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Abstract

In many applications, the manipulations require only part of the degrees of freedom (DOFs) of the

end-effector, or some DOFs are more important than the rest. We name these applications prioritized

manipulations. The end-effector’s DOFs are divided into those which are critical and must be controlled

as precisely as possible, and those which have loose specifications, so their tracking performance can

be traded-off to achieve other needs. In this paper, for the class of general constrained rigid multibody

systems (including passive joints and multiple closed kinematic loops), we derive a formulation for

partitioning the task space into major and secondary task directions and finding the velocity and

static force mappings that precisely accomplish the major task and optimize some secondary goals

such as reliability enhancement, obstacle and singularity avoidance, fault tolerance, or joint limit

avoidance. The major task and secondary goals need to be specified in term of velocities/forces. In

addition, a framework is developed to handle two kinds of common actuator failures, torque failure and

position failure, by reconfiguring the differential kinematics and static force models. The techniques

are tested on a 6-DOF parallel robot. Experimental results illustrate that the approach is practical

and yields good performance.

Index Terms— Robot kinematics, task decomposition, fault tolerance, parallel robots, multibody

systems.

1 Introduction

A manipulator is kinematically redundant if the number of active joints is greater than the num-

ber of degrees of freedom (DOFs) of its end-effector. This extra freedom offers many advantages

over conventional nonredundant manipulators including reliability improvement [26], [27], dexterity

improvement [30], [12], plan selection [32], [23], fault tolerance [31], [17], singularity and workspace

obstacle avoidance [1], [18], joint limit avoidance [2], [3], and energy (joint torque) minimization [10].

In all the references listed above and most of the other previous works on redundant manipulators,

the redundancy comes from the joint space (redundant joints). However, in many applications the

redundancy can also occur in the Cartesian space (operational space) [28]. For example, in welding,

the positions of the welding rod are crucial to the performance while rotations about the welding rod

may be irrelevant. Similarly, when pointing a camera at distant objects [16],[22], orientation is more

important than position. Thus the DOFs related to orientation (for welding) or position (for pointing

a camera) can be viewed as redundant in the sense that they can be sacrificed for some particular

reasons such as enhancing system reliability, avoiding obstacles and singularities in the workspace,
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optimizing kinematic performance indices, tolerating actuator failures, etc.

Following the concept of task priority in [28], we call these manipulations prioritized manipulations.

A manipulator performing prioritized manipulation tasks is called a prioritized manipulator. The

end-effector’s DOFs during a prioritized manipulation can be divided into major DOFs (MDOFs),

which are critical in performing a task, and secondary DOFs (SDOFs), which are less important.

For example, when a manipulator executes a pointing task, tracing the trajectory of the object is

given higher priority than avoiding obstacles in the workspace because the object’s trajectory must

be tracked exactly, whereas loose tolerances are typically sufficient for avoiding obstacles. Thus the

MDOFs are those DOFs related to orientation of the camera (or end-effector), and the SDOFs are the

remaining DOFs. In general, both MDOFs and SDOFs can be a mixture of position and orientation.

Explicit treatment of MDOFs and SDOFs is important because the degree of importance of the

end-effector’s DOFs can be directly taken into consideration. Prior methods compromise MDOF

performance to achieve secondary goals. This makes weight selection tricky–weighting an SDOF in-

correctly can result in MDOF failure. In contrast, a prioritized manipulator can be controlled to

accomplish a given MDOF motion with maximal performance. At the same time, an optimal SDOF

motion is found to achieve, as “closely” as possible, secondary goals including reliability enhancement,

workspace obstacle and singularity avoidance, fault tolerance, or joint limit avoidance. Since priori-

tized manipulations may be performed either by kinematically redundant or “ordinary” manipulators,

the theory developed here is applicable to both.

This article focuses on the problems of finding velocity and static force mappings that exactly

generate the desired MDOF motion, optimally achieve secondary goals, and can handle actuator

failures. The problem is solved in two steps: constructing the differential kinematics and static force

models (with or without actuator failures) followed by finding the optimal mappings for the given

differential kinematics and static force models. In the literature, there are rich resources on velocity

and static force analysis [5], [9], [14], [29], [34], [35], priority-based task decomposition [24], [28], and

fault tolerance [7], [8], [16], [17], [22], [31], [33]. Our scheme is distinct from the previous work in the

following aspects:

• It derives a formulation for partitioning the task space into major and secondary task directions and

finding the velocity and static force mappings that achieve the major task and optimize some secondary

criteria. Although the concept of priority-based task decomposition is not new [24], [28], the scheme

described in [28] is applicable only to serial manipulators, while our scheme is developed for a more

general class of robots, namely, general constrained rigid multibody systems [34], [35] (including serial

manipulators, a multi-finger hand, multiple cooperative robots, and Gough-Stewart platform) with a
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more general class of secondary criteria. Merlet et al. [24] propose an algorithm to execute the major

task and numerically optimize an arbitrary secondary criterion, which is more general than our scheme

in terms of secondary criteria. Nevertheless, their approach only allows one SDOF, while our scheme

is applicable for more than one SDOF.

• It develops a framework for incorporating two kinds of common actuator failures (torque and position

failures). The torque failure occurs when the actuator can’t provide any torque actively [7], [8] (it is

also referred to as free swing). The position failure acts as if the actuator is locked [16], [17], [22], [31].

Unlike the previous approaches, which are restricted to serial manipulators with torque failures [7], [8],

serial manipulators with position failures [17], [31], or a particular parallel manipulator with position

failure [16], [22], our method is applicable to a more general class of applications, namely general

constrained rigid multibody systems, with torque failures, position failures, or a mixture of two types

failures.

