
1

Support Vector Learning for Fuzzy Rule-Based

Classification Systems

Yixin Chen, Student Member, IEEE, James Z. Wang, Member, IEEE

Yixin Chen is with the Department of Computer Science and Engineering, The Pennsylvania State University, Uni-

versity Park, PA 16802, USA (e-mail: yixchen@cse.psu.edu).

James Z. Wang is with the School of Information Sciences and Technology and the Department of Computer Science

and Engineering, The Pennsylvania State University, University Park, PA 16802, USA (e-mail: jwang@ist.psu.edu).

January 18, 2003 DRAFT

2

Abstract

To design a fuzzy rule-based classification system (fuzzy classifier) with good generalization

ability in a high dimensional feature space has been an active research topic for a long time.

As a powerful machine learning approach for pattern recognition problems, support vector

machine (SVM) is known to have good generalization ability. More importantly, an SVM can

work very well on a high (or even infinite) dimensional feature space. This paper investigates

the connection between fuzzy classifiers and kernel machines, establishes a link between fuzzy

rules and kernels, and proposes a learning algorithm for fuzzy classifiers. We first show that

a fuzzy classifier implicitly defines a translation invariant kernel under the assumption that

all membership functions associated with the same input variable are generated from location

transformation of a reference function. Fuzzy inference on the IF-part of a fuzzy rule can be

viewed as evaluating the kernel function. The kernel function is then proven to be a Mercer

kernel if the reference functions meet certain spectral requirement. The corresponding fuzzy

classifier is named positive definite fuzzy classifier (PDFC). A PDFC can be built from the

given training samples based on a support vector learning approach with the IF-part fuzzy

rules given by the support vectors. Since the learning process minimizes an upper bound on

the expected risk (expected prediction error) instead of the empirical risk (training error), the

resulting PDFC usually has good generalization. Moreover, because of the sparsity properties

of the SVMs, the number of fuzzy rules is irrelevant to the dimension of input space. In this

sense, we avoid the “curse of dimensionality.” Finally, PDFCs with different reference functions

are constructed using the support vector learning approach. The performance of the PDFCs

is illustrated by extensive experimental results. Comparisons with other methods are also

provided.

Index Terms— Fuzzy systems, statistical learning theory, support vector machines, fuzzy

classifier, kernel methods, pattern classification.

1 Introduction

Since the publication of L.A. Zadeh’s seminal paper on fuzzy sets [64], fuzzy set theory and its

descendant, fuzzy logic, have evolved into powerful tools for managing uncertainties inherent in

complex systems. In the recent twenty years, fuzzy methodology has been successfully applied

to a variety of areas including control and system identification [27], [30], [48], [57], [65], signal

January 18, 2003 DRAFT

3

and image processing [36], [39], [47], pattern classification [1], [17], [20], [26], and information

retrieval [8], [34]. In general, building a fuzzy system consists of three basic steps [61]: structure

identification (variable selection, partitioning input and output spaces, specifying the number of

fuzzy rules, and choosing a parametric/nonparametric form of membership functions), param-

eter estimation (obtaining unknown parameters in fuzzy rules via optimizing a given criterion),

and model validation (performance evaluation and model simplification). There are numerous

studies on all these subjects. Space limitation precludes the possibility of a comprehensive

survey. Instead, we only review some of those results that are most related to ours.

1.1 Structure Identification and Parameter Estimation

Deciding the number of input variables is referred to the problem of variable selection, i.e.,

selecting input variables that are most predictive of a given outcome. It is related to the

problems of input dimensionality reduction and parameter pruning. Emami et al. [14] present

a simple method of identifying non-significant input variables in a fuzzy system based on the

distribution of degree of memberships over the domain. Recently, Silipo et al. [44] propose a

method that quantifies the discriminative power of the input features in a fuzzy model based on

information gain. Selecting input variables according to their information gains may improve

the prediction performance of the fuzzy system and provides a better understanding of the

underlying concept that generates the data.

Given a set of input and output variables, a fuzzy partition associates fuzzy sets (or linguistic

labels) with each variable. There are roughly two ways of doing it: data independent partition

and data dependent partition. The former approach partitions the input space in a predeter-

mined fashion. The partition of the output space then follows from supervised learning. One

of the commonly used strategies is to assign a fixed number of linguistic labels to each input

variable [56]. Although this scheme is not difficult to implement, it has two serious drawbacks:

• The information in the given data (patterns) is not fully exploited. The performance of

the resulting system may be poor if the input space partition is quite distinct from the true

distribution of data. Optimizing output space partition alone is not sufficient.

