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Abstract

Motivated by the potential field of static electricity, a binary potential func-
tion classifier views each training sample as an electrical charge, positive or
negative according to its class label. The resulting potential field divides the
feature space into two decision regions based on the polarity of the potential.
In this paper, we revisit potential function classifiers in their original form
and reveal their connections with other well-known results in the literature.
We derive a bound on the generalization performance of multi-class potential
function classifiers based on the observed margin distribution of the training
data. A new model selection criterion using a normalized margin distribution
is then proposed to learn “good” potential function classifiers in practice.

Keywords: Multiclass classification, consistent classification rules,
potential function rules, kernel rules, margin distribution, large margin
classifiers, generalization bounds, model selection

1. Introduction

For thousands of years, various civilizations have observed “static elec-
tricity” where pieces of small objects with the same kind of electricity re-
pelled each other and pieces with the opposite kind attracted each other.
In pattern recognition and machine learning, potential function rules were
motivated from the underlying property of static electricity to predict the
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unknown binary nature of an observation, a problem commonly known as
binary classification. Potential function rules were originally studied by Aiz-
erman, Braverman, Rozonoer, and several other researchers in the 1960’s
([1, 2, 3, 4, 10, 17, 18]). In its simplest form, a potential function rule puts
a unit of positive electrical charge at every positive observation and a unit
of negative electrical charge at every negative observation. The resulting po-
tential field defines an intuitively appealing classifier: a new observation is
predicted positive if the potential at that location is positive, and negative
if its potential is negative.

In this paper, we revisit potential function rules (PFRs) in their original
form and reveal their connections with other well-known results in the lit-
erature. We derive a bound on the generalization performance of potential
function classifiers based on the observed margin distribution of the training
data. A new model selection criterion using a normalized margin distribu-
tion is then proposed to learn “good” potential function classifiers in practice.
There is an abundance of prior work in the field of pattern recognition and
machine learning. It is beyond the scope of this article to supply a complete
review of the area (for more comprehensive surveys on various subjects, the
reader is referred to Devroye et al. [30], Duda et al. [35], Bishop [14] for patter
recognition, to Schélkopf and Smola [58], Shawe-Taylor and Cristianini [59]
for kernel methods, to Anthony and Biggs [5], Kearns and Vazirani [45] for
computational learning theory, and to Mitchell [53], Hastie et al. [42], Vap-
nik [65] for machine/statistical learning). Nevertheless, a brief synopsis of
some of the main findings most related to this article will serve to provide
a rationale for the use of PFRs in pattern recognition and machine learning
applications.

1.1. The Bayesian Decision Theory and Plug-In Decisions

A multiclass classification problem aims at foretelling the unknown nature
of an observation. More formally, an observation is a d-dimensional vector
of numerical measurements denoted as x € R?. The unknown nature of the
observation, z, takes values in a finite set K = {1,2,..., K}, the set of class
labels. A mapping f : R* — K, which is named a classifier, predicts the class
label of an observation.

Does there exist an “optimal” classifier for a given classification task?
Under a probabilistic setting, the Bayesian decision theory [11, 13] gives an
affirmative answer — the Bayes decision rule (or called the Bayes classifier). If
the pair of observation and its nature, (X, z), is a random variable with a joint



probability distribution p(x, z), the Bayes classifier, f*, selects the class la-
bel for an observation x as f*(x) = argmax, g Pr(z|x) = argmax, .y p(x, 2).
The optimality of f* is defined by the minimum probability of error, i.e.,
Pr[f*(x) # 2] < Pr[f(x) # 2| for any f : R? — K, which is well-known
as the Bayesian probability of error. This probability measures the ‘hard-
ness’ of a classification problem. It can theoretically be evaluated if the
joint distribution is known, but the calculation may be (and usually is) in-
tractable in practice due to the min operator inside the integral. Several tight
bounds were proposed in the literature for computational approximations of
the Bayesian probability of error [25, 41, 6].

The crux of the Bayesian approach is the difficulty of determining the
joint distribution. Plug-in decision [30] is a natural way of applying the
Bayesian classification in practice, where an approximated Bayes classifier is
constructed using an estimated joint distribution. Depending upon the way
in which the joint distribution is estimated, plug-in decision rules fall roughly
into the parametric approaches and the nonparametric approaches.

In a parametric approach, the unknown joint distribution is described
by a set of parameters based on certain structural assumptions, e.g., condi-
tional independence of attributes within each class [49, 34, 15, 50], mixture
of Gaussians [46, 61, 19], and mixture of Bernoullis [61]. The values of
the parameters are obtained by optimizing a loss function, e.g., a likelihood
function. In many applications, a parametric approach presents an efficient
means of incorporating prior knowledge about the data. For example, Hof-
mann et al. [43] used a latent variable model (aspect model) to remove the
statistical dependence among words in a document for textual data. Barnard
et al. [7] explored several generative models to describe statistical relevance
between images regions and associated texts. Veeramachaneni and Nagy [66]
studied the interpattern dependence, named style context, for Optical Char-
acter Recognition. Intraclass style (statistical dependence between patterns
of the same class in a field) and interclass style (statistical dependence be-
tween patterns of different classes in the same field) were formalized to derive
style-constrained Bayesian classification.

The performance of a plug-in decision rule is determined by the quality
of the estimated joint distribution. Ben-Bassat et al. [12] analyzed the sen-
sitivity of Bayesian classification under multiplicative perturbation on the
joint distribution. Devroye [26] presented a more general result showing that
if the estimated posterior probability is close to the true posterior proba-
bility in Li-sense, the error probability of the plug-in decision rule is near
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the Bayesian probability of error. Nevertheless, does the error probability
converge to the Bayesian probability of error if more training samples are
obtained to approximate an arbitrary joint distribution? This is a question
regarding the universal consistency of a classification rule. Loosely speak-
ing, a universally consistent rule [30] guarantees us that taking more samples
suffices to roughly reconstruct an arbitrary, fixed, but unknown distribution,
hence to asymptotically achieve the optimality. While parametric approaches
are efficient, in general they are not universally consistent.

In 1977, Stone proved the existence of a universally consistent rule [60].
He showed that any k-nearest neighbor classifier is universally consistent if
k is allowed to grow with n, the sample size, at a speed slower than that
of n. Since then several rules have been shown to be universally consistent
including histogram rules [37] and kernel rules [30]. We put these approaches
under the category of nonparametric plug-in decisions because of the under-
lying nonparametric estimation of joint distributions. Representing all the
data with a nonparametric model is sometimes preferred over summarizing
it with a parametric model because of the rich detail held by very large data
sources [40].