The remainder of this paper is organized as follows. In Section 2, we first summarize the differential

kinematics and static force models for a general constrained rigid multibody system performing prior-

itized manipulation based on Wen and Wilfinger’s work [34], [35]. Then, we develop a reconfiguration

method to treat the torque and position failures. Section 3 derives the optimal velocity and static force

mappings based on several performance indices. Section 4 applies the techniques in Section 2 and 3

to a Gough-Stewart platform performing a 2-DOF tracking task. Finally, we conclude in Section 5

together with a discussion of limitations of the proposed methods.

2 Differential Kinematics and Static Force Models

A prioritized manipulation can be performed by a serial robot, a parallel robot, or in a more

general sense a general constrained rigid multibody system. Any of these manipulators may also be

kinematically redundant. In Section 2.1 the differential kinematics and static force models for general

constrained rigid multibody systems are summarized based on [34], [35]. These earlier works are

extended by considering constrained active joints and prioritized manipulation. The velocity and force

manipulability is discussed in Section 2.2. In the case of actuator failures, reconfiguration methods are

discussed in Section 2.3. To be consistent with [34], [35], we will use the following terminology and

notation:

• Spatial (general) force at a given frame is an m× 1 vector


 torque

force


 (m ≤ 6).

• Spatial (Cartesian) velocity at a given frame is an m× 1 vector


 angular velocity

linear velocity


 (m ≤ 6).
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• For a given matrix G, G̃ denotes a right annihilator of G, i.e., GG̃ = 0.

2.1 Nominal Model

Consider general constrained rigid multibody systems without any actuator failures. Let �θ denote

the generalized joint coordinates, �θa ∈ Rn denote the coordinates of active joints, �θp denote the

coordinates of passive joints, and �τ represent the torque exerted by active joints. The joint coordinates

are partitioned as

�θ =


 �θa

�θp


 . (1)

For a general kinematically constrained rigid multibody system, the differential kinematics model is

given by [34], [35]

�v = JT (�θ)�̇θ (2)

with a general constraint written in terms of the joint velocity vector

JC(�θ)�̇θ = �0 (3)

where �v ∈ Rm is the spatial velocity of the end-effector, �θ is partitioned according to (1). Clearly

the differential kinematics model of serial manipulators is a special case of the above model since we

can let JC = 0 and �θ = �θa. For a general constrained rigid multibody system with passive joints and

multiple closed kinematic loops, JC reflects the geometric constraints, imposed by the configuration

of the system, on the joint (active and passive) velocities. Examples can be found in [34] and [35].

From the principle of virtual work, we have

[ �τT �0T ]�̇θ = �fT�v (4)

where �τ is the torque applied by active joints, �f ∈ Rm is the spatial force (the force that the manipulator

exerts at the end-effector). Since the passive joints can’t apply any torque actively, this is denoted

by �0 on the left side of equation (4). From (3), we have �̇θ = J̃C
�ζ where �ζ is an arbitrary vector

parameterizing the null space of JC . Thus (4) becomes

[ �τT �0T ]J̃C
�ζ = �fTJT J̃C

�ζ .

Because this holds true for any �ζ, we have the force balance equation

[ �τT �0T ]J̃C = �fTJT J̃C
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which can be equivalently stated as 
 �τ

�0


 = JT

T
�f + JT

C
�fC (5)

where �fC is the “internal force” (the force that enforces the constraint (3)). Equation (5) is the static

force model for general constrained rigid multibody systems [34], [35].

In order to find a direct relationship between �v and �̇θa (�τ and �f), we partition JT and JC according

to the dimension of �θa and �θp:

JT =
[
JTa JTp

]

JC =
[
JCa JCp

]
.

Thus equations (2), (3), and (5) can be equivalently written as

�v = JTa
�̇θa + JTp

�̇θp (6)

�0 = JCa
�̇θa + JCp

�̇θp (7)

�τ = JT
Ta

�f + JT
Ca

�fC (8)

�0 = JT
Tp

�f + JT
Cp

�fC . (9)

Solving equations (7) and (9) for �̇θp and �fC yields

�̇θp = −J+
Cp
JCa

�̇θa + J̃Cp
�ξ (10)

�fC = −J+
Cp

T
JT

Tp
�f + J̃T

Cp
�η (11)

where + denotes the Moore-Penrose inverse, �ξ and �η are arbitrary vectors parameterizing the null space

of JCp (N (JCp)) and J
T
Cp
(N (JT

Cp
)), respectively. Substituting (10) and (11) into (6) and (8), we get

the differential kinematics and static force models [34], [35]

�v = J�̇θa + JTpJ̃Cp
�ξ (12)

�τ = JT �f + JT
Ca
J̃T

Cp
�η (13)

where J ∈ Rm×n is the manipulability Jacobian (or in short the Jacobian matrix) defined as

J = JTa − JTpJ
+
Cp
JCa . (14)

When the end-effector DOF priority is considered, �v and �f can be ordered such that

�v =


 �vm

�vs



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�f =


 �fm

�fs




with �vm ∈ Rm1 (�vs ∈ Rm2) denoting the end-effector velocity in the directions or subspace of MDOFs

(SDOFs), �fm ∈ Rm1 (�fs ∈ Rm2) denoting the end-effector force in the directions (or subspace) of

MDOFs (SDOFs), and m1 +m2 = m. Rearranging (12) and (13), we have
 �vm

�vs


 =


 Jm

Js


 �̇θa + JTpJ̃Cp

�ξ (15)

�τ =
[
JT

m JT
s

] 
 �fm

�fs


+ JT

Ca
J̃T

Cp
�η (16)

where Jm ∈ Rm1×n, Js ∈ Rm2×n.

