

We also perform a theoretical analysis in order to provide
some theoretical evidence to support the proposal that our
method is a better and simpler classifier for recognizing true
splice sites. We use the Vapnik-Chervonenkis (VC) dimension
(Vapnik, 1995; Blumer, Ehrenfeucht, Haussler, & Warmuth,
1989) as a benchmark. The VC-dimension of a classifier is
defined as the largest number of vectors that can be separated in
all possible ways. The VC-dimension of a classifier often
involves the dimensionality of the feature space. Given some
machine f, let & be its VC dimension; then % is a measure of s
power. Vapnik showed that with probability 1 —n,

h(log(2R/h) + 1) —log(n/4)
R

TestBrr(e) < TrainErr(a) + \/
(16)

‘

where 7 ranges from 0 to 1, TrainErr(a) and TestErn(«) are the
training error and testing error, respectively, and R is the number
of the data points in the training set. This gives us a way to
estimate the error on future data based only on the training error
and the VC-dimension of the classifier.

Methods Statistics Performance measures
Accuracy Precision Recall F-measure CPU time®*
Naive Bayes Average 87.8 89.0 86.9 . 89.2 0.05
SD 37 33 5.1 - -
SVM-L™ Average 86.6 88.2 85.1 86.6 29
SD 26 2.5 6.6 - -
SVM-P* (d=2) Average 88.9 89.3 88.8 89.0 35
SD 2.7 3.6 39 - -
SVM-P" (d=3) Average 89.8 20.9 88.8 89.8 4.9
SD 32 3.6 4.6 - -
SVM-B* Average 89.2 90.9 87.8 89.3 0.8
SD 34 39 53 - -

# Unit in scconds; +C=150.
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Table 7
Paired-t tests for a small data set (Dsmall)
Methods Statistics SVM-B
Accuracy  Precision  Recall CPU time
Naive t-value 1.98 3.79 ~-0.27 43.19
Bayes P-value 0.04 0.002 0.40 0.000
SVM-L t-value 4.12 4.07 221 —83.82
P-value 0.001 0.001 0.03 0.000
SVM-P (d=2) t-value 1.00 —0.34 1.09 —60.57
P-value 0.170 0.37 0.15 0.000
SVM- P(d=3) t-value -0.13 -~2.03 .52 —113.0
P-value 0.450 0.04 0.08 0.000

5. Results and analyses
5.1. Experimental results

The results of the experiments are shown in Tables 6-9.
Tables 6 and 7 summarize the computational results and paired-¢
test for a small data set (Dsmall), where the accuracy, precision,
recall and CPU times were averaged from the ten-fold cross
validation experiments. Their standard deviations were also
computed. Based on the average precision and recall, we then
computed the overall F-measure.

As can be seen from the computational results, in terms of
accuracy and F-measure, the proposed SVM-B method out-
performed Naive Bayes classifier and SVM classifier with linear
kernel and polynomial kernel of d=2 for a small data set
(Dsmall). The results of SVM classifier with polynomial kernel
of d=13 were slightly better. The paired-t test indicated that the
proposed SVM-B method is significantly better than Naive
Bayes classifier in terms of prediction precision and SVM-L
(with sparse encoding) in terms of prediction accuracy and
precision. The differences in other results, however, were not
statistically significant. In terms of computational efficiency, as
we can see in the tables, the proposed method was significantly
faster than the conventional SVMs with both linear kernels and
polynomial kernels. However, it was slower than the Naive
Bayes classifier.

Tables 8 and 9 summarize the computational results and
paired-t test for a large data set (Dlarge). As can be seen from
Table 8, when the Dlarge data set was used, the proposed SVM-B

Table 8
Computational results for a large data set (Dlarge)

method outperformed all the other methods. The paired-f tests
indicated that the proposed SVM-B method is significantly better
than the Naive Bayes classifier in terms of prediction precision
and recall. Also, the proposed method was significantly better
than SVM-P (d=2) in terms of prediction accuracy and SVM-P
(d=3) in term of prediction recall. The differences in other
results, however, were not statistically significant. In terms of
computational efficiency, as can be seen from the tables, our
proposed method was significantly faster than the conventional
SVMs with both linear kernels and polynomial kernels, but
slower than the Naive Bayes classifier. The differences in
computational times were all statistically significant.

5.2. Theoretical analysis

Intuitively speaking, a smaller VC-dimension should
correspond to a simpler model. Under identical training errors,
a smaller VC-dimension corresponded to a smaller upper bound
on the test error. Table 10 lists the upper bounds of VC-
dimensions for the SVM classifiers compared here (estimated by
the SVM training program). As we can see here, when the Bayes
kernel was used, the upper bound of VC-dimension was much
smaller than that of the linear kernel and those of the polynomial
kernels in conjunction with sparse encoding. This suggests that
in general SVM with Bayes kernel generalizes better than SVMs
with linear and polynomial kernels.