1.2. Classifier Selection and Complexity Regularization

Universal consistency describes the asymptotic behavior of a classifier,
i.e., the number of training samples goes to infinity. For real-life problems,
however, the size of a training set is finite and, usually, fixed. This leads
to a basic question in classifier design: how do we select a classifier, which
performs well on future examples, from a given set of classifiers based on a
given finite training set? Two basic principles were investigated in the liter-
ature for classifier selection: empirical risk minimization [63] and complexity
regularization [51].

In order to achieve good generalization performance, the empirical risk
minimization principle seeks for a classifier that minimizes the training error
(empirical risk). Vapnik and Chervonenkis presented a theoretical ground
for empirical risk minimization [63]. It was shown that if the ‘capacity’ of C,
the set of classifiers to choose from, is sufficiently restricted, minimizing the
empirical risk guarantees a classifier whose performance is close to that of the
best classifier in C. Here the capacity of C is defined by the VC-dimension
of C. The above result reveals two competing factors in classifier selection.
On one hand, a low capacity model set may not contain any classifier that
generalizes well. On the other hand, too much freedom may over fit the
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data resulting a model behaving like a refined look-up-table: perfect for the
training data but poor on generalization.

This suggests that a classifier, built on a finite training set, generalizes
the best if the right tradeoff is found between the training accuracy and the
capacity of the model set. Complexity regularization applies the above idea
to search for a classifier that minimizes the sum of empirical risk and a term
penalizing the complexity [64, 8, 51, 9, 16]. Amongst various definitions of
the penalty term, margin-based approaches received broad attention in the
literature. A series of results were obtained that exhibit the intrinsic con-
nection between generalization and different measures of margin distribution
(e.g., maximal margin, margin percentile, soft margin) [65, 48, 59, 55, 39].
These theoretical results led to the discovery of new learning algorithms (e.g.,
support vector machines [65], margin distribution optimization [36], large
margin multiple-instance learning [21], margin trees [62], large margin semi-
supervised learning [67], dissimilarity-based learning [54], similarity-based
learning [52, 22|, large margin nearest neighbor classification [69, 44]), large
margin conditional random fields [47], and new interpretations of known
learning algorithms (e.g., boosting [57, 56], additive fuzzy systems [20]).

Classifiers derived from complexity regularization are not necessarily con-
sistent. Lugosi and Zeger [51] presented a sufficient condition for universal
consistency of a particular method of complexity regularization, structural
risk minimization, using Vapnik-Chervonenkis complexity classes [65]. As
discussed in Section 1.1, several nonparametric plug-in decision rules are uni-
versally consistent. A question arises naturally: Can we combine complexity
regularization with a universally consistent nonparametric plug-in decision
rule to improve the generalization performance thereof? This is the question
that we attempt to address in this article. In particular, we focus on the
regularization of multiclass PFRs based on a margin distribution.

1.3. A Historical Timeline of Potential Function Method

Potential function method was invented by Russian researchers in the
1960’s to model a general function reconstruction problem [1, 2, 3, 4, 10, 17,
18]. Various algorithms were proposed to tackle the reconstruction problem
for specialized purposes. In a series of three articles, Aizerman, Braverman,
and Rozonoer proposed algorithms using a potential function for binary clas-
sification [1], estimation of the posterior probability of binary classes [2], and
approximating a functional relationship [3].



Under the specific problem settings, various convergence results were ob-
tained [1, 17, 18, 4]. In [1], a learning method for potential function classifier
was shown to converge in finite number of iterations when the two classes
are separable by the given family of potential functions. Under the same
assumption, a probabilistic bound was derived in [4] that can be used as a
termination condition for the training process. The bound is essentially a
sample complexity bound in computational learning theory [45]. Braverman
and Pyatnitskii [17] established criteria for the choice of potential function
used in convergent learning algorithms. In a later work, they estimated the
rate of convergence [18].

In the simplest form, a binary PFR views each training sample as an
electrical charge, positive or negative according to its class label. The result-
ing potential field divides the feature space into two decision regions based
on the polarity of the potential. In the original formulation of PFR [1, 17],
the electrical charge of each training sample is assigned a weight coefficient.
In this article, we consider a simpler form with uniform weights. The basic
idea of binary PFRs can be generalized to the multiclass scenario, in which
a potential function is defined for each class using the training observations
within that class. A new observation is then assigned a label corresponding
to the class of the highest potential value. In addition to the intuitive ap-
pealingness, good scalability is a main advantage of PFRs in applications of
a ‘dynamic’ nature, i.e., the structure of the problem may vary over time.
Adding new classes does not affect the existing potential functions. Remov-
ing or merging classes influence only the potential functions of the classes
involved in the operation.

1.4. An Overview of the Article

The contributions of this article are given as follows:

e Connections of PFRs with the Bayes decision theory. Given charge
density functions a priori, we present conditions under which a PFR
is essentially optimal under the framework of the Bayesian decision
theory. We then look into a more practical scenario where a PFR
is built from a given set of training observations with unknown but
fixed charge density functions. We show that a PFR is, in this case,
equivalent to a plug-in decision rule using kernel density estimation,
hence universally consistent.



o A new generalization bound for PFRs. We discuss the classifier selec-
tion for PFRs using complexity regularization. An upper bound on the
generalization performance for PFRs is derived using a margin distri-
bution.

o A simple classifier selection method for PFRs. Motivated by the above
generalization bound, we propose a simple kernel selection method us-
ing a normalized margin distribution. Extensive experimental results
on artificial data and real applications demonstrate the competitive
performance of the proposed framework.

The remainder of the paper is organized as follows: Section 2 discusses
PFRs from the perspective of the Bayesian decision theory. Conditions under
which PFRs are equivalent to Bayes decision rules are presented. Section 3
shows a connection between a PFR and a plug-in decision rule using kernel
density estimation. Section 4 presents a generalization bound for PFRs based
on a margin distribution. Motivated by this bound on the generalization
performance of PFRs, we propose in Section 5 a model selection method using
a normalized margin distribution. In Section 6, we explain the experimental
studies conducted and demonstrate the results. We conclude in Section 7.