• The scheme suffers from the curse of dimensionality. If each input variable is allocated m

fuzzy sets, a fuzzy system with n inputs and one output needs on the order of mn rules.

Various data dependent partition methods have been proposed to alleviate these drawbacks.

Dickerson et al. [11] use an unsupervised competitive learning algorithm to find the mean and

January 18, 2003 DRAFT

4

covariance matrix of each data cluster in the input/output space. Each data cluster forms an

ellipsoidal fuzzy rule patch. Thawonmas et al. [50] describe a simple heuristic for unsupervised

iterative data partition. At each iteration, an input dimension, which gives the maximum

intra-class difference between the maximum and the minimum values of the data along that

dimension, is selected. The partition is performed perpendicular to the selected dimension. Two

data group representations, hyper-box and ellipsoidal representations, are compared. In [42], a

supervised clustering algorithm is used to group input/output data pairs into a predetermined

number of fuzzy clusters. Each cluster corresponds to a fuzzy IF-THEN rule. Univariate

membership functions can then be obtained by projecting fuzzy clusters onto corresponding

coordinate axes.

Although a fuzzy partition can generate fuzzy rules, results are usually very coarse with

many parameters to be learned and tuned. Various optimization techniques are proposed to

solve this problem. Genetic algorithms [9], [49], [59] and artificial neural networks [22], [24],

[60] are two of the most popular and effective approaches.

1.2 Generalization Performance

After going through the long journey of structure identification and parameter estimation,

can we infer that we get a good fuzzy model? In order to draw a conclusion, the following two

questions must be answered:

• How capable can a fuzzy model be?

• How well can the model, built on finite amount of data, capture the concept underlying the

data?

The first question could be answered from the perspective of function approximation. Several

types of fuzzy models are proven to be “universal approximators” [28], [38], [58], [63], i.e., we can

always find a model from a given fuzzy model set so that the model can uniformly approximate

any continuous function on a compact domain to any degree of accuracy. The second question is

about the generalization performance, which is closely related to several well-known problems in

the statistics and machine learning literature, such as the structural risk minimization [51], the

bias variance dilemma [15], and the overfitting phenomena [2]. Loosely speaking, a model, build

on finite amount of given data (training patterns), generalizes the best if the right tradeoff is

found between the training (learning) accuracy and the “capacity” of the model set from which

the model is chosen. On one hand, a low “capacity” model set may not contain any model that

January 18, 2003 DRAFT

5

fits the training data well. On the other hand, too much freedom may eventually generate a

model behaving like a refined look-up-table: perfect for the training data but (maybe) poor on

generalization.

Researchers in the fuzzy systems community attempt to tackle this problem with roughly

two approaches:(1) use the idea of cross-validation to select a model that has the best ability

to generalize [46]; (2) focus on model reduction, which is usually achieved by rule base reduc-

tion [43], [62], to simplify the model. In statistical learning literature, the Vapnik-Chervonenkis

(VC) theory [52], [53] provides a general measure of model set complexity. Based on the VC

theory, support vector machines (SVM) [52], [53] can be designed for classification problems.

In many real applications, the SVMs give excellent performance [10].

1.3 Our Approach

However, no effort has been made to analyze the relationship between fuzzy rule-based clas-

sification systems and kernel machines. The work presented here attempts to bridge this gap.

We relate additive fuzzy systems to kernel machines, and demonstrate that, under a general

assumption on membership functions, an additive fuzzy rule-based classification system can

be constructed directly from the given training samples using the support vector learning ap-

proach. Such additive fuzzy rule-based classification systems are named the positive definite

fuzzy classifiers (PDFC). Using the SVM approach to build PDFCs has following advantages:

• Fuzzy rules are extracted directly from the given training data. The number of fuzzy rules

is irrelevant to the dimension of the input space. It is no greater (usually much less) than the

number of training samples. In this sense, we avoid the “curse of dimensionality”.

• The VC theory establishes the theoretical foundation for good generalization of the resulting

PDFC.

• The global solution of an SVM optimization problem can be found efficiently using specifically

designed quadratic programming algorithms.

