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Abstract

In a typical content-based image retrieval (CBIR) system, target images (images in the database)

are sorted by feature similarities with respect to the query. Similarities among target images are usually

ignored. This paper introduces a new technique, CLUster-based rEtrieval of images by unsupervised

learning (CLUE), for improving user interaction with image retrieval systems by fully exploiting

the similarity information. CLUE retrieves image clusters by applying a graph-theoretic clustering

algorithm to a collection of images in the vicinity of the query. Clustering in CLUE is dynamic. In

particular, clusters formed depend on which images are retrieved in response to the query. CLUE can

be combined with any real-valued symmetric similarity measure (metric or nonmetric). Thus it may

be embedded in many current CBIR systems including relevance feedback systems. The performance

of an experimental image retrieval system using CLUE is evaluated on a database of around 60, 000

images from COREL. Empirical results demonstrate improved performance compared with a CBIR

system using the same image similarity measure. In addition, results on images returned by Google’s

Image Search reveal the potential of applying CLUE to real world image data and integrating CLUE

as a part of the interface for keyword-based image retrieval systems.
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1 Introduction

Content-based image retrieval (CBIR) aims at developing techniques that support effective searching

and browsing of large image digital libraries based on automatically derived imagery features. It is a

rapidly expanding research area situated at the intersection of databases, information retrieval, and

computer vision. Although CBIR is still immature, there has been abundance of prior work. Due

to space limitations, we only review work most related to ours, which by no means represents the

comprehensive list. Readers are referred to [33] for additional references.

1.1 Previous Work

From a computational perspective, a typical CBIR system views the query image and images in

the database (target images) as a collection of features, and ranks the relevance between the query

image and any target image in proportion to a similarity measure calculated from the features. In this

sense, these features, or signatures of images, characterize the content of images. According to the

scope of representation, features roughly fall into two categories: global features and local features.

The former category includes texture histogram, color histogram, color layout of the whole image, and

features selected from multidimensional discriminant analysis of a collection of images [8], [11], [34],

[36]. While color, texture, and shape features for subimages [24], segmented regions [3], [4], [21], [40],

or interest points [30] belong to the latter category.

As a key issue in CBIR, similarity measure quantifies the resemblance in contents between a pair

of images [28]. Depending on the type of features, the formulation of the similarity measure varies

greatly. The Mahalanobis distance [12] and intersection distance [35] are commonly used to compute

the difference between two histograms with the same number of bins. When the number of bins

are different, the Earth Mover’s Distance (EMD) [26] applies. The EMD is computed by solving

a linear programming problem. Moments [18], the Hausdorff metric [14], elastic matching [2], and

decision trees [16] have been proposed for shape comparison. In [23], a similarity measure is defined

from subjective experiments and multi-dimensional scaling (MDS) based upon the model of human

perception of color patterns. Barnard et al. [1] presented a probability-based similarity measure that

combines the information provided by text and the visual information provided by image features. Li

et al. [20] presented an integrated region matching scheme for region-based image retrieval. Recently,

a similarity measure using fuzzified region features is introduced in [4]. It is shown to be robust to
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segmentation-related uncertainties.

In one way or another, the aforementioned similarity measures capture certain facets of image

content, named the similarity-induced semantics. Nonetheless, the meaning of an image is rarely self-

evident. Similarity-induced semantics usually does not coincide with the high-level concept conveyed

by an image (semantics of the image). This is referred to as the semantic gap [33], which reflects the

discrepancy between the relatively limited descriptive power of low-level visual features and high-level

concepts. Many approaches have been proposed to reduce the semantic gap. They generally fall into

two classes depending on the degree of user involvement in the retrieval: relevance feedback and image

database preprocessing using statistical classification.

Relevance feedback is a powerful technique originally used in the traditional text-based information

retrieval systems. In CBIR, a relevance-feedback-based approach allows a user to interact with the

retrieval algorithm by providing the information of which images he or she thinks are relevant to the

query [6], [27], [42]. Based on user feedback, the model of similarity measure is dynamically updated

to give a better approximation of the perception subjectivity. There are also works that combine

relevance feedback with supervised learning [38]: binary classifiers are trained on the fly based on user

feedback. Empirical results demonstrate the effectiveness of relevance feedback for certain applications.

Nonetheless such a system may add burden to a user especially when more information is required

than just Boolean feedback (relevant or nonrelevant).

Statistical classification methods group images into semantically meaningful categories using low

level visual features so that semantically-adaptive searching methods applicable to each category can

be applied [31], [39], [40], [19]. For example, the SemQuery system [31] categorizes images into different

set of clusters based on their heterogeneous features. Vailaya et al. [39] organize vacation images into

a hierarchical structure. At the top level, images are classified as indoor or outdoor. Outdoor images

are then classified as city or landscape that is further divided into sunset, forest, and mountain classes.

SIMPLIcity system [40] classifies images into graph, textured photograph, or nontextured photograph,

and thus narrows down the searching space in a database. ALIP system [19] uses categorized images

to train hundreds of statistical models each corresponding to a semantic category. Although these

classification methods are successful in their specific domains of application, the simple ontologies

built upon them could not incorporate the rich semantics of a sizable image database.

1.2 Our Approach

All current CBIR techniques assume certain mutual information between the similarity measure and

the semantics of the images. A typical CBIR system ranks target images according to the similarities
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with respect to the query and neglects the similarities between target images. Can we improve the

performance of a CBIR system by including the similarity information between target images? This

is the question we attempt to address in this work. We propose a new technique for improving user

interaction with image retrieval systems by fully exploiting the similarity information. The technique,

which is named CLUster-based rEtrieval of images by unsupervised learning (CLUE), retrieves image

clusters instead of a set of ordered images: the query image and neighboring target images, which

are selected according to a similarity measure, are clustered by an unsupervised learning method

and returned to the user. In this way, relations among retrieved images are taken into consideration

through clustering and may provide for the users semantic relevant clues as to where to navigate.