2. Potential Function Rules and The Bayes Decision Theory

We start with a brief review of electrostatic potential functions [38]. We
then introduce the general form of binary potential function classifiers. Fi-
nally, we demonstrate connections between PFRs and the Bayes classifiers.

2.1. Potential Function Rules

Given a positive point charge at location y, the electrostatic potential
at location x is proportional to Fly\\’ which is called the electrostatic point
potential function. For a ‘cloud’ of positive charges with density p; over a
space X, the electrostatic potential function ® is, modular a constant scale
factor,

d(x) = er—(y)aly.
x [[x =¥l
Therefore, if p, and p_ are respectively the charge density of positive and
negative charges over X, the electrostatic potential function ® is, modular a



constant scale factor, defined as

||X—Y|| / ||X—Y||

The above electrostatic potential function can be generalized by replac-
ing the electrostatic point potential function with a general point potential
function ¢ : X x X — R:

O(x) =

¢ew=4p4w¢@JMy—4p4w¢@JMy. (1)

Note that the electrostatic potential at a location x is not well defined if x
falls in the support of p, or p_ due to the fact that T y” is oo when x =y.
This limitation, however, can be avoided by a general potential function (1)
with a proper choice of the point potential function .

Given p, and p_, let Q. and Q)_ be the total positive charge and negative

charge, respectively:

Q+ Z/XM(X)dx, Q- :/Xp_(x)dx.

We normalize the potential function (1) by the sum of the total positve and
total negative charges:

P(x) Q+ p+(y) -
= Y(x,y)dy — / Y(x,y)dy -
G+ Gl YT oo MY
It is not difficult to check that £ +(x) and £ 22(_") can be viewed as probabil—
ity densrcy functions because they are nonnegative over X and fx 2409 dx =

fx dx =1, i.e., normalized charge densities are probability densfcy func-
tlons Therefore we define conditional probability density functions as

ploxt) = 295, iy = 22, )
and prior probability as
Pr(t) = 52, Pr(-)= 5 )



Consequently, the above normalized potential function is rewritten in terms
of (2) and (3) as

P(x)
@+ +Q-

Hence a binary potential function classifier is defined as
f(x) = sign (2(x))
= sign (Pr() | a1 )utxydy — Prio) [ ooy ) @)
X X

— Pr(+) / Py (x, y)dy — Pr(—) / p(y| ) (x, y)dy -

i.e., the polarity of the potential determines the class label.

2.2. PFRs and Bayes Classifiers

Next, we present a Bayesian interpretation of the above potential function
classifier. In particular, we show that with a proper choice of 1, the decision
boundary of (4) is identical to that of the optimal Bayes classifier. Our first
choice of 1) is the Dirac delta function which is zero everywhere except at the
origin, where it is infinite,

and which also satisfies the identity

/_OO d(x)dx = 1.

[e.9]

Theorem 1. Let p, and p_ be the charge densities; p(x|+), p(x|—), Pr(+),
and Pr(—) be defined by (2) and (3). If we choose ¥ (x,y) = §(x —y), the
decision boundary of the potential function classifier (4) is equivalent to that
of the Bayes classifier for conditional probability distributions p(x|+) and
p(x|—), and class prior probabilities Pr(+) and Pr(—).

A proof of Theorem 1 is given in the Appendix. We may interpret the
above theorem from the perspective of Fourier analysis. Specifically, for a
translation invariant point potential function, i.e., ¥(x,y) = ¥(x — y), the
evaluation of [, p(y|+)¢(x — y)dy is essentially the convolution of p(x|+)
and 1 (x), which is equivalent to computing the inverse Fourier transform of
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the product of the Fourier transforms of p(x|+) and ¥ (x). When ¢ is the
Dirac delta function, potential function classifiers are equivalent to Bayes
classifiers because the Fourier transform of the Dirac delta function is the
constant 1.

Theorem 1 holds independent of the specific forms of the charge densities,
i.e., it is distribution free. Nevertheless, the unboundedness of the Dirac
delta function makes it a poor choice in numerical implementations. Next,
by assuming that the Fourier transform of the charge densities have finite
support, we extend the conclusion of Theorem 1 to a wider class of translation
invariant point potential functions.

Theorem 2. Let p; and p_ be the charge densities; p(x|+), p(x|—), Pr(+),
and Pr(—) be defined by (2) and (3). Let p(w) and p_(w) be the Fourier
transform of p(x|+) and p(x|—), respectively, i.e.,

pelw) = [ plo)e i,
X

pw) = [ plxl-)e e ax
X

where i is the complex number /—1. We assume that p, and p_ have finite
support, namely, there exist constants sy and s_ such that p,(w) = 0 for
lw| > s+ and p_(w) = 0 for ||w| > s—. For any translation invariant
point potential function Y(x,y) = Y(x —y), if its Fourier transform satisfies
that ¥(w) = 1 for ||w| < s = max(sy,s_), the decision boundary of the
potential function classifier (4) is identical to that of the Bayes classifier
using conditional probability distributions p(x|+) and p(x|—), and class prior
probabilities Pr(+) and Pr(—).

A proof of Theorem 2 is given in the Appendix. The above theorem states
that if the charge densities are ‘band limited’ (i.e., its Fourier transform is
zero everywhere outside a hyperball of finite radius s) and the point potential
function has value 1 over the support of charge densities in the frequency
domain, the potential function conveys the same information as the class
conditional density. In the one dimensional case, a possible choice of 1 is a
sinc function,

sin27s(z — y)]
m(z —y)

U(z,y) = = 2s - sinc[2s(z — y)],
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whose Fourier transform is a rectangular window function

1 jw| <s
U(w) = wl = = rect (i> :
0 |w|>s 2s
This choice of ¥ can be generalized to higher dimensional spaces: for a
hyper-rectangular window function in a d-dimensional frequency domain,

. d
1 i < 7v € 17 d 7
W)= s e AT ()
0 |wi| >s,Jiel,d 7 2s
the corresponding point potential function is

d
U(x,y) = (25) Hsinc[Qs(mi —y)] - (5)

Theorem 2 has implications on the practical design of potential function
classifiers using a finite training set. This will be discussed in the next section.
In statistics, an idea similar to Theorem 2 had been explored in nonpara-
metric density estimation. Watson and Leadbetter [68] discussed the Lo error
of kernel density estimates and related it to the spectral property of the den-
sity function (i.e., characteristic function). They concluded that the form
of the optimal estimate depends critically on the tail of the characteristic
function. Davis [23, 24] showed that using a sinc kernel, with a carefully cho-
sen scale factor, the Fourier integral error estimate is asymptotically optimal
within a constant factor for all densities. The analyses in [68, 23, 24] were
performed under the L, measure. Devroye [27, 28, 29] developed a series of
asymptotic performance bounds for kernel estimates using the L; measure.
Compared with the Ly error, the L; error has a clearer physical interpre-
tation. As consistent density estimates yield consistent classifiers, a plug-in
decision rule using these kernel density estimates is naturally consistent.