The remainder of the paper is organized as follows. In Section 2, a brief overview of the

VC theory and SVMs is presented. Section 3 describes the PDFCs, a class of additive fuzzy

rule-based classification systems with positive definite membership functions, product fuzzy

conjunction operator, and center of area (COA) defuzzification with thresholding unit. We

show that the decision boundary of a PDFC can be viewed as a hyperplane in the feature

space induced by the kernel. In Section 4, an algorithm is provided to construct PDFC: first,

January 18, 2003 DRAFT

6

an optimal separating hyperplane is found using the support vector learning approach, fuzzy

rules are then extracted from the hyperplane. Section 5 demonstrates the experiments we

have performed, and provides the results. A description of the relationship between PDFCs

and SVMs with radial basis function (RBF) kernels and a discussion on the advantages of

relating fuzzy systems to kernel machines are presented in Section 6. And finally, we conclude

in Section 7 together with a discussion of future work.

2 VC Theory and Support Vector Machines

This section presents the basic concepts of the VC theory and SVMs. For gentle tutorials

of VC theory and SVMs, we refer interested readers to Burges [5] and Müller et al. [35]. More

exhaustive treatments can be found in the books by Vapnik [52], [53].

2.1 VC Theory

Let’s consider a two-class classification problem of assigning class label y ∈ {+1,−1} to input

feature vector ~x ∈ Rn. We are given a set of training samples {(~x1, y1), · · · , (~xl, yl)} ⊂ Rn ×
{+1,−1} that are drawn independently from some unknown cumulative probability distribution

P (~x, y). The learning task is formulated as finding a machine (a function f : Rn → {+1,−1})
that “best” approximates the mapping generating the training set. In order to make learning

feasible, we need to specify a function space, H, from which a machine is chosen.

An ideal measure of generalization performance for a selected machine f is expected risk (or

the probability of misclassification) defined as RP (~x,y)(f) =
∫

Rn×{+1,−1}
I{f(~x)6=y}(~x, y)dP (~x, y)

where IA(z) is an indicator function such that IA(z) = 1 for all z ∈ A, and IA(z) = 0 for

all z /∈ A. Unfortunately, this is more an elegant way of writing the error probability than

practical usefulness because P (~x, y) is usually unknown. However, there is a family of bounds

on the expected risk, which demonstrates fundamental principles of building machines with

good generalization. Here we present one result from the VC theory due to Vapnik and Cher-

vonenkis [54]: given a set of l training samples and function space H, with probability 1 − η,

for any f ∈ H the expected risk is bounded above by

RP (~x,y)(f) ≤ Remp(f) +

√

h(1 + ln 2l
h
) − ln η

4

l
(1)

for any distribution P (~x, y) on Rn × {+1,−1}. Here Remp(f) is called the empirical risk (or

training error), h is a non-negative integer called the Vapnik Chervonenkis (VC) dimension.

January 18, 2003 DRAFT

7

The VC dimension is a measure of the capacity of a {+1,−1}-valued function space. Given a

training set of size l, (1) demonstrates a strategy to control expected risk by controlling two

quantities: the empirical risk and the VC dimension. Next we will discuss an application of

this idea: the SVM learning strategy.

2.2 Support Vector Machines

Let {(~x1, y1), · · · , (~xl, yl)} ⊂ Rn × {+1,−1} be a training set. The SVM learning ap-

proach attempts to find a canonical hyperplane 1 {~x ∈ Rn : 〈~w, ~x〉 + b = 0, ~w ∈ Rn, b ∈ R}
that maximally separates two classes of training samples. Here 〈·, ·〉 is an inner product in

Rn. The corresponding decision function (or classifier) f : Rn → {+1,−1} is then given by

f(~x) = sgn (〈~w, ~x〉 + b).

Considering that the training set may not be linearly separable, the optimal decision function

is found by solving the following quadratic program:

minimize J(~w, ~ξ) =
1

2
〈~w, ~w〉 + C

l
∑

i=1

ξi (2)

subject to yi (〈~w, ~xi〉 + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, · · · , l

where ~ξ = [ξ1, · · · , ξl]
T are slack variables introduced to allow for the possibility of misclassifi-

cation of training samples, C > 0 is some constant.