2.2 Velocity and Force Manipulability

Regarding the velocity and force manipulability, we emphasize the following

• Unmanipulable singularity [34], [35] corresponds to configurations at which J loses row rank. In

the serial manipulator case, this is termed a general singularity configuration. It means that there is

some direction or subspace in Cartesian space along which it is impossible to move the end-effector

no matter which joint rates are selected. In the same direction (or subspace), the end-effector cannot

actively exert static forces as desired. That is, �f could be increased or decreased in some directions,

which define the null space of J, with no effect on the value calculated for �τ . A prioritized constrained

rigid multibody system is in an unmanipulable singular configuration if Jm loses row rank, i.e., there

exists unfeasible MDOF Cartesian space motion.

• Unstable singularity [34], [35] corresponds to configurations at which JTpJ̃Cp �= 0. Physically an

unstable singularity means that the end-effector can move even when all active joints are locked. This

is also referred to as self-motion or unactuated task motion.

• Irresolvable internal force [34], [35] corresponds to J̃T
Cp

�η with J̃T
Cp

�= 0. This occurs when the manipu-
lator is over-constrained, i.e., there are more constraints than the number of passive joints. Physically

this implies that some of the constraints may be removed and the constraint forces cannot be uniquely

solved through rigid body formulation alone. Detailed discussions of general over-constrained mecha-

nisms can be found in [11], [13], [15], [19], [36].

• Constrained active joint motion occurs if JT
Ca
J̃T

Cp
�= 0. This can be proven by the following deriva-

tions. First, multiplying both sides of equation (7) by J̃T
Cp

T

gives

�0 = J̃T
Cp

T

JCa
�̇θa + J̃T

Cp

T

JCp
�̇θp. (17)
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Since JT
Cp
J̃T

Cp
= 0, J̃T

Cp

T

JCp = 0. Then (17) becomes

�0 = J̃T
Cp

T

JCa
�̇θa.

Thus the active joint velocity vector �̇θa is restricted to N (J̃T
Cp

T

JCa) where N (J̃T
Cp

T

JCa) = Rn if and

only if JT
Ca
J̃T

Cp
= 0. Physically, constrained active joint motion implies possible reduction in the

number of end-effector’s DOFs.

2.3 Actuator Failures

A common failure for a robotic manipulator is due to actuators [25]. Examples include motor winding

failure, servo controller power failure, bearing failure, gearbox failure, brake failure, etc. Most of the

actuator failures can be characterized as either torque failures or position failures. A torque failure

occurs when the actuator can’t actively exert any torque (or force). It is named the free swinging

failure in [7], [8]. A position failure acts as if the actuator is locked [16], [17], [22], [31], i.e., the joint

can’t change its angle or length. Previous work, including [7], [8], [16], [17], [22], [31], focuses on either

serial manipulators or a particular parallel manipulator, and only one type of failures is allowed. In

this section, we introduce a method to reconfigure the differential kinematics and static force models

of general constrained rigid multibody systems when position and/or torque failures occur.

2.3.1 Torque Failures

Torque failure refers to the loss of torque (or force) on an active joint, for example: a ruptured

seal on a hydraulic actuator, the loss of electric power and brakes on an electric actuator, and a

mechanical failure in a drive system [7]. After a torque failure, the actuator cannot exert any torque

actively. However, the failed joint moves freely under the influence of internal forces (exerted by other

active joints), external forces, and gravity, i.e., the failed joint can move not actively but passively 1.

Therefore, kinematically, an active joint with torque failure can be viewed as a passive joint that

can only move passively. Not surprisingly, for serial manipulators, torque failure leads to unstable

singularity (unactuated task motion). That is why previous work on serial manipulators, such as [7], [8],

discusses the minimization of errors, which are induced by torque failures, based on various measures.

For general constrained rigid multibody systems, however, a torque failure doesn’t necessarily cause an

unstable singularity. One can easily validate the velocity and force manipulability by reconstructing

the differential kinematics and static force models as follows.
1The torque failure presented here is not the only case: for linear actuators a torque failure may result in the joint being locked.

Such a situation is defined as a position failure in Section 2.3.2.
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Without loss of generality, we suppose torque failures occur to the first q active joints. This can

always be done by arranging �θa, �τ , and the corresponding columns of JT and JC . As mentioned

above, we can change the first q active joints (with torque failures) to passive joints. So we define

�̂θa = [θq+1, · · · , θn]
T , �̂τ = [τq+1, · · · , τn]

T consisting of angles and torques of active joints without torque

failures (τi = 0 for i = 1, · · · , q), �̂θp =
[
θ1, · · · , θq, �θ

T
p

]T

to be the angles of passive joints. Then we

partition JT and JC according to the dimension of �̂θa and �̂θp:

JT =
[
ĴTa ĴTp

]
(18)

JC =
[
ĴCa ĴCp

]
(19)

where ĴTa consists of the last n − q columns of JTa , ĴCa consists of the last n − q columns of JCa ,

ĴTp =
[
�JTp1 , · · · , �JTpq ,JTp

]
, ĴCp =

[
�JCp1 , · · · , �JCpq ,JCp

]
, �JTpi

and �JCpi
are the ith column of JTp and

JCp , respectively. Finally we can derive the new differential kinematics and static force models by

replacing �θa, �τ , JTa , JTp , JCa , J
+
Cp
, J̃Cp , and J̃

T
Cp
in (14,15,16) with �̂θa, �̂τ , ĴTa , ĴTp , ĴCa , Ĵ

+
Cp
,
˜̂
JCp , and˜̂

JT
Cp
respectively.