3. Potential Function Rules as Plug-in Decision Rules

The main difficulty of using the potential function classifier (4) in practice
is that charge densities are usually unknown. An approximation method is
therefore presented in this section. Next, we first generalize the above binary
potential function classifier to multiple classes. All the results discussed
in Section 2 can be extended to the multi-class scenario. We then present
an approximation on PFR and a discussion on its connection with plug-in
decision rules.
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3.1. An Approximation on Multi-class Potential Function classifiers

Let z € K = {1,..., K} be the class label of observation x € X. The
observation-label pair (x,z) is generated by a distribution F, which is a

mixture of K unknown distributions Fi, ..., Fk,
K
F=> P,
k=1

where Py is the marginal probability of label k, i.e., P, = Pr(z = k); F}, is
the cumulative distribution function of x conditioned on z = k. Analogous
to (1), (2), and (3), we define ¥y, as a class potential function - the potential
with respect to Py F}:

Bix) = Pe [ Dxy)dF(). (6)
X
A multi-class potential classifier is defined as

f(x) = argglax Dp(x) . (7)

Note that the class potential (6) is the product of Py and the expectation
of the point potential function ¢ with respect to Fy, i.e.,

Qp(x) = BEy o [¢(x,y)] -

Although F' is unknown in most applications, a training set is usually given.
Therefore, we approximate the above expectation by the sample mean. Let
S = {(x1,%1),...,(xe;2)} € X x K be the training set, a random i.i.d.
sample from F.

Definition 1 (Sample Class Potential Function). Given a point poten-
tial function ¢ : X x X — R, we define the sample class potential of an
observation x with respect to class k and sample S as

0u0.8) = 10 3 w(x. ) (®)

A multi-class sample potential classifier is then defined using sample class
potential functions as follows.
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Definition 2 (A Multi-class Sample Potential Function Classifier).
Given S, a set of i.i.d. training samples generated by an unknown distribu-
tion F' on X x K, we define a potential classifier fs: X — K as

fs(x) = arginax or(x,S). 9)

Clearly, the sample class potential (8) can be written as

181
e8] = g g 2 Ve

where S = {(x,2) € § : z = k}. It is not difficult to observe that |$“
an estimate of the marginal probability P,. Furthermore, if we restrict v
to be a nonnegative translation invariant function and [, 1 (x)dx = ¢ < oo,
it is straightforward to show that @ >k ¥(X,%;) is an estimate of the
probability density of F} at location x using the kernel density estimation
(¢ is the kernel function). Hence, for any given x, ¢x(x,S) is proportional
to an estimation of the posterior probability Pr(z = k[x).

This implies that the family of multi-class potential function classifiers
(9) includes those plug-in decision Bayes classifiers that use kernel density
estimation. Therefore, if ¢ is chosen from regular kernels, the universal con-
sistency of PFRs follows from the universal consistency of kernel rules (De-
vroye et al. [30]). Universal consistency characterizes an asymptotic property
of a decision rule - a decision rule converges to the optimal solution as the
number of training sample is sufficiently large. For kernel rules, universal
consistency requires the ‘width’ of the kernel to decrease to 0 as the sample
size increases to infinity. Next, we show that under the conditions of The-
orem 2, for a fixed width of ¢ (i.e., L in (5) is fixed), with high probability
the prediction of a sample PFR converges to that of the Bayes classifier for
any given input.

It is worth noting that when the point potential function H:chyH is used, the
above PFR is called Hilbert rule. Hilbert rules were investigated by Devroye,
Krzyzak, and Gyorfi for density estimation, regression and classification [31,
32, 33]. An interesting property of Hilbert rules is that it does not have
a smoothing parameter. Consistency theory of Hilbert rules was developed

in [31, 32, 33].

3.2. The Potential Gap and the Generalization Performance
For a set of numbers aq, ..., arx, the k-th smallest number is denoted by
agry, ie., aqy < ag) < -+ < agy. We define the potential gap of a multi-class
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classifier f given in (7) on an observation x by
I'(x) = @(x)(x) — Q(x-1) (%), (10)

which is the difference between the largest class potential and the second
largest class potential at x. It should be clear that I'(x) > 0. The following
theorem demonstrates that under the conditions of Theorem 2 (class con-
ditional densities are band limited), the performance of a sample potential
classifier (9) is closely related to the potential gap.

Theorem 3. Let S = {(x1,21),...,(x¢,2¢)} C R? x K be a random i.i.d.
sample from F, a mixture of K distributions Fy,..., Fx: F = Zszl P.Fy.,
where Py is the marginal probability of class k; Fy, defined by a density
function py(x), is the distribution of x for class k. The conditional density
functions are band limited, i.e., there exists s > 0 such that py(w) = 0 when
lw|| > s forallk =1,..., K, where pp(w) is the Fourier transform of p(x).
For any x € R? the following inequality holds:

r(x)2

Prlfs(x) # f*(x)] < 2Ke 200 (11)

where fs(x) is the sample potential function classifier given in Definition 2
with (5) being the point potential function, f*(x) the Bayes classifier, and
['(x) the potential gap.

A proof of Theorem 3 is given in the Appendix.