5.3. Discussion

In summary, the computational results and theoretical
analysis confirmed that the proposed Bayes feature-mapping
scheme works well with the linear SVMs. Its performance was
fairly robust especially when applied to a large data size
problem. This is a very appealing feature, as most real world
applications involve analyzing huge volumes of genome
sequence data. Moreover, the standard deviations of the
computational results were all relatively small, indicating that
the ten-fold experiment was reliable and appropriate for splice
site prediction. This is a very desirable property considering the
overwhelming amount of DNA sequences that needs to be
processed.

Methods Statistics Performance measures
Accuracy Precision Recall F-measure CPU time®
Naive Bayes Average 91.1 90.8 91.5 91.1 0.48
SD 1.0 1.6 1.4 - -
SVM-L™* Average 91.0 . 91.5 90.3 90.9 46.2
SD 1.3 14 2.0 - -
SVM-P* (d=2) Average 89.2 89.0 894 89.2 328.2
SD 0.7 0.8 1.3 - -
SVM-PH(d=3) Average 90.7 91.0 90.5 90.7 491.3
SD 0.9 1.0 1.3 - -
SVM-B™ Average 91.4 92.0 90.6 91.3 10.8
SD 0.9 13 14 - -

* Unit in seconds; +C=150.
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Table 9
Paired-t tests for a large data set (Dlarge)
Methods Statistics  SVM-B
Accuracy  Precision  Recall CPU time

Naive t-value 2.42 7.29 —4.75 532.73
Bayes P-value 0.02 0.000 0.000 0.000
SVM-L t-value 2.30 2.01 —0.39 —228.27

P-value 0.02 0.04 0.35 0.000
SVM-P t-value 3.19 2.04 2.60 ~-752.36
(d=2) P-value 0.005 0.04 0.014 0.000
SVM-P t-value —0.26 —2.79 4.08 —-707.37
(d=3) P-value 0.40 0.01 0.001 0.000
Table 10

Upper bound of VC-dimension given by the SVM classifiers

Algorithm Average upper bound of VC dimension®
Dsmall Dlarge

SVM-B 82 136

SVM-L 173 937

SVM-P (d=2) 295 1203

SVM (d=13) 396 1810

? The result is averages of the upper bounds obtained with 10-fold cross
validation.

6. Conclusion

Predicting splice sites is an important part of gene structure
prediction. During the past years, several emerging machine
learning methods such as artificial neural networks, perceptron,
and support vector machines have been employed to approach
the problem with sufficiently high accuracy in recognizing true
splice sites. However, almost all of the existing methods are
computationally extensive; therefore, splice site prediction
remains a major bottleneck in gene annotation,

In this paper, we presenied a novel idea of constructing a
mapping method from Bayes’ rule. This mapping method was
then integrated with SVM classifier and applied to the problem of
splice site prediction in DNA sequences. Experiments on two data
sets with ten-fold cross validation demonstrated that our method
outperforms the benchmark methods: Naive Bayes classifier,
SVM classifiers with linear kernel and polynomial kernel (d=2
and d=13) in terms of accuracy, precision, recall, and F-measure.

The results confirmed that the proposed SVM-B method
enhances the solution quality of Naive Bayes classifier for DNA
splice site prediction. Furthermore, when the speed of compu-
tation was taken into consideration, the method was as quick as
the Naive Bayes classifier and performed much faster than SVM
with non-linear kernel methods. Solution quality, computational
speed, user-friendliness, flexibility, and simplicity are some of the
key but conflicting factors in selecting and implementing new
technology. The common industry practice is to trade off
simplicity and speed of performance for solution quality. Our
study showed that by carefully selecting the proper encoding
method, the linear SVMs can perform as well as complicated
SVMs with polynomial kernels for splice site prediction, while
maintaining computational efficiency. Therefore, with the
proposed method there is no need for us to trade reduced
accuracy for improved efficiency in SVMs applications.

Bayes classifier is a simple generative learning method and
SVM classifier represents a type of discriminative learning
method (Ng & Jordan, 2001). This proposed method represents
an effort in integrating the generative learning methods into
discriminative learning. With the success of the proposed
method, more complex generative learning methods, such as
Hidden Markov Model (HMM) may be integrated into SVM
classifiers in a similar fashion. Therefore, future research can
introduce some other model building techniques such as HMM
or improved Bayes' rules to improve the results of splice site
prediction in DNA sequencing.

References

Acir, N., & Giizeli, C. (2004). Automatic recognition of sleep spindles in EEG by
using artificial neural networks. Expert Systems with Applications, 27(3),
451-458.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1989).
Leamability and the Vapnik-Chervonenkis dimension. Journal of the
Association for Computing Machinery, 36(4), 929-965.

Brendel, V., & Kleffe, J. (1998). Prediction of locally optimal splice sites in plant
pre-mRNA with applications to gene identification in Arabidopsis thaliana
genomic DNA. Nucleic Acids Research, 26, 4748-4757.

Brown, M. P. 8., Grundy, W. N., Lin, D., Cristianini, N., Sugnet, C., Furcy, T. S,
et al. (2000). Knowledge-based analysis of microarray gene expression data
using support vector machines. Proceedings of the National Academy of
Science USA, 97(1), 262-267.

Burge, C., & Karlin, S. (1997). Prediction of complete gene structures in human
genomic DNA. Journal of Molecular Biology, 268(1), 78-94.