2.3.2 Position Failures

Physically, a joint can’t change its angle or length when position failure happens to the actuator.

This can be mathematically interpreted as

θ̇i = 0 (20)

for some i ∈ {1, · · · , n}. Thus an active joint with position failure can be viewed as a passive joint
with an extra constraint that its joint velocity equals 0. Suppose q position failures occur. Without

loss of generality, we assume the failure happens in the first q active joints. If a passive joint locks,

then the analysis is similar so it is excluded for brevity.

Let �̂θa = [θq+1, · · · , θn]
T , �̂τ = [τq+1, · · · , τn]

T consisting of angles and torques of active joints without

position failures, �̂θp =
[
θ1, · · · , θq, �θ

T
p

]T

be the angles of passive joints. Then according to the dimension

of �̂θa and �̂θp, JT is partitioned exactly the same as (18). Considering q constraints in the form of (20)

with i = 1, · · · , q, the general constraint (3) is redefined as

J
′
C



˙̂
�θa

˙̂
�θp


 =


 ĴCa ĴCp

0 E






˙̂
�θa

˙̂
�θp


 = �0

where ĴCa and ĴCp are given by (19), E =
[
I 0

]
, I is a q × q identity matrix. Then we partition

J
′
C according to the dimension of �̂θa and �̂θp:

J
′
C =

[
J

′
Ca

J
′
Cp

]
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with J
′
Ca
=


 ĴCa

0


, J′

Cp
=


 ĴCp

E


. Finally we can derive the new differential kinematics and static

force models by replacing �θa, �τ , JTa , JTp , JCa , J
+
Cp
, J̃Cp , and J̃

T
Cp

in (14,15,16) with �̂θa, �̂τ , ĴTa , ĴTp ,

J
′
Ca
, J

′
Cp

+
, J̃

′
Cp
, and

˜
J

′
Cp

T
respectively.

Mixture of torque and position failures can also be handled by combining the methods in Section 2.3.1

and 2.3.2. For serial manipulators, if position failures occur, the differential kinematics model can be

reconstructed by removing the columns of the Jacobian matrix (J matrix) corresponding to the failed

joints [17], [31]. Nevertheless, this approach may not lead to correct models for general constrained rigid

multibody systems because there could be constrained active joint motion as defined in Section 2.2.

3 Optimal Velocity and Static Force Mappings

For a kinematically redundant manipulator, there exists a space of joint velocities that give the same

end-effector velocity. Utilizing this property, many different performance indices can be optimized by

adding terms in N (J) to the joint velocities [17], [2], [10], [28]. For prioritized manipulation, the

redundancy occurs in Cartesian space. Similarly, this extra freedom can also be used in optimizing

certain kinematic performance indices.

In this section, we assume that the general constrained rigid multibody system is not at a singular

position, i.e., Jm in (15) and (16) has full row-rank and JTpJ̃Cp = 0. In addition, there are no

irresolvable internal forces i.e. N (JT
Cp
) = {�0}. These assumptions can be easily satisfied for most

applications. Thus the differential kinematics and static force models given by (15) and (16) can be

simplified as


 �vm

�vs


 =


 Jm

Js


 �̇θa (21)

�τ =
[
JT

m JT
s

]
 �fm

�fs


 (22)

If there are joint failures then the above models are reconfigured using the methods in Section 2.3.

For a given active joint velocity �̇θa, the Cartesian space velocity of the end-effector is determined

by the differential kinematics model (21). However, in many applications, only the Cartesian space

trajectory (in terms of �v) of the end-effector is specified. We need to compute �̇θa which can generate

the desired �v. If J =


 Jm

Js


 is invertible, the solution is given by �̇θa = J

−1�v. If J is not invertible,

then �̇θa = J
+�v gives the active joint velocity with minimum length (2-norm) that produces a Cartesian
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space velocity closest to, in the least squares sense, the desired end-effector velocity �v.

However, for prioritized manipulations, achieving desired MDOF motion is more important than the

accomplishment of SDOF motion. Consequently, instead of using the classical approach (J+) which

minimizes the errors across all DOFs, we propose a method of handling the MDOF and SDOF motions

separately. MDOF motions will, if possible, be exactly tracked. If impossible, a solution minimizing

MDOF errors will be found. SDOF motions will be traded-off with other needs without compromising

MDOF motion. This is in stark contrast to a conventional weighted pseudo inverse approach, which

compromises MDOF motion in accordance with the weight.

Problem 1: Consider the differential kinematics model (21). Given a desired Cartesian space ve-

locity �vd =


 �vmd

�vsd


 ∈ Rm and a desired active joint velocity �̇θad, find an actual active joint velocity

�̇θa ∈ Rn such that

�vmd = Jm
�̇θa, (23)

and

‖W1(�̇θa − �̇θad)‖2
2 + ‖W2(�vs − �vsd)‖2

2 (24)

is minimized. W1 ∈ Rn×n andW2 ∈ Rm2×m2 are weighting matrices.

Remark 2: In Problem 1, we try to find a joint velocity which will produce the desired MDOF ve-

locity. At the same time, the secondary goal is optimally accomplished by minimizing the performance

criterion (24). Note that this additional SDOF motion will not degrade MDOF motion at all. Two

terms are included in (24). ‖W1(�̇θa − �̇θad)‖2
2 denotes the magnitude of the joint space error where

�̇θad

can be specified for joint limits avoidance, reliability enhancement, or energy minimization, etc. The

error in SDOF motion is measured by ‖W2(�vs−�vsd)‖2
2 where �vsd may be specified for workspace obsta-

cle avoidance, dexterity improvement, etc. Note that in general �̇θa and �v have elements with different

physical units. Adding terms with different units gives a physically meaningless sum. The weight-

ing matrices are used to avoid this kind of inconsistent operation. Methods of finding appropriate

weighting matrices can be found in [6].