Theorem 3 suggests that for any given x and a band limited joint prob-
ability density function, the probability that the sample potential function
classifier behaves differently from the Bayes classifier depends on two param-
eters: the potential gap I'(x) and the sample size ¢. The larger the potential
gap and the sample size, the more likely that the sample potential function
classifier makes the optimal prediction. In this sense, the generalization per-
formance of fs depends on the potential gap. Nevertheless, Theorem 3 does
not tell us how to pick a sample size ¢, neither could we compute the right
hand side of the inequality (11), because the potential gap is unknown in
practice. Motivated by the potential gap, we present, in the next section, a
probabilistic bound on the generalization performance of a sample potential
function classifier based on the margin of fs, which is closely related to the
sample version of the potential gap,.
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4. A Generalization Bound for Potential Function Classifiers

As indicated in Definition 1, the sample class potential ¢x(x,S) is an
estimate of the class potential ®;(x). Analogous to the potential gap, we
define the margin of fs on an observation (x,z) € R? x K as

V(Xv Z,S) = ¢Z(X> S) - ¢(K*1)<X? S) . (12)

Given a classifier fs and a desired margin o > 0, we denote by £ the bounded
amount by which fs fails to achieve the desired margin a on sample (x, z),

f = rnin{oz, [a - 7(X7 Z, 8>]+} )

where [z], = x if £ > 0 and 0 otherwise. For an observation (x;,z;) € S, we
define its margin shortage, &;, as

&= min{a, [a - 7(Xi7 Zi) S(Z))]+} ’ (13)

where S§(i) = S — {(xi, z;)}. Note that both £ and &; € [0, a].

We illustrate the concepts of margin and £ in Figure 1 under a 3-class
scenario. The solid curve in Figure 1(a) shows the variations of the margin
for an observation, (x,3), as a function of its sample class potential ¢3(x,S).
The sample class potentials of x with respect to class 1 and class 2, i.e,
01(x,S) and ¢o(x,S), are fixed. For a desired margin o = 0.3, the dashed
curve represents the value of &: the bounded amount by which the margin
is less than a. Figure 1(b) shows three sample class potential functions
constructed from 12 training observations. Each class is associated with a
distinct marker: circle, triangle, or square. The point potential function
defined in (5) with s = 0.1 is used in the evaluation of the sample class
potential functions. We visualize the margin for each training observation
using an arrow where the margin is computed as the difference between the
vertical coordinate of the tip of the arrow (¢,(x,S)) and that of the end of
the arrow (¢(2)(x,S)). The numerical value of a margin is also listed along
with the arrow. For observations (—0.5,2) and (4, 3), the arrows are absent
because their margins are 0.

It is not difficult to relate margins to classification errors. Positive margins
suggest correct classifications. Negative margins imply mis-classifications.
There are only two scenarios that result in the 0 margin: ¢.(x,S) = ¢(x)(x,S)
= Ok-1)(%,S) or Py (x,S) > ¢.(x,S) = dk—1)(x,S). In the former case,
which is rare in practice, the correctness of the classification depends on the
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Figure 1: Sample class potential functions and margins under a 3-class scenario. (a)
The solid curve describes the variation of margin v(x,3,S) with respect to the sample
class potential ¢3(x,S) when the sample class potential ¢ (x,S) and ¢2(x,S) are fixed.
The dashed curve represents &, the bounded amount by which the margin is less than
a = 0.3. (b) The three curves represent sample class potential functions built upon 12
training observations (denoted by the markers on the horizontal axis) using a 1-d sinc point
potential function with s = 0.1. Each arrow corresponds to a margin, which is computed
as the difference between the vertical coordinate of the tip of the arrow and that of the
end of the arrow. The numeric value of the margin is given along with the arrow. The
arrow is absent if the margin is 0.
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Figure 2: (a) Plots of &;, the bounded margin shortage, as a function of the margin
¥(Xi, 2, S(2)). When « approaches 0, % converges to the indicator function I(x;, z;, S(7)).
(b) Plots of the upper bound on the probability of error in (16) as a function of the desired
margin a.

tie breaking strategy, which is usually random. The second case is more
common, for example the two 0 margins in Figure 1(b). It leads to mis-
classifications. If we introduce the following indicator function

1 7(x,2,8) <0

0 otherwise

I(x,2,8) = { , (14)

S I(xi,2,S8(i)) is an upper bound on the number of mis-classified obser-
vations in a leave-one-out evaluation.

The connection between the bounded margin shortage &;, which is defined
in (13), and a classification error is more subtle. If we divide §; by «, we have

¢, 1 v(xi, 2, S(1)) <0
o= 1 o<t aSi) Sa (15)
“ 0 0 < (x4, 2i,S(7))

Figure 2(a) compares % with I(x;, z;,S(4)) as a function of v(x;, z;, S(7)). It
is clear that % is always greater than or equal to I(x;, z;,S(7)). Therefore,
Zle % is an upper bound on the number of mis-classified observations in
a leave-one-out evaluation. Next, we present a generalization bound based
on the desired margin a and the bounded margin shortage &; for any given
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bounded point potential function . Without loss of generality, we assume
that ¢ : X x X — [0, 1].

Theorem 4. Let S = {(x1,21),...,(X¢,20)} C X x K be a random i.i.d.
sample from an unknown distribution F', and fs : X — K a sample potential
function classifier defined according to (9) using a given point potential func-
tion 1 : X x X' — [0,1]. For a fized 6 € (0,1), a desired margin o > 0, and a
new random sample (x, z) generated from F, the following bound holds with
probability at least 1 — 9 over S:

QI”‘r

L
1
] < =
Prelz 7 Js(x |S—ez:: la 20

+ 25 (1 + %) In2/0) (1)

where & is defined in (13).

A proof of Theorem 4 is given in the Appendix. It is worthwhile to
note that there are two sources of randomness in the above inequality: the
random sample S and the random observation (x, z). For a specific S, the
above bound is either true of false, i.e., it is not random. For a random sample
S, the probability that the bound is true is at least 1 — 0. The inequality
shows that the error probability, Prr [z # fs(x)|S], of a sample potential
function classifier depends on three terms. The first term, - f 1 %, is an
upper bound on the leave-one-out training error. The second and the third
terms are determined by the training sample size ¢, the desired margin «, and
the confidence parameter §. In general, for fixed ¢ and ¢, the generalization
performance of fs is a trade-off between training error and the desired margin
a. On one hand, a smaller a produces a tighter bound on the training error,
but larger values for the second and the third term. On the other hand, a
larger o can reduce the values of the second and the third term, but makes
the first term a looser bound on the training error. This is illustrated in
Figure 2(b) using margins generated from a uniform distribution on [—0.1, 1].
The values of the upper bound are shown as a function of the desired margin
a. In the next section, we discuss classifier selection methods motivated by
the above bound on the generalization performance.