How does minimizing (2) relate to our ultimate goal of optimizing the generalization? To

answer this question, we need to introduce a theorem about the VC dimension of canonical

hyperplanes [52], which is stated as follows. For a given set of l training samples, let R be

the radius of the smallest ball containing all l training samples, and Λ ⊂ Rn × R be the set of

coefficients of canonical hyperplanes defined on the training set. The VC dimension h of the

function space H = {f(~x) = sgn (〈~w, ~x〉 + b) : (~w, b) ∈ Λ, ‖~w‖ ≤ A, ~x ∈ Rn} is bounded above

by h ≤ min (R2A2, n)+1. Thus minimizing the 1
2
〈~w, ~w〉 term in (2) amounts to minimizing the

VC dimension of H, therefore the second term of the bound (1). On the other hand,
∑l

i=1 ξi

is an upper bound on the number of misclassifications on the training set 2, thus controls the

empirical risk term in (1). For an adequate positive constant C, minimizing (2) can indeed

decrease the upper bound on the expected risk.
1A hyperplane {~x ∈ Rn : 〈~w, ~x〉 + b = 0, ~w ∈ Rn, b ∈ R} is called canonical for a given training set if and only if ~w and

b satisfy mini=1,···,l |〈~w, ~xi〉 + b| = 1.
2A training feature vector ~xi is misclassified if and only if 1 − ξi < 0 or equivalently ξi > 1. Let t be the number of

misclassifications on the training set. We have t ≤
∑l

i=1 ξi since ξi ≥ 0 for all i and ξi > 1 for misclassifications.

January 18, 2003 DRAFT

8

Applying the Karush-Kuhn-Tucker complementarity conditions, one can show that a ~w,

which minimizes (2), can be written as ~w =
∑l

i=1 yiαi~xi. This is called the dual representation

of ~w. An ~xj with nonzero αj is called a support vector. Let S be the index set of support

vectors, then the optimal decision function becomes

f(~x) = sgn

(

∑

i∈S

yiαi 〈~x, ~xi〉 + b

)

(3)

where the coefficients αi can be found by solving the dual problem of (2):

maximize W (~α) =
l

∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyj 〈~xi, ~xj〉 (4)

subject to C ≥ αi ≥ 0, i = 1, · · · , l, and
l

∑

i=1

αiyi = 0.

The decision boundary given by (3) is a hyperplane in Rn. More complex decision surfaces

can be generated by employing a nonlinear mapping Φ : Rn → F to map the data into a new

feature space F (usually has dimension higher than n), and finding the maximal separating

hyperplane in F. Note that in (4) ~xi never appears isolated but always in the form of inner

product 〈~xi, ~xj〉. This implies that there is no need to evaluate the nonlinear mapping Φ as

long as we know the inner product in F for any given ~x, ~z ∈ Rn. So for computational purposes,

instead of defining Φ : Rn → F explicitly, a function K : Rn ×Rn → R is introduced to directly

define an inner product in F. Such a function K is also called the Mercer kernel [10], [52], [53].

Substituting K(~xi, ~xj) for 〈~xi, ~xj〉 in (4) produces a new optimization problem

maximize W (~α) =
l

∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyjK(~xi, ~xj) (5)

subject to C ≥ αi ≥ 0, i = 1, · · · , l, and
l

∑

i=1

αiyi = 0.

Solving (5) for ~α gives a decision function of the form

f(~x) = sgn

(

∑

i∈S

yiαiK(~x, ~xi) + b

)

, (6)

whose decision boundary is a hyperplane in F, and translates to nonlinear boundaries in the

original space. Several techniques of solving quadratic programming problems arising in SVM

algorithms are described in [23], [25], [37]. Details of calculating b can be found in [7].

January 18, 2003 DRAFT

9

3 Additive Fuzzy Rule-Based Classification Systems and Positive

Definite Fuzzy Classifiers

This section starts with a short description of an additive fuzzy model, based on which binary

fuzzy classifiers and standard binary fuzzy classifiers are defined. We then introduce the concept

of positive definite functions, and define positive definite fuzzy classifiers (PDFC) accordingly.

Finally, some nice properties of the PDFCs are discussed.

3.1 Additive Fuzzy Rule-Based Classification Systems

Depending on the THEN-part of fuzzy rules and the way to combine fuzzy rules, a fuzzy

rule-based classification system can take many different forms [29]. In this paper, we consider

the additive fuzzy rule-based classification systems (or in short fuzzy classifier) with constant

THEN-parts. Although the discussions in this section and Section 4 focus on binary classifiers.

The results can be extended to multi-class problems by combining several binary classifiers.