CLUE has the following characteristics:

• It is a similarity-driven approach that can be built upon virtually any symmetric real-valued image

similarity measure. Consequently, our approach could be combined with many other image retrieval

schemes including the relevance feedback approach with dynamically updated models of similarity

measure. Moreover, as shown in Section 5.4, it may also be used as a part of the interface for

keyword-based image retrieval systems.

• It uses a graph-theoretic algorithm to generate clusters. In particular, a set of images is represented

as a weighted undirected graph: nodes correspond to images; an edge connects two nodes; the weight

on an edge is related to the similarity between the two nodes (or images). Graph-based representation

and clustering sidestep the restriction of a metric space. This is crucial for nonmetric image similarity

measures (many commonly used similarity measures are indeed nonmetric [15]).

• The clustering is local and dynamic. In this sense, CLUE is similar to the Scatter/Gather method

proposed for document (or text) retrieval [13]. The clusters are created depending on which images

are retrieved in response to the query. Consequently, the clusters have the potential to be closely

adapted to characteristics of a query image. This is in contrast to current image database statistical

classification methods [31], [39], [40], in which the image categories are derived for the whole database

in a preprocessing stage, and therefore are global, static, and independent of the query.

1.3 Outline of the Paper

The remainder of the paper is organized as follows. Section 2 describes the general methodology of

CLUE. A summary of the algorithm and computational issues are discussed in Section 3. An image

retrieval system using CLUE is introduced in Section 4. Section 5 presents the experimental results.

Finally, we conclude in Section 6 together with a discussion of future work.
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Fig. 1. A diagram of a cluster-based image retrieval system. The arrows with dotted lines may not exist for

some systems.

2 Retrieval of Similarity-Induced Image Clusters

In this section, we first present an overview of a cluster-based image retrieval system. We then

describe in detail the major components of CLUE, namely, neighboring image selection and images

clustering.

2.1 System Overview

From a data-flow viewpoint, a cluster-based image retrieval system can be characterized by the

diagram in Figure 1. The retrieval process starts with feature extraction for a query image. The

features for target images (images in the database) are usually precomputed and stored as feature

files. Using these features together with an image similarity measure, the resemblance between the

query image and target images are evaluated and sorted. Next, a collection of target images that

are “close” to the query image are selected as the neighborhood of the query image. A clustering

algorithm is then applied to these target images. Finally, the system displays the image clusters and

adjusts the model of similarity measure according to user feedback (if relevance feedback is included).

The major difference between a cluster-based image retrieval system and CBIR systems lies in

the two processing stages, selecting neighboring target images and image clustering, which are the

major components of CLUE. A typical CBIR system bypasses these two stages and directly outputs

the sorted results to the display and feedback stage. Figure 1 suggests that CLUE can be designed

independent of the rest of the components because the only information needed by CLUE is the

sorted similarities. This implies that CLUE may be embedded in a typical CBIR system regardless of

the image features being used, the sorting method, and whether there is feedback or not. The only

requirement is a real-valued similarity measure satisfying the symmetry property. As a result, in the

following subsections, we focus on the discussion of general methodology of CLUE, and assume that a

similarity measure is given. An introduction of a specific cluster-based image retrieval system, which
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we have implemented, will be given in Section 4.

2.2 Neighboring Target Images Selection

To mathematically define the neighborhood of a point, we need to first choose a measure of distance.

As to images, the distance can be defined by either a similarity measure (a larger value indicates a

smaller distance) or a dissimilarity measure (a smaller value indicates a smaller distance). Because

simple algebraic operations can convert a similarity measure into a dissimilarity measure, without

loss of generality, we assume that the distance between two images is determined by a symmetric

dissimilarity measure, d(i, j) = d(j, i) ≥ 0, and name d(i, j) the distance between images i and j to

simplify the notation.

Next we propose two simple methods to select a collection of neighboring target images for a query

image i:

1. Fixed radius method (FRM) takes all target images within some fixed radius ε with respect to i.

For a given query image, the number of neighboring target images is determined by ε.

2. Nearest neighbors method (NNM) first chooses k nearest neighbors of i as seeds. The r nearest

neighbors for each seed are then found. Finally, the neighboring target images are selected to be all

the distinct target images among seeds and their r nearest neighbors, i.e., distinct target images in

k(r + 1) target images. Thus the number of neighboring target images is bounded above by k(r + 1).

If the distance is metric, both methods would generate similar results under proper parameters (ε,

k, and r). However, for nonmetric distances, especially when the triangle inequality is not satisfied,

the set of target images selected by two methods could be quite different regardless of the parameters.

This is due to the violation of the triangle inequality: the distance between two images could be

huge even if both of them are very close to a query image. Compared with the FRM, our empirical

results show that, with proper choices of k and r, NNM tends to generate more structured collection

of target images under a nonmetric distance. In this work, we use NNM because the image similarity

measure of our experimental retrieval system is not metric. A detailed discussion of computational

issues (including parameters selection) will be covered in Section 3.

2.3 Weighted Graph Representation of a Collection of Images

Data representation is typically the first step to solve any clustering problem. In the field of computer

vision, two types of representations are widely used [15]. One is called the geometric representation,

in which data items are mapped to some real normed vector space. The other is referred to as the

graph representation emphasizing the pairwise relationship. When working with images, the geometric

July 23, 2004 DRAFT



7

representation has a major limitation: it requires that the images be mapped to points in some real

normed vector space. Overall, this is a very restrictive constraint because many distances defined for

images are nonmetric for reasons given in [15]. Therefore, this paper adopts a graph representation of

neighboring target images.