5. Margin Distributions and Classifier Selection

The learning of a potential function classifier is essentially the selection
of a point potential function (or its parameters). Figure 2(b) shows that

18



7 T T : 18 :
——06=0.9487, support region = [-0.0020, 0.0368] ——0=0.9487
++++++ 0=1.5811, support region = [-0.0118, 0.1221] 16k " s 0=15811 | |
6F = = =0=2.2136, support region = [-0.0310, 0.2068] H : [Y = = =0=2.2136
[
141 ,' ',
2y = f
T +12p r
2 = i
g g y
A ar g 1r 1
2 E
E Zos
2 =2
S g
9-:-5 5 06
L2 ot °
TN . 04
~
1+ B N
Tl 02
o ., /
‘ o e . A ‘ ‘ LTGRO
-0.05 005 01 0.15 02 0.25 -0.4 -0.2 0 02 0.4 06 08 1
Margin Normalized Margin
(a) Probability density of margin. (b) Probability density of normalization

margin.

Figure 3: Distributions of margin and normalized margin under a Gaussian point potential
lx—yll?

function e~ o2  with different values of o.

given ¢ and ¢, the upper bound on the probability of error has a minimum.
Hence it is tempting to choose a classifier that minimizes the upper bound
in (16). Unfortunately, this is not an effective approach in practice because
the bound is usually loose even for large training sets with 50, 000-100, 000
observations.

As we discussed in Section 4, the desired margin « plays a key role in
estimating the generalization performance. If we define

-k

= argmin v(xi, 2, S(7)),
i=1,...,0,v(xi,2;,8(4)) >0

it is clear from Figure 2(a) that %Zle & achieves the minimum (which is
equal to the training error) when 0 < a < y(x;+, 2+, S(i*)) 2. Although a
larger value of a decreases the values of the last two terms in (16), it also
increases the value of %Zle % However, for a fixed value of «, the bound
is tigher if the margins are concentrated more towards the positive end than
towards the negative end. This suggest that we may select classifiers based
on the distribution of margins.

However, a direct comparison of margin distributions may not be mean-

ingful because the support region of a margin distribution largely depends

2This is because there will be no observations whose margin falls into the sloped region.

Hence } Zle % =3 Zle I(x;, 2;,S(i)), which is the leave-one-out training error.
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on the selected point potential function ¢ and its parameters. For example,

Figure 3(a) shows the probability distributions of margins under a Gaussian
ey

point potential function (i.e., ¥(x,y) =€~ 2 ) using the MAGIC dataset
from UCI Machine Learning Repository (details of the dataset are given in
Section 6). The support region of the margin distribution varies significantly
with the values of o.

To make margins comparable under different point potential functions or
different parameter values, we propose the following normalization procedure.
For any given x € R?, we define a normalized sample class potential, ggk(x, S),

as
(bk(xv 8) )
S lei(x,S)]

Clearly, the above normalization does not change the order of sample class
potentials, hence the classification decisions. The normalized margin of fs
on an observation (x,2) € R? x K is then defined as

A(x,2,8) = ¢.(x,8) — dx_1)(x.S) .

Figure 3(b) shows the probability densities of the margins after normaliza-
tion. In both figures, the densities are shown under a log transformation. As
we discussed in Section 3.1, if ¢ is a nonnegative translation invariant func-
tion that is integrable over X, ¢y (x, S) is proportional to an estimation of the
posterior probability Pr(z = k|x). The normalized class potential, ¢y (x,S),
is an estimate of the posterior probability Pr(z = k|x). Hence the normalized
margin 4 can be viewed as an estimation on the posterior probability gap.

In classifier selection, we would like to choose a classifier whose margins
concentrate towards the positive end. In terms of normalized margin, this
suggests that 4 should concentrate towards 1. We propose the following
metric:

ék (X7 S) =

h(fs) = var; — mean, (17)
where mean; = %Zle?y(xi,zi,S(z’)) and vary = 7 Zle[ﬁ(xi,zi,S(i)) -
means|?. Clearly, the desired normalized margins should have large mean
and small variance, i.e., we select a classifier that minimizes h.

6. Experimental Results

We compare the proposed model selection method using normalized mar-
gin distribution with a traditional approach using the leave-one-out training
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Table 1: The comparison results of model selection using leave-one-out error and the
margin distribution metric defined in (17). £iqin: the size of training set; £i.s¢: the size of
test set; d: feature dimension; K: the number of classes; ng: the number of experiments in
which the proposed method performs better than leave-one-out model selection; ng: the
number of experiments in which the proposed method and leave-one-out model selection
have same test error; ny: the number of experiments in which the proposed method
performs worse than leave-one-out model selection.

Dataset lirain  Liest d K ng ng nw
Balancescale 570 55 4 2 7 37 6
Bloodtransfusion 600 148 4 2 29 13 8
Breastcancer 600 83 9 2 10 39 1
Ecoli 200 136 7 8 15 22 13
Glass 150 64 9 6 22 21 7
Imageseg 2100 210 19 7 15 22 13
Tonosphere 320 31 34 2 b) 29 16
Letter 18000 2000 16 26 32 7 11
Liver 300 45 6 2 23 14 13
Magic 10000 9020 10 2 44 4 2

Multi-Featurel 1800 200 216 10 9 34 7
Multi-Feature2 1800 200 64 10 7 43 0
Multi-Feature3 1800 200 240 10 9 39 2

Satimage 5835 600 36 6 16 23 11
Sonar 150 58 60 2 15 20 15
Spectfheart 200 67 4 2 3 37 O

Survival 206 100 3 2 22 8 20
Vehicle 800 46 18 4 8 31 11
Vowel 890 100 10 11 3 33 14
Winequality 6000 497 11 7 17 O 33

error. The experiments were conducted on 20 datasets from UCI Machine
Learning Repository. Each dataset is randomly divided into a training set
and a test set. We built a potential function classifier with Gaussian point
potential function for each dataset. The bandwidth parameter o of the point
potential function is determined from 20 different values (0.03, 0.04, 0.05,
0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, and
4.0), using two strategies: (1) minimizing the leave-one-out training error;
(2) minimizing the margin distribution metric defined in (17). The above
procedure was repeated for 50 runs. In each run, test errors were recorded.
In Table 1, we list the names of the datasets, the sizes of training and test
sets, the dimension of the feature space, the number of categories, and the
number of runs in which the proposed model selection method outperformed
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(ng), tied with (ng), and underperformed (ny ) the leave-one-out approach.
Among the 20 datasets, the proposed method outperformed the leave-one-
out model selection on 15 datasets (i.e. np > ny ), which are highlighted in
Table 1. The two approaches tied on 1 dataset (Sonar). This suggests a very
competitive performance of the proposed method.