Depending on the properties of the weighting matrices, Problem 1 is solved for three cases

• W1 andW2 are nonsingular weighting matrices.

• W1 is nonsingular andW2 = 0.

• W1 = 0 andW2 is nonsingular.

Theorem 3: LetW1 andW2 be nonsingular weighting matrices. The unique solution for Problem 1
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is

�̇θa =


J+

m − J̃m


 W1J̃m

W2JsJ̃m




+ 
 W1J

+
m

W2JsJ
+
m





�vmd

+J̃m


 W1J̃m

W2JsJ̃m




+ 
 W1 0

0 W2





 �̇θad

�vsd


 . (25)

Proof: Given �vmd ∈ Rm1 , all solutions of (23) are given by

�̇θa = J
+
m�vmd + J̃m

�ζ (26)

where �ζ ∈ Rn−m1 is arbitrary. Since �vs = Js
�̇θa we have

 W1(�̇θa − �̇θad)

W2(Js
�̇θa − �vsd)


 =


 W1J

+
m

W2JsJ
+
m


�vmd+


 W1J̃m

W2JsJ̃m


 �ζ −


 W1 0

0 W2





 �̇θad

�vsd


 .

It is clear that (24) can be equivalently written as

∥∥∥∥∥∥

 W1(�̇θa − �̇θad)

W2(Js
�̇θa − �vsd)




∥∥∥∥∥∥
2

2

.

Since


 W1J̃m

W2JsJ̃m


 has full column-rank, (24) is minimized if and only if

�ζ = −

 W1J̃m

W2JsJ̃m




+ 



 W1J

+
m

W2JsJ
+
m


�vmd

−

 W1 0

0 W2





 �̇θad

�vsd





 . (27)

Substituting (27) into (26) gives (25). ✷

Theorem 4: LetW1 be nonsingular, andW2 = 0. The unique solution for Problem 1 is

�̇θa =
[
J+

m − J̃m(W1J̃m)
+W1J

+
m

]
�vmd +

J̃m(W1J̃m)
+W1

�̇θad. (28)

Proof: From (26) we have

W1(�̇θa − �̇θad) =W1J
+
m�vmd +W1J̃m

�ζ −W1
�̇θad.
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SinceW1J̃m has full column-rank, ‖W1(�̇θa − �̇θad)‖2
2 is minimized if and only if

�ζ = −(W1J̃m)
+

(
W1J

+
m�vmd −W1

�̇θad

)
. (29)

Substituting (29) into (26) we get (28). ✷

Theorem 5: LetW1 = 0, andW2 be nonsingular. The minimum norm solution for Problem 1 is

�̇θa =
[
I− J̃mÃ(J̃mÃ)

+
] [
(J+

m − J̃mA
+B)�vmd+

J̃mA
+W2�vsd

]
(30)

where

A = W2JsJ̃m

B = W2JsJ
+
m.

Proof: From (26) we have

W2(Js
�̇θa − �vsd) = B�vmd +A�ζ −W2�vsd.

It is clear that ‖W2(Js
�̇θa − �vsd)‖2

2 is minimized if and only if

�ζ = −A+ (B�vmd −W2�vsd) + Ã�ς (31)

where �ς is arbitrary. Substituting (31) into (26) yields

�̇θa = (J+
m − J̃mA

+B)�vmd + J̃mÃ�ς + J̃mA
+W2�vsd, (32)

which tells that ‖�̇θa‖2
2 is minimized if and only if

�ς = −(J̃mÃ)
+

[
(J+

m − J̃mA
+B)�vmd + J̃mA

+W2�vsd

]
+ �y

where �y ∈ N (J̃mÃ). Substituting into (32) and rearranging terms, we get (30). ✷

A similar optimization problem can be formulated using joint torque and spatial force as follows

Problem 6: Consider the static force model (22). Given desired spatial force �fd =


 �fmd

�fsd


 ∈ Rm

and desired joint torque �τd, find an actual joint torque �τ ∈ Rn such that

�τ = JT
m
�fmd + J

T
s
�fs, (33)

and

‖W3(�τ − �τd)‖2
2 + ‖W4(�fs − �fsd)‖2

2
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is minimized. W3 ∈ Rn×n andW4 ∈ Rm2×m2 are weighting matrices.

The following theorems give solutions to Problem 6 for different weighting strategies.

Theorem 7: LetW3 andW4 be nonsingular weighting matrices. The unique solution for Problem 6

is

�τ =


JT

m − JT
s


 W3J

T
s

W4




+ 
 W3J

T
m

0





 �fmd+

JT
s


 W3J

T
s

W4




+ 
 W3 0

0 W4





 �τd

�fsd


 . (34)

Proof: From (33) we have 
 W3(�τ − �τd)

W4(�fs − �fsd)


 =


 W3J

T
m

0


 �fmd+


 W3J

T
s

W4


 �fs −


 W3 0

0 W4





 �τd

�fsd


 .

It is clear that

‖W3(�τ − �τd)‖2
2 + ‖W4(�fs − �fsd)‖2

2 =

∥∥∥∥∥∥

 W3(�τ − �τd)

W4(�fs − �fsd)




∥∥∥∥∥∥
2

2

.