A set of n images is represented by a weighted undirected graph G = (V,E): the nodes V =

{1, 2, . . . , n} represent images, the edges E = {(i, j) : i, j ∈ V} are formed between every pair of

nodes, and the nonnegative weight wij of an edge (i, j), indicating the similarity between two nodes,

is a function of the distance (or similarity) between nodes (images) i and j. Given a distance d(i, j)

between images i and j, we define

wij = e−
d(i,j)2

s2 (1)

where s is a scaling parameter that needs to be tuned to get a suitable locality. The choice of

exponential decay is based on support from psychological studies provided by [10]. The weights can

be organized into a matrix W, named the affinity matrix, with the ij-th entry given by wij. Although

Equation (1) is a relatively simple weighting scheme, our experimental results (Section 5) have shown

its effectiveness. The same weighting scheme has been used in [10], [32], [41].

2.4 Spectral Graph Partitioning

Under a graph representation, clustering can be naturally formulated as a graph partitioning prob-

lem. Among many graph-theoretic algorithms, spectral graph partitioning methods [5], [29], [32], [41]

have been successfully applied to many areas in computer vision including motion analysis [5], image

segmentation [32], [41], and object recognition [29]. In this paper, we use one of the techniques, the

normalized cut (Ncut) method [32], for image clustering. Compared with many other spectral graph

partitioning methods, such as average cut and average association, the Ncut method is empirically

shown to be relatively robust in generating balanced clusters [32], [41]. Next, we present a brief review

of the Ncut method based on Shi and Malik’s work [32]. More exhaustive treatments can be found

in [32] and [41].

Roughly speaking, a graph partitioning method attempts to organize nodes into groups so that the

within-group similarity is high, and/or the between-groups similarity is low. Given a graph G = (V,E)

with affinity matrix W, a simple way to quantify the cost for partitioning nodes into two disjoint sets

A and B (A ∩ B = ∅ and A ∪ B = V) is the total weights of the edges that connecting the two sets.

In graph theory, this cost is called a cut:

cut(A,B) =
∑

i∈A,j∈B

wij , (2)
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which can also be viewed as a measure of the between-groups similarity.

Finding a bipartition of the graph that minimizes this cut value is known as the minimum cut

problem. There exist efficient algorithms for solving this problem. However the minimum cut criterion

favors grouping small sets of isolated nodes in the graph [32] because the cut defined in (2) does not

contain any within-group information. In other words, the minimum cut usually yields over-clustered

results when it is recursively applied. This motivates several modified graph partition criteria including

the Ncut:

Ncut(A,B) =
cut(A,B)
cut(A,V)

+
cut(A,B)
cut(B,V)

.

Note that the Ncut value is always within the interval [0, 1]. An unbalanced cut would make the Ncut

value very close to 1 since cut(A,V) = cut(A,B)+cut(A,A) and cut(B,V) = cut(A,B)+cut(B,B).

Finding a bipartition with minimum Ncut value is an NP-complete problem. Shi and Malik proposed

an approximated solution by solving a generalized eigenvalue problem [32]:

(D − W)�y = λD�y (3)

where W is an n × n affinity matrix, D = diag[s1, s2, · · · , sn] is a diagonal matrix with si =
∑

j=1,···,n wij. Generalized eigenvector corresponding to the second smallest generalized eigenvalue

(or in short the second smallest generalized eigenvector) is then used to partition the graph.

The Ncut method can be recursively applied to get more than two clusters. But this leads to the

questions: 1) which subgraph should be divided? and 2) when should the process stop? In this paper,

we use a simple heuristic. The subgraph with the maximum number of nodes is recursively partitioned

(random selection is used for tie breaking). The process terminates when the bound on the number

of clusters is reached or the Ncut value exceeds some threshold.

2.5 Finding a Representative Image for a Cluster

Ultimately, the system needs to present the clustered target images to the user. Unlike a typical

CBIR system, which displays certain numbers of top matched target images to the user, a cluster-based

image retrieval system should be able to provide an intuitive visualization of the clustered structure

in addition to all the retrieved target images. For this reason, we propose a two-level display scheme.

At the first level, the system shows a collection of representative images of all the clusters (one for

each cluster). At the second level, the system displays all target images within the cluster specified

by a user.

Nonetheless two questions still remain: 1) how to organize these clusters? and 2) how to find a

representative image for each cluster? The organization of clusters will be described in Section 3.2. For
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the second question, we define a representative image of a cluster to be the image that is most similar

to all images in the cluster. This statement can be mathematically illustrated as follows. Given a

graph representation of images G = (V,E) with affinity matrix W, let the collection of image clusters

be {C1,C2, · · · ,Cm}, which is also a partition of V, i.e., Ci ∩ Cj = ∅ for i �= j and
⋃m

i=1 Ci = V.

Then the representative node (image) of Ci is

arg max
j∈Ci

∑

t∈Ci

wjt . (4)

Basically, for each cluster, we pick the image that has the maximum sum of within cluster similarities.

3 An Algorithmic View

This section starts with an algorithmic summary of CLUE. We then introduce the organization of

clusters, followed by a discussion of computational complexity and parameters selection.