7. Conclusions

In this paper, we revisited potential function rules (PFRs) in their orig-
inal form and reveal their connections with other well-known results in the
literature. We derive a bound on the generalization performance of potential
function classifiers based on the observed margin distribution of the training
data. A new model selection criterion using a normalized margin distribution
is then proposed to learn “good” potential function classifiers in practice. We
evaluated the proposed model selection method over 20 UCI data sets. In
comparison with the traditional model selection using leave-one-out training
error, the margin distribution based metric demonstrates very competitive
performance.
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Appendix A.

Proof of Theorem 1: Because §(-) is a Dirac delta function, it follows that
/Xp(.VIJr)5(X —y)dy = p(x|+), /Xp(y\—)5(x —y)dy = p(x|-).
Therefore,
Prce) [ ply)sx—y)dy x PrCelx)
Pro) [ ply|)atx—y)dy o Pr(=l).

i.e., the potential of the positive (negative) class is proportional to the posterior probabil-
ity of the positive (negative) class. Hence the decision boundary of (4) is identical to that
of the Bayes classifier. O
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Proof of Theorem 2: For a translation invariant 1,
[ e y)dy = [ ylvix—yiiy = 71 (@) ¥(w)

where F 1 is the inverse Fourier transform. Because p. (w) = 0 for ||w| > s and ¥(w) =1
for |Jwl|| < s, we have py(w)¥(w) = p4(w). It follows that

Pr(+) / P(y1+)8(x, y)dy = Pr(+)p(x|+) o Pr(+]x).
Similarly,
Pr(-) / p(y]- (%, ¥)dy = Pr(=)p(x|-) o< Pr(~|x).

The potential of the positive (negative) class hence is proportional to the posterior prob-

ability of the positive (negative) class. Therefore the decision boundary of (4) is identical

to that of the Bayes classifier. O
We need the following Lemma to prove Theorem 3.

Lemma 1. For any ay,as,...,ax € R and by, by,... . bg € R, if |ar — bi| < € for all
k € K, we have |a;y — bijy| < € for all j € K.

Proof: For any j € K,
aj) ~ €S A(j+1) TES - S (k) T €

Because by > aj — € for all k£ € K, the number of b;’s that are greater than or equal to
agj) — € is at least K — j + 1. Therefore b(;y > a(;) — €. Similarly, for any j € K,

an tesap tes--<ap te

Because by, < ay + € for all k£ € K, the number of b;’s that are less than or equal to ag) t+e
is at least j. Therefore b(;) < a(;) + €. This completes the proof.

Proof of Theorem 3: We introduce a new random variable S, = |{(x,2) € S : z = k}|.
For any given x,

Es, {S;EMF& [Y(x, Y)]} = PiByp, [(x,5)] = ®p(x).

Er[¢r(x,S)]

S, 1
Es, {Epsk 71687,6 Z P(x,x;)

i=k

We rewrite ¢r(x,S) as ¢r(x,S) = %Zle I(z; = k)i (x,x;) where the indicator function
I(zi = k) =1if z, =k, I(2; = k) = 0 otherwise. Because (x;,%)’s are i.i.d., so are
I(zi = k)Y(x,x;). In addition, from (5) it is clear that |I(z; = k) (x,x;)| < (28)¢ . Tt
follows from Hoeffding’s inequality that for any given x, ¢ >0, and k=1,..., K,

2062

Pr[|dk(x,8) — Pp(x)| > €] < 2e @27 . (A1)
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Because the conditional densities are band limited, it follows from the proof of Theo-
rem 2 that
(I)k(x) = PkEyNFk W’(X»Y)] S8 PI‘(Z = k|X) .

Hence we have f*(x) = argmax;, ®r(x). From Lemma 1, we know that if |¢x(x,S) —
D (x)| < @ for k =1,..., K, |pk)(x,S) — k) (x)| < @ Combining this with the
facts that

DPre(x)(X,S) = dk)(x,S) and D g+ () (x) = Py (x) ,

it is straightforward to derive that fs(x) = f*(x). Therefore,

I'(x
Pr (|64, 8) — @4(0)] < 00 Wk = 1,...,4 <Prlfs(o) = 7). (A2)
Let € = % Using (A.1), (A.2), and the union bound, we have

Prfs(x) # f*(x)] < Pr |3k, |dp(x,S) — Pp(x)| > —= | < 2Ke 2@ |

I'(x) r(x)?
e

This completes the proof. O

In order to prove the upper bound on generalization of sample potential function
classifiers in Theorem 4, we need the following Lemma and an inequality attributed to
McDiarmid.

Lemma 2. Let §(i) =S — {(x4,2)}. For a change of one (x¢,2¢) to (X¢, %), denote
S = {(x1,21), s (X5 20-1)5 (Rey 22), (Kot 2e41), - -+ (Xe, 20) 3

We define S;(i) = S — {(xi, )}, hence Si(t) = S(t). Let x € X be any observation in X
and z € K a class label. The following inequalities hold for any point potential function
P : X xX—[0,1]:

66 28) 2580 < =, (43)
e 86) ~16e 2 80| < o, (A4)
0120, 8(0) — iz S0 € s A (A.5)

Proof: It is readily checked that for any z € K|
E 50 ) = 7 T s oxg)| 2=
B k) - A T voxy)| iz £

‘%w@(’xi) o ﬁ Eq:z,j#i 1/’(X7 X])‘ < % if z =z
‘mﬁzzj:zw(x,xj)‘ <7 if 2 # 2

|¢Z(X7S) - ¢z(xa8(l))| =
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From (12) we have

(x,2,8) = v(x,2,8(1)] = [¢:(x,8) = b —1)(x,8) = ¢2(x,8(1)) + (1) (x, (1))
< % + |bir—1)(%,8) = drr—1)(x,8(i))| < %,

where the last step is based on Lemma 1.