Since


 W3J

T
s

W4


 has full column-rank, ‖W3(�τ − �τd)‖2

2 + ‖W4(�fs − �fsd)‖2
2 is minimized if and only if

�fs = −

 W3J

T
s

W4




+ 



 W3J

T
m

0


 �fmd

−

 W3 0

0 W4





 �τd

�fsd





 . (35)

Substituting (35) into (33) we get (34). ✷

Theorem 8: LetW3 be nonsingular, andW4 = 0. The unique solution for Problem 6 is

�τ =
[
JT

m − JT
s (W3J

T
s )

+W3J
T
m

]
�fmd + J

T
s (W3J

T
s )

+W3�τd. (36)

Proof: From (33) we have

W3(�τ − �τd) =W3J
T
m
�fmd +W3J

T
s
�fs −W3�τd.

Then ‖W3(�τ − �τd)‖2
2 is minimized if and only if

�fs = −(W3J
T
s )

+(W3J
T
m
�fmd −W3�τd) + �z (37)

February 15, 2003 DRAFT



15

where �z ∈ N (W3J
T
s ). Since W3 is invertible, N (W3J

T
s ) = N (JT

s ). Thus substituting (37) into (33)

yields (36). ✷

Theorem 9: Let W3 = 0, W4 be nonsingular, and Js has full row-rank. The unique solution for

Problem 6 is

�τ = JT
m
�fmd + J

T
s
�fsd.

Proof: ‖W4(�fs − �fsd)‖2
2 = 0 if and only if �fs = �fsd (sinceW4 is invertible) if and only if J

T
s
�fs = J

T
s
�fsd

(since Js has full row-rank) if and only if �τ = J
T
m
�fmd + J

T
s
�fsd (from (33)). ✷

Remark 10: Formulating the goals in terms of velocity and/or force has the advantage that it is

suited for instantaneous, on the fly modification of goals. The next section shows, for example, how

the ideas can be incorporated into a feedback control loop. A restriction of this approach is that

inequality constraints (which may arise due to joint limits, etc.) cannot be directly included. On the

other hand, the next section also illustrates how these constraints can be indirectly included by weight

and desired velocity selection. To directly include inequality constraints, motion planning techniques

such as those developed by Zhang and Ostrowski [37] can be used to generate feedforward commands.

The techniques in this paper can then be used in a feedback loop to desensitize the feedforward control.

4 Experimental Results

Fig. 1. University of Wyoming (UW) flexure jointed hexapod

The algorithms in Section 2.3 and Section 3 are verified on a University of Wyoming (UW) flexure

jointed hexapod (FJH). FJHs are great candidates for micro-precision applications including micro-

manipulation, laser weapon pointing, space-based interferometers, and optical communication, etc.

Figure 1 shows a photo of the UW FJH in the pointing configuration. The schematic view of the

hexapod is given in Figure 2. Like any hexapod, it consists of a base attached to a base plate, a
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Fig. 2. The top view and front view of the UW FJH. The telescope and position sensitive detector (PSD) sit on the

payload, which is rigidly attached to the top nodes p1, p2, and p3. For the sake of simplicity, the truss structure of the

payload is not plotted in the figure. Bottom nodes q1, q2, and q3 are attached to the base. Six struts connect the top

nodes to the bottom nodes. The coordinate systems {x, y, z} and {xb, yb, zb} denote the payload frame and base frame,
respectively.

payload, and six struts (also called legs) connecting the payload to the base. Each strut contains

springs which passively reduce vibrations from the base to the payload plate. A voice coil motor is

also embedded into each strut. Thus the hexapod can slightly change the length of it legs to allow

precise pose control of the payload in up to six DOFs. The UW FJH employs the mutually orthogonal

geometry [20]: each pair of struts meets at a right angle. The system is configured such that the center

of mass is located at an equal distance between the top and bottom nodes. As shown in Figure 2, this

is the location to which the payload frame is attached.

4.1 Experimental Setup

In this experiment, the hexapod is programmed to perform a target acquisition task used to establish

space-based two-way laser communications link. In order to set up a laser communications link between
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two satellites (“A” and “B”), satellite “A” must first hit satellite “B” with its laser. Satellite “B”

must then point its laser at satellite “A”, and send a laser signal back. During this process, satellite

“A” is controlled to spirally steer the laser beam toward the “best known” location of satellite “B”,

i.e., satellite “A” is commanded to track a spiral signal.

The hexapod in Figure 1 is configured for this 2-DOF tracking task. The laser light passes through

a telescope with an effective focal length of 1m. In our experiment, the injecting laser beam is kept

stationary with respect to the base frame ({xb, yb, zb}) of the hexapod. On the payload, a position-
sensitive detector (PSD) manufactured by On-Trak Photonics measures the movements of the laser in

the payload frame ({x, y, z}). These measurements are converted to angles of rotation (α and β) of

the laser beam around the x and y axes. These angles are essentially the angles of rotation of the z

axis of the payload frame (or the direction of outgoing laser beam 2) around the xb and yb axes of the

base frame. The tracking task is to control the pointing direction (z axis) to follow control commands.

Since the rotation around the zb axis doesn’t affect the pointing performance, the pointing direction

is defined by the pair of angles (α, β), and we want (α, β) to track a spiral command signal.