3.1 Outline of the Algorithm

The inputs for CLUE include a query image, k ≥ 2 and r ≥ 1 needed by NNM for neighboring target

images selection, maximum number of clusters (M ≥ 2), and threshold for the Ncut value (0 ≤ T ≤ 1)

required by the recursive Ncut process. CLUE first selects a collection of neighboring target images

for a query image using NNM. Next, it constructs a weighted undirected graph containing the query

image and its neighboring target images. It then applies the Ncut algorithm recursively to the graph

or the largest subgraph until the number of clusters is equal to M or the Ncut value is greater than

T . Finally, the representative images for the clusters are found according to (4).

3.2 Organization of Clusters

The recursive Ncut partition is essentially a hierarchical divisive clustering process that produces a

tree. For example, Figure 2 shows a tree generated by four recursive Ncuts. The first Ncut divides V

into C1 and C2. Since C2 has more nodes than C1, the second Ncut partitions C2 into C3 and C4.

Next, C3 is further divided because it is larger than C1 and C4. The fourth Ncut is applied to C1,

and gives the final five clusters (or leaves): C4, C5, C6, C7, and C8.

The above example suggests trees as a natural organization of clusters. In data visualization,

displaying a tree is a commonly used technique. However, the tree organization here may not be useful

to a user because there is no guarantee of any correspondence between the tree and the semantic

structure of images. For example, Figure 6 shows clusters and the associated tree generated by

CLUE for a query image of food. Note that food and horses are leaf nodes of the same parent. But

the semantic meaning of their parent node is not clear. Thus it may be extremely difficult to find
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Fig. 2. A tree generated by four Ncuts that are applied to V with 200 nodes. The numbers denote the size of

the corresponding clusters.

representative images for parent nodes. Moreover, those representative images of parent nodes may

be misleading to a user. So, in this work, we employ a simple linear organization of clusters called

traversal ordering: arrange the leaves in the order of a binary tree traversal (left child goes first). For

the example in Figure 2, it yields a sequence: C7, C8, C5, C6, and C4. However, the order of two

clusters produced by an Ncut bipartition iteration is still undecided, i.e., which one should be the left

child and which one should be the right child. This can be solved by enforcing an arbitration rule:

1) let C1 and C2 be two clusters generated by an Ncut on C, and d1 (d2) be the minimal distance

between the query image and all images in C1 (C2); 2) if d1 < d2 then C1 is the left child of C,

otherwise, C2 is the left child.

The traversal ordering and arbitration rule have the following properties:

• The query image is in the leftmost leaf (C7 in Figure 2) since a cluster containing the query image

will have a minimum distance (d1 or d2) of 0, and thus will always be assigned to the left child. (Note

that V includes the query image).

• We can view d1 (or d2) as a distance from a query image to a cluster of images. In this sense, for

any parent node, its left child is closer to the query image than its right child.

• In the traversal, the leaves of the left subtree of any parent node appear before the leaves of its right

subtree.

Therefore, the resulting linear organization of clusters considers not only the distances to a query

image, but also the hierarchical structure that generates the clusters. To this end, it may be viewed

as a structured sorting of clusters in ascending order of distances to a query image. For the sake of

consistency, images within each cluster are also organized in ascending order of distances to the query.

3.3 Computational Complexity

The computational complexity of a cluster-based image retrieval system is higher than that of a

typical CBIR system due to the added computation of clustering. The time complexity of CLUE is

July 23, 2004 DRAFT



11

the sum of the complexity of NNM and the complexity of the recursive Ncut.

Since NNM needs to find r nearest neighbors for all k seeds, a straightforward implementation,

which treats each seed as a new query, would make the whole process very slow when the size of

image database is large. Two methods can be applied to reduce the time cost of NNM. One method

is to parallelize NNM because nearest neighbors for all k seeds can be selected simultaneously. The

other method utilizes the fact that all seeds are images in the database. Thus similarities can be

computed and sorted in advance. So the time needed by NNM does not scale up by the number of

seeds. Nevertheless, it then requires storing the sorting results with every image in the database as a

query image. The space complexity becomes O(N2) where N is the size of the database. However, the

space complexity can also be reduced because NNM only needs r nearest neighbors, which leads to

a space complexity of O(rN). The locality constraint guarantees that r is very small compared with

N . In our implementation, only the ID numbers of 100 nearest neighbors for each image are stored

(N = 60, 000). The second method is used in our experimental system. We argue that this method is

practical even if the database is very large. Because computing and sorting similarities for all target

images may be very time-consuming, this process is required only once. Moreover, the process can

also be parallelized for each target image. If new images are added to the database, instead of redoing

the whole process, we can merely compute those similarities associated with new images and update

previously stored sorting results accordingly.

The time needed by the recursive Ncut process consists of two parts: graph construction and the

Ncut algorithm. For graph construction, one needs to evaluate n(n+1)
2 entries of the affinity matrix

where n ≤ k(r + 1) + 1 is the number of nodes (query image and all its neighboring target images).

Thus the time complexity is O(n2). Each Ncut iteration can be solved by the Lanczos algorithm

(Ch.9, [9]) in O(n2) [32]. As the number of clusters is bounded by M , the total time complexity for

the recursive Ncut process is O(k2r2) (because n ≤ k(r + 1) + 1).

3.4 Parameters Selection

Several parameters need to be specified to implement CLUE. These include k and r for NNM, s

for affinity matrix evaluation, M and T for recursive Ncut. Three requirements are considered when

deciding k and r. First of all, we want the neighboring images to be close to the query image so

that the assumption of a locally clustered structure is valid. Secondly, we need sufficient number

of images to provide an informative local visualization of the image database to the user. Thirdly,

computational cost should be kept within the tolerance of real-time applications. It is clear that the

second constraint favors large k and r, while the other two constraints need k and r to be small.
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Finding a proper tradeoff is application dependent.