It is not difficult to show that for any z € K,

i = t, otherwise,

¢-(x,8(i)) — ¢.(x, St(l))‘ = 0 when

0 if 24 #£ 2, 2t £ 2
. - [SeE=al itatani=s
(ZSZ(X’ (Z)) B ¢Z(X’ t(Z))‘ o ‘ﬁ (X7Xt) - ﬁw(xa )A(t) if Zt =z, 2t =z m
ﬁw(x, X¢) if2p =2, 3y # 2
Therefore,
75,2, 86)) = (%, 2, 8:()|
< J0n (%, S(0)) = 02, S| + [ 1) (%, 8(0)) = dae1(x,81(0)
2
< —
- 4-1
Finally, for i # t and any z; € K,
O (x5, S(0)) = 02, (%2, S1(0))|
0 if 2 # 25, 2 # 2z
’ﬁz/)(xi,fit)‘ if 20 # 2iy 2t = 2 1
= . . . < —
‘g_%l//(xi,xt) - g_%i/f(xzth) itz =2, =20 — £-1
’ﬁw(xi,xt) if 20 = 25, 2t # 2
Therefore,
763,24 S(0)) = 73,22, $1(0)|
. - . > 2
< [ 00 S(0) = 02, (5 S0 + o001 (53 (1)) = By (20, D) < 77

This completes the proof. O

Lemma 3 (McDiarmid’s Inequality). Let X, Xs,..., X, beindependent random vari-
ables taking values in a set X. Suppose that f : X" — R satisfies

sup If(x1,. %) — f(X1,. 0, Xy, X)) < gy
X1,...,Xn,X;EX
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for constants c;,1 < j < n. Then for every e > 0,

J

—2¢2
Pr[f(Xl, e 7X’I’L) — Ef Z 6] S exp (W) .
j=1

Proof of Theorem 4: Consider the loss function

]" lf V(X’Z7S) §07
9(x,2,8) = ¢ 2225 i g < y(x,2,8) < o,
0, otherwise.

It is not difficult to show that
Prr [z # fs(x)|S] < Epis [9(x,2,5)] ,

where the equality holds when o = 0. Hence it suffices to show that Ep|s [g(x,2,S)] is
bounded by the right side of (16)

We break Eps[g(x, z,S)] — Z 16 =Epislg(x,2,8)] - %Zle 9(x;,2;,8(i)) into
A+B+C:

A = EF\S[g(X, 238)] - EFLS‘

1 4

Z Zg(xa 2, S(Z))] )
i=1

- EF[g(va Zj, S(]))]v

L
B = Eps [; > o, S(0)

C

EF[g(Xj72J7 XZ7ZZ7

N\r—l

where (x;, ;) is any fixed sample in S.
We first look at A. It is straightforward to show that

) 1 2
|g(X,Z,8)—g(X,Z,S(Z))‘ < ah/(xwzas)_ (X z S( ))| 7
where the last inequality is based on (A.3). Therefore

14
A=Eps {2 > lox.2.8) — glx. z,su))]}

:el
< Bris|p Yol 8) — g5 S0))]| < (4.6)

Next, we look at B. It is not difficult to verify that

{EFS[ > gtz S(0 H Pl 27, 5]
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For a change of one (x¢, 2¢) to (X¢, 2¢), we denote

St = {(X17 Zl)) cevy (thla thl)a ()A(ta 21‘,)7 (Xt+1; Zt+1)7 ceey (xfa ZZ)}

From (A.4) we have for any z € K

9(x, 2, 8(1) — g(x, 2,8,(1)) \ < é "y(x,z,S(i)) —v(xazvn?t(i))\ S A=

Therefore,

Zg x,2,8(7)

Z F1S,8, [ x,z,5(i)) g(x,z,gt(i))}|

sup

Eps
(x1,21) 505 (Xe,20),(X¢,2¢)

- .
Ep s, [K ZQ(X, 2, 8¢(i))

i=1

9(x,2,8(0)) — 96,2, 8,0)| < 5 (A7)

= sup
(1,21 (20 (S0 20)

sup Z F|S. 8,

(x1,21)55(%e,20), (Xt’Zt)

IN

By (A.7), we apply the McDiamid’s inequality to get

9,9
Pr(B > ¢) < exp ( 0‘2&1) , (A.8)

Next, we look at C'. It is clear that

Er

V4
5> gk su))] = Erlo(x;. 2. 5(5))].
=1

Let g(S) = %Zle 9(xi,2;,8(i)). For a change of one (x¢,2¢) to (X¢, 2¢), denote

‘SA't = {(Xh Zl)a R (thlv ztfl)v ()A(t; ét)v (Xt+1; Zt+1)7 ey (XE; Z@)}

For any i # t, it follows from (A.5) that for any z; € K

oo 0.S(0) = 9 20 S0)] € [ 6xe 20.80) =102 80)] € 7
Therefore,
sup 9(8) — 3(S)
(x1721)7...,()([,2@),(5(“50
1] ¢
= sup 1Y g 20, (@) = (9, 2 S (0) + D g(xi, 20, Si(d))
(x1,21) 5.5 (%X0,20),(X¢,2¢) i—1 i=1,it
¢
1 1 A 1 2
< S+ sup v 9(xi, 2, 8(1)) — g(xi, 20, S (D)) || < 5 + —;- (A9)
(X1,21),~~<7(X2722),(5€t72’t)z ’L_;: |: } 4 al
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By (A.9), we apply the McDiarmid’s inequality to get

—20e3
Pr(C > ez) <exp <(1+2)2> . (A.10)

—720e? —20€2 1)
o (24 con(2) -
(1+3)
and solving for €; and e, we obtain

21n(2/6) 1 1\ /[2In(2/6)
N7 62(2%) 7

Finally, setting

€1 =

Because B 4+ C' > €1 + €5 implies B > €1 or C > €9,
Pr(B+C >¢€+6)<Pr(B>e¢ orC>e)<Pr(B>e¢e)+Pr(C>e) <4

So, with probability at least 1 — ¢, B + C < €1 + €. Because A < %, B+C <e€ +e
implies that A+ B+ C < € + €3 + g Therefore, with probability at least 1 — 6,
A+B+C<61+€2+€a 1e

¢
1 2 4 In(2/0)
Epislg(x,2,S)] z; g(xi, 2, S Ea + <1+ a) T

It is easy to verify that ¢ Zle 9(xi,2:,8(1) = 7 El 1 >t Therefore, with probability at
least 1 — ¢,

1 ~& 2 4 n(2/8
EFS[Q(X’Z’SHSe;i+m+<1+a) n(%/ )

This completes the proof. (|
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