Burges, C. (1998). A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2(2), 1-47.

Cai,C.Z,,Han,L. Y., Ji, Z. L., Chen, X., & Chen, Y. Z. (2003). SVM-Prot: Web-
based support vector machine software for functional classification of a protein
from its primary sequence. Nucleic Acids Research, 31(13), 3692-3697.

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector
machines and other kernel based lewrning methods. Cambridge, UK:
Cambridge University Press.

Degroeve, S., De Baets, B., Van de Peer, Y., & Rouz, P. (2002). Feature subset
selection for splice site prediction. Bioinformatics, 18, S75-583.

Hu, H., Pan, Y., Harrison, R., & Tai, P. C. (2004). Improved protein secondary
structure prediction using support vector machine with a new encoding
scheme and an advanced tertiary classifier. [EEE Transactions on
Nanobioscience, 3(4), 265-271.

Hua, S., & Sun, Z. (2001). Support vector machine approach for protein
subcellular localization prediction. Bicinformatics, 17(8), 721-728.

Joachims, T. (1999). Making large-scale SVM Learning practical, In B.
Scholkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods—
Support vector learning. Cambridge, MA: MIT-Press.

Jones, D., & Watkins, C. (2000). Comparing kernels using synthetic DNA and
genomic data. Technical report. Department of Computer Science,
University of London, UK.

Lim, M. E,, Sim, J. S., Chung, M. G., & Park, S. H. (2003). Prediction of
transcription factor binding sites with suffix arrays. Genome Informatics, 14,
400-401.

Mache, N., & Levi, P. (2000). Parallel neural network training and cross
validation on a Cray T3E system and application to splice site prediction in
human DNA. Technical report. Stuffgart, Germany: Institute of Parallel and
Distributed High Performance Systems.

Min, J. H., & Lee, Y. C. (2005). Bankruptcy prediction using support vector
machine with optimal choice of kernel function parameters. Expert Systems
with Applications, 28(4), 603-614.

Ng, A., & Jordan, M. (2001). On discrminiative vs. generative classifiers: A
comparison of logistic regression and Naive Bayes Neural Information
Processing Systems—NIPS (pp. 841-848) Canada.



Y. Zhang et al. / Expert Systems with Applications 30 (2006) 73-81 81

Noble, W. S. (2004). Support vector machine applications in computational
biology. In B. Schoelkopf, K. Tsuda, & J. P. Vert (Eds.), Kernel methods in
computational biology (pp. 71-92). Cambridge, MA: MIT Press.

Patterson, D. J., Yasuhara, K., & Ruzzo, W. L. (2002). Pre-mRNA secondary
structure prediction aids splice site prediction. Pacific Symposium on
Biocomputing, 223-234.

Pertea, M., Lin, X,, & Salzberg, S. L. (2001). GeneSplicer: A new computational
method for splice site prediction. Nucleic Acids Research, 29(5), 1185-1190.

Reese, M. G., Eeckman, F. H., Kulp, D., & Haussler, D. (1997). Improved splice
site detection in genie. Journal of Computational Biology, 4(3), 311-323.

Scholkopf, B., Burges, C., & Smola, A. (1999). Advances in kernel methods:
Support vector learning. Cambridge, MA: The MIT Press.

Shin, K. 8., Lee, T. S., & Kim, H. J. (2005). An application of support vector
machines in bankruptcy prediction model. Expert Systems with Applications,
28(1), 127-135.

Smola, A., & Schotkopf, B. (2004). A tutorial on support vector regression.
Statistics and Computing, 14, 199-222.

Sonnenburg, S., Ratsch, G,, Jagota, A., & Muller, K. R. (2002). New methods for
splice site recognition. Proceedings of the international conference on
artificial neural networks. Lecture notes in computer science. (pp. 329-336)
Vol, 2415.

Stockwell, D. R. B. (1993). LBS: Bayesian learning system for rapid expert
system development. Expert Systems with Applications, 6(2), 137-147.
Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.
Vapnik, V. N. (1998). Statistical learning theory. Adaptive and learning
systems for signal processing communications and control. New York, NY:

Wiley.

Wang, H. C., Kuo, H. C,, Chen, H. H., Hsiao, Y. Y., & Tsai, W. C. (2005). KSPF:
Using gene sequence patterns and data mining for biological knowledge
management. Expert Systems with Applications, 28(3), 537-545.

Weber, R. (2001). DNA splice site prediction with kernels and voting.
Proceedings of international conference on mathematical and engineering
techniques in medicine and biological sciences, Nevada.

Witten, I. H., & Frank, E. (2000). Data mining: Practical machine learning iools
and techniques with JAVA implementations. San Prancisco, CA: Morgan
Kaufmann.

Zhang, L., & Luo, L. (2003). Splice site prediction with quadratic discriminant
analysis using diversity measure. Nucleic Acids Research, 31(21),
6214-6220.

Zien, A., Ratsch, G., Mika, S., Scholkopf, B., Lengauer, T., & Muller, K. (2000).
Engineering support vector machine kernels that recognize translalion
initiation sites. Bioinformatics, 16(9), 799-807.