For the cluster-based image retrieval system described in the next section, k and r are obtained

from a simple tuning strategy. We randomly pick 20 query images from the image database. For each

pair of k and r, where k ∈ {25, 26, · · · , 35} and r ∈ {5, 6, · · · , 10}, we manually examine the semantics

of images generated by NNM using each of the 20 query images, and record the average number of

distinct semantics. Next, all pairs of k and r corresponding to the median of the above recorded

numbers are found. We pick the pair with minimal kr value, which gives k = 29 and r = 7 for our

system. As a byproduct, M (maximum number of clusters) in recursive Ncut is set to be 8, which is

the integer closest to the median. Note that our criteria on distinct semantics may be very different

from the criteria of a system user. However, we observed that the system is not sensitive to k and r.

The parameter s in (1) reflects the local scale on distances. Thus it should be adaptive to the query

image and its neighboring target images. In our system, s = 2σ where σ is the standard deviation of

all the pairwise distances used to construct the affinity matrix. The threshold T is chosen to make the

median of the number of clusters generated by recursive Ncuts on the 20 collections of images, which

are used in k and r tuning process, equal or close to M = 8. A proper T value is found to be 0.9.

4 A Content-Based Image Clusters Retrieval System

The system uses the same feature extraction scheme and similarity measure as those in [4] and [40].

So only a brief introduction is presented here. From the viewpoint of image features, the system is a

region-based system. It applies image segmentation to decompose an image into regions, and defines

similarities via region matching. To segment an image, our system first partitions the image into

blocks with 4 × 4 pixels. A feature vector, consisting of six features, is then extracted for each image

block. Among the six features, three of them are the average color (in the LUV color space) of the

corresponding block. The other three represent energy in the high frequency bands of a one-level

Daubechies-4 wavelet transform [7] applied to the L component of the image block, that is, the square

root of the second order moment of wavelet coefficients in the LH (low high), HL, and HH bands.

The k-means algorithm is then used to group the feature vectors into several classes with every class

corresponding to one region in the segmented image.

Each region is then associated with a fuzzy feature (defined by a membership function) describ-

ing the color, texture, and shape properties of the region. The membership functions of fuzzy sets

naturally characterize the gradual transition between regions within an image. To that end, they

characterize the blurring boundaries due to imprecise segmentation. A fuzzy similarity measure is

used to describe the resemblance of two regions. Finally, a convex combination scheme synthesizes the
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(a) Thumbnails of image clusters.

(b) Images in Cluster 1.

Fig. 3. Two snapshots of the user interface displaying query results for a query image with ID 6275. (a) a

list of image cluster thumbnails, (b) images in Cluster 1. Below each thumbnail in (a) are cluster ID and the

number of images in the cluster. There are two numbers below images in (b). The underlined number is image

ID. The other number is the cluster ID.

region-level similarities into an image similarity measure, UFM (Unified Feature Matching) measure,

which is demonstrated to be very robust to segmentation-related uncertainties [4]. In order to com-

pute the affinity matrix according to (1), UFM measure is converted to a distance by a simple linear

transformation d(i, j) = 1 − UFM(i, j).

The system has a very simple CGI-based query interface. It provides a Random option that will

give a user a random set of images from the image database to start with. In addition, users can either

enter the ID of an image as the query or submit any image on the Internet as a query by entering the

URL of the image. The system is capable of handling any standard image format from anywhere on

the Internet and reachable by our server via the HTTP protocol. Once a query image is received, the

system displays a list of thumbnails each of which represents an image cluster. The thumbnails are

found according to (4), and sorted using the algorithm in Section 3.2. Figure 3(a) shows 8 clusters

corresponding to a query image with ID 6275. Below each thumbnail are cluster ID and the number

of images in that cluster. A user can start a new query search by submitting a new image ID or URL,

get a random set of images from the image database, or click a thumbnail to see all images in the

associated cluster. The contents of Cluster 1 are displayed in Figure 3(b). From left to right and top
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to bottom, the images are listed in ascending order of distances to the query image. The underlined

numbers below the images are image IDs. The other numbers are cluster IDs. The image with a

border around it is the representative image for the cluster. Again, a user has three options: enter a

new image ID or URL, get a random set of images from the database, or click an image to submit it

as a query.

5 Experiments

Our system1 is implemented with a general-purpose image database (from COREL), which includes

about 60, 000 images stored in JPEG format with size 384 × 256 or 256 × 384. In Section 5.1, we

provide several query results on the COREL database to intuitively illustrate the performance of the

system. Section 5.2 presents systematic evaluations of CLUE algorithm in terms of the goodness of

image clustering and retrieval accuracy. Numerical comparisons with the SIMPLIcity system using

UFM similarity measure [4] are also given. In Section 5.3, the speed of CLUE is compared with that of

a typical CBIR system using UFM similarity measure. Section 5.4 presents results on images returned

by Google’s Image Search.

5.1 Query Examples

To qualitatively evaluate the performance of the system over the 60, 000-image COREL database, we

randomly pick five query images with different semantics, namely, birds, car, food, historical buildings,

and soccer game. The image clusters and the associated tree structure generated by CLUE are shown

in Figure 4 where each image thumbnail represents an image cluster. Below each thumbnail are cluster

ID and the number of images in the cluster. For each query example, we examine the precision of

the query results depending on the relevance of the image semantics. Here only images in the first

cluster, in which the query image resides, are considered. This is because images in the first cluster

can be viewed as sharing the same similarity-induced semantics as that of the query image according

to the clusters organization described in Section 3.2. Performance issues about the rest clusters will

be covered in Section 5.2. Since CLUE of our system is built upon UFM similarity measure, query

results of a typical CBIR system, SIMPLIcity system using UFM similarity measure [4] (we call the

system UFM to simplify notation), are also included for comparison. We admit that the relevance

of image semantics depends on standpoint of a user. Therefore, our relevance criteria, specified in

Figure 5, may be quite different from those used by a user of the system. Due to space limitations,

only the top 11 matches to each query are shown in Figure 5. We also provide the number of relevant

images in the first cluster (for CLUE) or among top 31 matches (for UFM).
1A demonstration system is available at http://wang.ist.psu.edu/IMAGE/clue.
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(a) birds

(b) car

(c) food

(d) historical buildings

(e) soccer game

Fig. 4. Image clusters and the associated tree structure generated by CLUE.