Consider a fuzzy model with m fuzzy rules of the form

Rule j : IF A1
j AND A2

j AND · · · AND An
j THEN bj (7)

where Ak
j is a fuzzy set with membership function ak

j : R → [0, 1], j = 1, · · · ,m, k = 1, · · · , n,

bj ∈ R. If we choose product as the fuzzy conjunction operator, addition for fuzzy rule ag-

gregation (that is what “additive” means), and COA defuzzification, then the model becomes

a special form of the Takagi-Sugeno (TS) fuzzy model [48], and the input output mapping,

F : Rn → R, of the model is defined as

F (~x) =

∑m

j=1 bj

∏n

k=1 ak
j (xk)

∑m

j=1

∏n

k=1 ak
j (xk)

(8)

where ~x = [x1, · · · , xn]T ∈ Rn is the input. Note that (8) is not well-defined on Rn if
∑m

j=1

∏n

k=1 ak
j (xk) = 0 for some ~x ∈ Rn, which could happen if the input space is not wholly

covered by fuzzy rule “patches”. However, there are several easy fixes for this problem. For

example, we can force the output to some constant when
∑m

j=1

∏n

k=1 ak
j (xk) = 0, or add a fuzzy

rule so that the denominator
∑m

j=1

∏n

k=1 ak
j (xk) > 0 for all ~x ∈ Rn. Here we take the second

approach for analytical simplicity. The following rule is added:

Rule 0 : IF A1
0 AND A2

0 AND · · · AND An
0 THEN b0 (9)

January 18, 2003 DRAFT

10

where b0 ∈ R, the membership functions ak
0(xk) ≡ 1 for k = 1, · · · , n and any xk ∈ R. Conse-

quently, the input output mapping becomes

F (~x) =
b0 +

∑m

j=1 bj

∏n

k=1 ak
j (xk)

1 +
∑m

j=1

∏n

k=1 ak
j (xk)

. (10)

A classifier associates class labels with input features, i.e., it is essentially a mapping from

the input space to the set of class labels. In binary case, thresholding is one of the simplest

ways to transform F (~x) to class labels +1 or −1. In this article, we are interested in binary

fuzzy classifiers defined as follows.

Definition 3.1: (Binary Fuzzy Classifier) Consider a fuzzy system with m + 1 fuzzy rules

where Rule 0 is given by (9), Rule j, j = 1, · · · ,m, has the form of (7). If the system uses

product for fuzzy conjunction, addition for rule aggregation, and COA defuzzification, then the

system induces a binary fuzzy classifier, f , with decision rule,

f(~x) = sign (F (~x) + t) (11)

where F (~x) is defined in (10), t ∈ R is a threshold.

The following corollary states that we can assume t = 0 without loss of generality.

Corollary 3.2: For any binary fuzzy classifier given by Definition 3.1 with nonzero threshold

t, there exists a binary fuzzy classifier that has the same decision rule but zero threshold.

Proof: Given a binary fuzzy classifier, f , with t 6= 0. From (10) and (11), we have

f(~x) = sign

(

(b0 + t) +
∑m

j=1(bj + t)
∏n

k=1 ak
j (xk)

1 +
∑m

j=1

∏n

k=1 ak
j (xk)

)

,

which is identical to the decision rule of a binary fuzzy classifier with bj + t as the THEN-part

of jth fuzzy rule (j = 0, · · · ,m) and zero threshold. 2

The membership functions for a binary fuzzy classifier defined above could be any function

from R to [0, 1]. However, too much flexibility on the model could make effective learning (or

training) unfeasible. So we narrow our interests to a class of membership functions, which are

generated from location transformation of reference functions [12], and the classifiers defined

on them.

Definition 3.3: (Reference Function, [12]) A function µ : R → [0, 1] is a reference function

if and only if

• µ(x) = µ(−x);

• µ(0) = 1; and

January 18, 2003 DRAFT

11

• µ is nonincreasing on [0,∞).

Definition 3.4: (Standard Binary Fuzzy Classifier) A binary fuzzy classifier given by Defini-

tion 3.1 is a standard binary fuzzy classifier if for the kth input, k ∈ {1, · · · , n}, the membership

functions, ak
j : R → [0, 1], j = 1, · · · ,m, are generated from a reference function ak through

location transformation, i.e., ak
j (xk) = ak(xk − zk

j) for some location parameter zk
j ∈ R.