A Pentium-II based computer running the QNX real time operating system sends control commands

through Computer Boards 16-bit DAC converters to Techron linear current amplifiers. These activate

BEI voice coil actuators which change the length of the legs such that (α, β) tracks the given spiral

signal (see [20], [21] for test bed details). Each strut has a nominal length of 0.4064m, and a maximum

stroke of ±0.000635m.
The differential kinematics model of the hexapod presented in Figure 1 and Figure 2 is given as

[
α̇, β̇, γ̇, ṫx, ṫy, ṫz

]T

= J
[
l̇1, l̇2, l̇3, l̇4, l̇5, l̇6

]T

. (38)

α, β, and γ are the amount of rotation along the x, y, and z axes, respectively. tx, ty, and tz are the

amount of translation along x, y, and z axes, respectively. According to [20], [21], at the configuration

that all struts have nominal length of 0.4064m, the Jacobian matrix is computed as

J =




1.740 1.740 0.000 −1.740 −1.740 0.000

1.004 −1.004 −2.009 −1.004 1.004 2.009

0.710 −0.710 0.710 −0.710 0.710 −0.710
0.354 −0.354 −0.000 0.354 −0.354 0.000

0.204 0.204 −0.408 0.204 0.204 −0.408
−0.289 −0.289 −0.289 −0.289 −0.289 −0.289




. (39)

Since the magnitude of maximum stroke of struts (±0.000635m) is much less than the nominal strut
length (0.4064m), the FJH has a very small workspace, and J can be closely approximated as constant

2The outgoing laser light is not included in our experiment since it is not needed for the closed-loop control of the tracking task.
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throughout this workspace. This is validated as follows. As given in [20], all entries of the Jacobian

matrix are continuous functions of the leg lengths. Therefore, we use numerical optimization method 3

to find the maximum percentage change, i.e.

e =
supStrut Positions ‖J(Strut Position)− J0‖

‖J0‖ (40)

where J0 is the nominal Jacobian given in (39). Note that the division of these norms tends to cancel

out effects caused purely by choice of units. Using the Frobenius norm in (40) gives e = 0.0012, while

using the 2-norm gives e = 0.0018. Considering that the condition number of J equals 4.92, i.e., J is

not ill-conditioned, it seems reasonable to assume that J is constant across the workspace. An analytic

confirmation is theoretically possible, but practically intractable, as it involves symbolically solving

the inverse of a 6× 6 matrix and the notoriously difficult Stewart platform forward kinematics.

Since the tracking task only requires the control of the rotations along the x and y axes, the task is

clearly a prioritized manipulation with the MDOF Cartesian space velocity �vm defined as �vm =
[
α̇, β̇

]T

,

the SDOF Cartesian space velocity �vs defined as �vs =
[
γ̇, ṫx, ṫy, ṫz

]T
. Consequently the Jacobian matrix

J is partitioned as J =


 Jm

Js


 where Jm consists of the first two rows of J.

However, the differential kinematics model (38) and the algorithms proposed in the above sections

can’t be directly applied to our closed-loop tracking control for two reasons.

1. The PSD only gives absolute rotation measurements, not rotational velocities.

2. We want to get closed-loop control, with the loop closed with respect to the desired rotations.

Although the loop would be closed with respect to velocities if we have proper measurements, we

wouldn’t really want to do this in many cases (including this tracking task), because the system

becomes sensitive to any kinematic errors. So we use the following strategy, which can also be viewed

as a way to handle the case that the task is specified by displacements. From (38), an approximate

relationship between displacements can be derived as

[δα, δβ, δγ, δtx, δty, δtz]
T = J [δl1, δl2, δl3, δl4, δl5, δl6]

T (41)

where δ∗ represents the change in ∗. Although (41) is only an approximation of the differential

kinematics model, it is in fact highly accurate when the control system of the manipulator does its

job (i.e., δ∗’s can be assumed small), and works well in many applications [4]. All the algorithms

3We use the constrained nonlinear optimization procedure fmincon, provided by Matlab’s Optimization Toolbox, to solve the

optimization problem. Finite-differencing derivatives are employed. To alleviate the problem of local minima, fmincon is applied

with 1000 random initial points.
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in Section 2.3 and Section 3 still hold by replacing velocities with displacements (we still call them

velocity mappings to simplify notations). Note that, to make the approximation reasonably accurate,

only the displacements (not the absolute Cartesian space and joint space coordinates) need to be small.

4.2 Reliable and Fault-Tolerant Tracking

Fig. 3. Block diagram for prioritized 2-DOF tracking control

Figure 3 shows the block diagram of the hexapod control system for prioritized 2-DOF tracking.

(αd, βd) specifies the command spiral signal. [δαd, δβd]
T is the vector of desired MDOF displacements,

[δγd, δtxd, δtyd, δtzd]
T is the vector of desired SDOF displacements, and [δl1, δl2, · · · , δl6]T is the vector

of desired joint space displacements. This specific choice corresponds to pointing applications. When

pointing at a distant target, angular errors in the pointing angles (α, β) are multiplied by the distance

to produce translational errors on the target. Thus the pointing angles are the MDOF. Translational

errors in the image plane (tx, ty) are not multiplied by the distance–the same errors appear at the

target. These SDOF motions are far less important, but it is desirable to minimize them without com-

promising MDOF performance. Gα(s) and Gβ(s) are compensators for α and β channels, respectively.

They are found using textbook single-input, single-output compensator designs [21]. Throughout the

experiments, the compensators remain unchanged. The values of αe, βe, γe, txe, tye, and tze are esti-

mates of the amount of rotation and translation. We need them only for comparison purposes (the

PSD sensor only measures α and β).

Next we experimentally demonstrate that, using the optimal velocity mappings given by the al-

gorithms in Section 2.3 and Section 3, the tracking task is accomplished, and at the same time, a

secondary goal is also achieved. Here the secondary goals are reliability enhancement, and SDOF
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motion minimization (under position failure).