Compared with UFM, CLUE provides semantically more precise results for all query examples given

in Figure 5. This is reasonable since CLUE utilizes more information about image similarities than

UFM does. CLUE groups images into clusters based on pairwise distances so that the within-cluster

similarity is high and between-cluster similarity is low. The results seem to indicate that a similarity-

induced image cluster tends to contain images of similar semantics. In other words, organizing images

into clusters and retrieving image clusters may help to reduce the semantic gap even when the rest

of the components of the system, such as feature extraction and image similarity measure, remain
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CLUE Results UFM Results

(a) 6 matches out of 11; 12 out of 29 3 matches out of 11; 9 out of 31

(b) 8 matches out of 11; 15 out of 26 4 matches out of 11; 7 out of 31

(c) 8 matches out of 11; 19 out of 25 4 matches out of 11; 11 out of 31

(d) 10 matches out of 11; 22 out of 25 8 matches out of 11; 22 out of 31

(e) 10 matches out of 11; 13 out of 18 4 matches out of 11; 7 out of 31

Fig. 5. Comparison of CLUE and UFM. The query image is the upper-left corner image of each block of images.

The underlined numbers below the images are the ID numbers of the images in the database. For the images

in the left column, the other number is the cluster ID (the image with a border around it is the representative

image for the cluster). For images in the right column, the other two numbers are the value of UFM measure

between the query image and the matched image, and the number of regions in the image. (a) birds, (b) car,

(c) food, (d) historical buildings, and (e) soccer game.
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unchanged.

5.2 Systematic Evaluation

To provide a more objective evaluation and comparison, CLUE (built upon UFM similarity measure)

is tested on a subset of the COREL database, formed by 10 image categories, each containing 100

images. The categories are Africa people and villages, Beach, Buildings, Buses, Dinosaurs, Elephants,

Flowers, Horses, Mountains and glaciers, and Food with corresponding Category IDs denoted by

integers from 1 to 10, respectively. Within this database, it is known whether two images are of the

same category (or semantics). Therefore we can quantitatively evaluate and compare the performance

of CLUE in terms of the goodness of image clustering and retrieval accuracy. In particular, the

goodness of image clustering is measured via the distribution of images semantics in the cluster, and a

retrieved image is considered a correct match if and only if it is the same category as the query image.

These assumptions are reasonable since the 10 categories were chosen so that each depicts a distinct

semantic topic.

5.2.1 Measuring the Quality of Image Clustering

Ideally, a cluster-based image retrieval system would be able to generate image clusters each of

which contains images of similar or even identical semantics. The confusion matrix is one way to

measure clustering performance. However, to compute the confusion matrix, the number of clusters

needs to be equal to the number of distinct semantics, which is unknown in practice. Although we can

force CLUE to always generate 10 clusters in this particular experiment, the experiment setup would

then be quite different to a real application. So we use purity and entropy to measure the goodness of

image clustering.

Assume we are given a set of n images belonging to c distinctive categories (or semantics) denoted

by 1, · · · , c (in this experiment c ≤ 10 depending on the collection of images generated by NNM) while

the images are grouped into m clusters Cj, j = 1, · · · ,m. Cluster Cj’s purity can be defined as

p(Cj) =
1

|Cj | max
k=1,···,c

|Cj,k| (5)

where Cj,k consists of images in Cj that belong to category k, and |Cj| represents the size of the

set. Each cluster may contain images of different semantics. Purity gives the ratio of the dominant

semantic class size in the cluster to the cluster size itself. The value of purity is always in the interval

[1c , 1] with a larger value means that the cluster is a “purer” subset of the dominant semantic class.
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Fig. 6. CLUE applies five Ncuts to a collection of 118 images neighboring to a query image of food. Numbers

within each node denote the size of the corresponding clusters. Linguistic descriptor and numbers listed under

each leaf node are (from top to bottom): name of the dominant semantic category in the leaf node (or cluster),

purity of the cluster, and entropy of the cluster.

Entropy is another cluster quality measure, which is defined as follows:

h(Cj) = − 1
log c

c∑

k=1

|Cj,k|
|Cj | log

|Cj,k|
|Cj| . (6)

Since entropy considers the distribution of semantic classes in a cluster, it is a more comprehensive

measure than purity. Note that we have normalized entropy so that the value is between 0 and 1.

Contrary to the purity measure, an entropy value near 0 means the cluster is comprised mainly of

1 category, while an entropy value close to 1 implies that the cluster contains a uniform mixture of

all categories. For example, if half of the images of a cluster belong to one semantic class and the

rest of the images are evenly divided into 9 different semantic classes, then the entropy is 0.7782 and

the purity is 0.5. Figure 6 shows clusters and the associated tree structure generated by CLUE for a

sample query image of food. Size of each cluster, purity and entropy of leaf clusters are also listed.

The following are some additional notations used in the performance evaluation. For a query

image i: 1) mi denotes the number of retrieved clusters; 2) vi is the average size of the retrieved

clusters; 3) P (i) is the average purity of the retrieved clusters, i.e., P (i) = 1
mi

∑mi
j=1 p(Cj) where

p(Cj) is computed according to (5); and 4) H(i) is the average entropy of the retrieved clusters, i.e.,

H(i) = 1
mi

∑mi
j=1 h(Cj) where h(Cj) is computed according to (6).

Every image in the 1000-image database is tested as a query. The same set of parameters specified

in Section 3.4 is used here. For query images within one semantic category, the following statistics are

computed: the mean of mi, the mean and standard deviation (STDV) of vi, the mean of P (i), and the

mean of H(i). In addition, we calculate PNNM and HNNM for each query, which are respectively the

purity and entropy of the whole collection of images generated by NNM, and the mean of PNNM and
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TABLE I

Statistics of the average number of clusters mi and the average cluster size vi, and an

estimation of the correct categorization rate Ct.
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Fig. 7. Clustering performance in terms of purity and entropy. For mean P (i) and mean PNNM , larger numbers

indicate purer clusters. For mean H(i) and mean HNNM , smaller numbers denote better cluster quality.

HNNM for query images within one semantic category. The results are summarized in Table I (second

and third columns) and Figure 7. The third column of Table I shows that the size of clusters does

not vary greatly within a category. This is because of the heuristic used in recursive Ncut: always

dividing the largest cluster. It should be observed from Figure 7 that CLUE provides good quality

clusters in the neighborhood of a query image. Compared with the purity and entropy of collections of

images generated by NNM, the quality of the clusters generated by recursive Ncut is on average much

improved for all image categories except category 5, for which NNM generates quite pure collections
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of images leaving little room for improvement.

5.2.2 Retrieval Accuracy

For image retrieval, purity and entropy by themselves may not provide a comprehensive estimate

of the system performance even though they measure the quality of image clusters. Because what

could happen is a collection of semantically pure image clusters but none of them sharing the same

semantics with the query image. Therefore one needs to consider the semantic relationship between

these image clusters and the query image. For this purpose, we introduce the correct categorization

rate and average precision.

A query image is correctly categorized if the dominant category in the query image cluster (first

cluster of leftmost leaf) is identical to the query category. The correct categorization rate, Ct, for

image category t indicates how likely the dominant semantics of the query image cluster coincides

with the query semantics, and is defined as the ratio of the number of correctly categorized images

in category t to the size of category t. The fourth column of Table I lists estimations of Ct for 10

categories used in our experiments. Note that randomly assigning a dominant category to the query

image cluster will give a Ct value of 0.1. The results there indicate that CLUE has some difficulties in

categorizing images about beaches (category 2) and images about mountains and glaciers (category

9), even though the performance is still four times better than random. A detailed examination of

the errors shows that most errors on these two categories are errors between these two categories, i.e.,

a beach query is categorized as mountains and glaciers, or conversely. The performance degradation

on these two categories seems understandable. Many images from these two categories are visually

similar. Figure 8 presents 12 images from both categories of the 1000-image database. All beach

images in Figure 8 contain mountains or mountain-like regions, while all the mountain images have

regions corresponding to river, lake, or even ocean. In addition, UFM measure may also mistakenly

view a glacier as clouds because both regions have similar white color and shape. However, we argue

that the performance may be improved if a better similarity measure is used.

From the standpoint of a system user, the correct categorization rate may not be the most important

performance index. Even if the first cluster, in which the query image resides, does not contain any

images that are semantically similar to the query image, the user can still look into the rest of the

clusters. So we use precision to measure how likely a user would find images belonging to the query

category within a certain number of top matches. Here the precision is computed as the percentage

of images belonging to the category of the query image in the first 100 retrieved images. The recall

equals precision for this special case since each category has 100 images. The r parameter in NNM
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Beach 1 Beach 2 Beach 3 Beach 4 Beach 5 Beach 6

Mountains 1 Mountains 2 Mountains 3 Mountains 4 Mountains 5 Mountains 6

Fig. 8. Some sample images taken from the 1000-image database. They belong to two categories: Beach or

Mountains and glaciers.

is set to be 30 to ensure that the number of neighboring images generated is greater than 100. As

mentioned in Section 3.2, the linear organization of clusters may be viewed as a structured sorting

of clusters in ascending order of distances to a query image (recall that images within each cluster

are organized in ascending order of distances to the query). Therefore the top 100 retrieved images

are found according to the order of clusters. The average precision for a category t is then defined as

the mean of precision for query images in category t. Figure 9 compares the average precision given

by CLUE with those obtained by UFM. Clearly, CLUE performs better than UFM for 9 out of 10

categories (they tie on the remaining one category). The overall average precision for 10 categories are

0.538 for CLUE and 0.477 for UFM. CLUE can be built upon any real-valued symmetric similarity

measure, not just UFM similarity measure. The results here suggest that on average CLUE scheme

may improve the precision of a CBIR system.

5.3 Speed

The CLUE has been implemented on a Pentium III 700MHz PC running Linux operation system.

To compare the speed of the CLUE with the UFM [4], which is implemented and tested on the same

computer, 100 random queries are issued to the demonstration web sites. The CLUE takes on average

0.8 second per query for similarity measure evaluation, sorting, and clustering, while the UFM takes

0.7 second to evaluate similarities and sort the results. The size of the database is 60, 000 for both

tests. Although the CLUE is slower than the UFM because of the extra computational cost for NNM

and recursive Ncut, the execution time is still well within the tolerance of real-time image retrieval.
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Fig. 9. Comparing CLUE scheme with UFM method on the average precision.