4.2.1 Reliability Enhancement

Reliability has always been a major consideration for military, space, and some manufacturing

applications. One way of enhancing the reliability of a manipulator system is to control the actuator’s

inputs to avoid mechanical fatigue, actuator overheating, etc. For example, if the temperature of a

motor is close to its critical value then the input current should be decreased. Using the techniques

in Section 3, this can be easily implemented by adjusting the weights on joint displacements. Larger

weights imply smaller actuator inputs.

To demonstrate and validate this idea, we define the secondary goal as minimizing ‖Wi([δl1, · · · , δl6]T−
[δl1d, · · · , δl6d]

T )‖2
2, i ∈ {a, b, c}. Three weighting matrices: Wa = I, Wb = Diag [2, 1, 2, 1, 2, 1], and

Wc = Diag [1, 2, 1, 2, 1, 2] are compared. In the experiments, we let [δl1d, · · · , δl6d]
T = �0. The optimal

velocity mappings are computed from (28) for all three weighting matrices. We want to demonstrate

that, by changing the relative weights on joint space displacements (or equivalently actuator currents),

one can manipulate the input current of the actuators accordingly without damaging the tracking

performance. Namely, whenWb is used, the input currents for actuator 1, 3, and 5 are expected to be

relatively smaller than those underWa. Similarly, when Wc is used, the input currents for actuator

2, 4, and 6 should be smaller than those under Wb. Note that this same technique can be used to

indirectly avoid joint limits as it is minimizing the joint displacement required to achieve the goal. To

directly avoid joint limits and obstacles, motion pre-planning [37] combined with these methods can

be employed.

Figure 4 shows the tracking spirals (plots of the PSD outputs) with starting points centered at the

plots and strut inputs for a period of 16 seconds. The tracking errors in terms of the root mean square

(RMS) errors are listed in Table I (columns 2 − 4) where αRMS and βRMS are the RMS values of

αd − α and βd − β, respectively (i.e., the angular errors in the pointing angles). As we can see, the

tracking performance is almost identical for all three weighting matrices. Figure 4 also illustrates that

strut inputs decrease when corresponding joint displacements are relatively higher weighted. Note

however that, the price paid for this decrease is an increase in the remaining strut inputs, which

have lower weights. Here the strut input is the normalized actuator current, which is defined as

100× DAC input
the maximum allowable DAC input

.

4.2.2 Fault-Tolerant with SDOF Motion Minimization

A single actuator failure can put the entire task at risk or cause excessive downtime expenses. The

algorithms in Section 2.3 can be utilized to greatly reduce these adverse effects caused by position and
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Fig. 4. The tracking spirals and strut inputs when minimizing the weighted joint space displacements. The plots in the

left and right columns are tracking spirals (PSD outputs) and the strut inputs, respectively. Here the Input i denotes

the normalized actuator current for Strut i. From top to bottom, the rows correspond to the weighting matrices Wa,

Wb, and Wc, respectively.
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TABLE I

Tracking errors for different weighting matrices.

torque failures.

Here we assume that position failure occurs in the first strut of the hexapod. When the failure is

not taken into consideration and the optimal velocity mapping in Section 4.2.1 for Wa is used, the

tracking result is shown in Figure 5. The tracking errors are listed in Table I (the last column). The

performance degradation is obvious: the αRMS and βRMS are increased by 300% and 50%, respectively.
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Fig. 5. Tracking spiral without any correction on the position failure in Strut 1.

Using the reconfiguration methods in Section 2.3, and defining the secondary goal as minimizing

‖Wi([tx, ty, tz, γ]
T − [txd, tyd, tzd, γd]

T )‖2
2, i ∈ {d, e} where Wd = I and We = Diag [10, 10, 1, 1], and

letting [txd, tyd, tzd, γd]
T = �0 in the experiments, we derive the optimal velocity mappings for weighting

matrices Wd and We. This choice emphasizes translational errors in the image plane while still

preserving the same pointing (α, β) performance.

As shown in Figure 6 and Table I (column 5 and column 6), the tracking performance is comparable to

that without strut failures. Moreover, by assigning different weights, SDOF motions can be minimized

according to their importance. In the above example, the estimated maximal translation along the

x and y axes are reduced by more than a factor of 20 when the corresponding weights are increased
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Fig. 6. Tracking spirals and minimizing SDOF displacements with correction on position failure in Strut 1. The left

and right columns correspond to weighting matrices Wd and We, respectively.

10-fold.

5 Conclusions

In many applications some DOFs in the Cartesian space are critical and must be controlled as

precisely as possible. Other DOFs may have quite loose specifications, so their tracking performance

can be traded-off to achieve other needs. We call these applications prioritized manipulation, and

divide the end-effector’s DOFs into MDOFs and SDOFs according to their importance. Based on

the differential kinematics and static force models, we derive the velocity and static force mappings

which accomplish the given task expressed in MDOFs and, at the same time, optimally complete a

secondary goal by picking an appropriate SDOF motion. The secondary goal can be specified for

reliability enhancement, obstacle and singularity avoidance, fault tolerance, or joint limit avoidance.
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Two common actuator failures, position failure and torque failure, are also considered. During these

failures, the differential kinematics and static force models are reconfigured so that the optimal velocity

and static force mappings can be calculated using reconfigured models. The proposed algorithms are

tested on the UW FJH. Experimental results validate that the approach is practical and demonstrates

good performance.

The major limitation of the proposed method is that the task and secondary goals need to be

described in terms of velocities. This formulation facilitates instantaneous, on the fly modification

of goals. Thus it is useful for some applications (such as trajectory planning for obstacle avoidance)

where the task is typically expressed only by velocities. In these cases, even though the proposed

method can still achieve the goals locally, it may fail on the whole because a collection of local optimal

movements do not necessarily lead to a global solution. In this sense, the mappings found are only

locally optimal.
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