5.4 Application of CLUE to Web Image Retrieval

To show the performance of CLUE on real world image data, we provide some results using images

from the Internet. The images are obtained from Google’s Image Search (http://images.google.com),

which is a keyword-based image retrieval system. Due to space limitation, we only present the results

for two queries: “Tiger” and “Beijing.” Since there is no query image, the neighboring image selection

stage of CLUE is skipped. Instead, for each query, the recursive Ncut is directly applied to the top

200 images returned by Google. Figure 10 lists some sample images from the top 4 largest clusters for

each query. Each block of images are chosen to be the top 18 images within a cluster that are closest

to the representative image of the cluster in terms of UFM similarity measure. The cluster size is also

specified below each block of images.

As shown in Figure 10, real world images can be visually and semantically quite heterogeneous

even when a very specific category is under consideration. For example, the Tiger images returned

by Google’s Image Search contains images of cartoon tiger (animal), real tiger (animal), Tiger Woods

(golf player), Tiger tank, Crouching Tiger Hidden Dragon (movie), and tiger shark, etc. Images about

Beijing include images of city maps, people, and buildings, etc. CLUE seems to be capable of providing

visually coherent image clusters with reduced semantic diversity within each cluster:

• The images in Figure 10(a) are mainly about cartoon tigers. Half of the images in Figure 10(d)

contain people. Real tigers appear more frequently in Figure 10(b) and (c) than in Figure 10(a) and

(b). Images in Figure 10(c) have stronger textured visual effect than images of the other three blocks.
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“Tiger” “Beijing”

(a) Cluster 1 (75 images) (e) Cluster 1 (61 images)

(b) Cluster 2 (64 images) (f) Cluster 2 (59 images)

(c) Cluster 3 (32 images) (g) Cluster 3 (43 images)

(d) Cluster 4 (24 images) (h) Cluster 4 (31 images)

Fig. 10. Some sample images of the top four largest clusters obtained by applying CLUE to images returned

by Google’s Image Search with queries “Tiger” (left column) and “Beijing” (right column).
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• As to images about “Beijing”, the majority of the images in Figure 10(e) are city maps. Out of

the 18 images in Figure 10(f), 11 contains people. The majority of images in Figure 10(g) are about

Beijing’s historical buildings. There also a lot of images of buildings in Figure 10(h). But most of

them are modernbuilt.

These results demonstrate that, to some extent, CLUE is helpful in disambiguating and refining image

semantics and hence improve the performance of a keyword-based image retrieval system.

6 Conclusions and Future Work

This paper introduces CLUE, a new image retrieval scheme for improving user interaction with

image retrieval systems. CLUE retrieves image clusters rather than sorted single images as most

CBIR systems do. Clustering is performed in a query-dependent way. Therefore, CLUE generates

clusters that are tailored to characteristics of the query image. CLUE employs a graph representation

of images: images are viewed as nodes and similarities between images are denoted by weights of the

edges connecting the nodes. Clustering is then naturally formulated as a graph partitioning problem,

which is solved by Ncut technique. Graph-theoretic clustering enables CLUE to handle the metric and

nonmetric similarity measures in a uniform way. In this sense, CLUE is a general approach that can

be combined with any real-valued symmetric image similarity measure, and thus, may be embedded

in many current CBIR systems. The application of CLUE to a database of 60, 000 general-purpose

images demonstrates that CLUE can provide semantic relevant clues to a system user than an existing

CBIR system using the same similarity measure. Numerical evaluations on a 1000-image database

show good cluster quality and improved retrieval accuracy. Furthermore, results on images returned

by Google’s Image Search suggest the potential of applying CLUE to real world image data and

integrating CLUE as a part of the interface for keyword-based image retrieval systems.

CLUE has several limitations.

• The current heuristic used in the recursive Ncut always bipartitions the largest cluster. This is a

low-complexity rule and is computationally efficient to implement. But it may divide a large and pure

cluster into several clusters even when there exists a smaller and semantically more diverse cluster.

Bipartitioning the semantically most diverse cluster seems to be more reasonable. But the open

question is how to automatically and efficiently estimate the semantic diversity of a cluster.

• The current method of finding a representative image for a cluster does not always give a semantically

representative image. For the example in Figure 5(a), one would expect the representative image to

be a bird image. But the system picks an image of sheep (the third image). This discrepancy is due

to the semantic gap: an image that is most similar to all images in the cluster in terms of a similarity
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measure does not necessarily belong to the dominant semantic class of the cluster.

• If the number of neighboring target images is large (more than several thousand), sparsity of the

affinity matrix becomes crucial to retrieval speed. The current weighting scheme given by (1) does not

lead to a sparse affinity matrix. As a result, different weighting schemes should be studied to improve

the scalability of CLUE.

CLUE may be improved as follows.

• The quality of the clusters depends on the choice of the partitioning algorithm. Although experi-

ments show that Ncut method produces robust clusters, other graph theoretic clustering techniques [22]

need to be tested for possible performance improvement.

• As pointed out by a reviewer of the initial draft, the computational overhead for the NNM technique

could be reduced if an indexing technique, such as SR-tree [17], is used.

• CLUE relies heavily on the similarity measure employed. If a similarity measure does not capture

semantic relevant information, clustering itself does not bridge the gap between low-level feature and

high-level concepts. Therefore, applying CLUE to the results of a semantic search engine, such as

a keyword-based image retrieval system like Google’s Image Search, may be helpful in reducing the

number of visually similar images a user needs to browse through. As future work, we intend to apply

CLUE to search, browse, and learn concepts from digital imagery for Asian art and cultural heritages.

• CLUE may be combined with nonlinear dimensionality reduction techniques, such as the methods

in [25] and [37], to provide a global visualization together with a local retrieval.
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