A simple example will be helpful for illustrating and understanding the basic idea of the

above definition. Let’s consider a standard binary fuzzy classifier with two inputs (x1 and x2)

and three fuzzy rules (excluding Rule 0)

Rule 1 : IF A1
1 AND A2

1 THEN b1

Rule 2 : IF A1
2 AND A2

2 THEN b2

Rule 3 : IF A1
3 AND A2

3 THEN b3

where a1(x1) = e−
x2
1
4 and a2(x2) = max(1−|x2

3
|, 0) are reference functions for inputs x1 and x2,

respectively, ak
j is the membership function of Ak

j , j = 1, 2, 3, k = 1, 2. As shown in Figure 1,

the membership functions a1
1, a1

2, and a1
3 belong to one location family generated by a1, the

membership functions a2
1, a2

2, and a2
3 belong the other location family generated by a2.

Corollary 3.5: The decision rule of a standard binary fuzzy classifier given by Definition 3.4

can be written as

f(~x) = sign

(

m
∑

j=1

bjK(~x, ~zj) + b0

)

(12)

where ~x = [x1, x2, · · · , xn]T ∈ Rn, ~zj = [z1
j , z

2
j , · · · , zn

j]T ∈ Rn contains the location parameters

of ak
j , k = 1, · · · , n, K : Rn × Rn → [0, 1] is a translation invariant kernel 3 defined as

K(~x, ~zj) =
n

∏

k=1

ak(xk − zk
j) . (13)

Proof: From (10), (11), and Corollary 3.2, the decision rule of a binary fuzzy classifier is

f(~x) = sign

(

b0 +
∑m

j=1 bj

∏n

k=1 ak
j (xk)

1 +
∑m

j=1

∏n

k=1 ak
j (xk)

)

.

Since 1 +
∑m

j=1

∏n

k=1 ak
j (xk) > 0, we have

f(~x) = sign

(

b0 +
m

∑

j=1

bj

n
∏

k=1

ak
j (xk)

)

. (14)

3A kernel K(~x, ~z) is translation invariant if K(~x, ~z) = K(~x − ~z), i.e., it depends only on ~x − ~z, but not on ~x and ~z

themselves.

January 18, 2003 DRAFT

12

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

Input Variable x
1

D
e

g
re

e
 o

f
M

e
m

b
e

rs
h

ip

 a1(x
1
) a

1
1(x

1
) a

2
1(x

1
) a

3
1(x

1
)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

Input Variable x
2

D
e

g
re

e
 o

f
M

e
m

b
e

rs
h

ip

 a2(x
2
) a

1
2(x

2
) a

2
2(x

2
) a

3
2(x

2
)

Fig. 1. IF-part membership functions for a standard binary fuzzy classifier. Two thick curves denote the

reference functions a1(x1) and a2(x2) for inputs x1 and x2, respectively. a1
1(x1) = a1(x1+6), a1

2(x1) = a1(x1+3),

and a1
3(x1) = a1(x1−5) are membership functions associated with x1. a2

1(x1) = a2(x2 +5), a2
2(x2) = a2(x2−3),

and a2
3(x2) = a2(x2 − 7) are membership functions associated with x2. Clearly, a1

1(x1), a1
2(x1), and a1

3(x1) are

location transformed versions of a1(x1), and a2
1(x2), a2

2(x2), and a2
3(x2) are location transformed versions of

a2(x2).

From the definition of standard binary fuzzy classifier, ak
j (xk) = ak(xk − zk

j), k = 1, · · · , n,

j = 1, · · · ,m. Substituting them into (14) completes the proof. 2

The decision rule (13) is not merely a different representation form of (11), it provides us

with a novel perspective on binary fuzzy classifiers (Section 3.2, 3.3), and accordingly leads to

a new design algorithm for binary fuzzy classifiers (Section 4).

3.2 Positive Definite Fuzzy Classifiers

One particular kind of kernel, Mercer kernel, has received considerable attention in the ma-

chine learning literature [10], [16], [52], [53] because it is an efficient way of extending linear

learning machines to nonlinear ones. Is the kernel defined by (13) a Mercer kernel? Before

answering this question, we first quote a theorem.

January 18, 2003 DRAFT

13

Theorem 3.6: (Mercer Theorem [10], [32]) Let X be a compact subset of Rn. Suppose K is

a continuous symmetric function such that the integral operator TK : L2(X) → L2(X),

(TKf)(·) =

∫

X
K(·, ~x)f(~x)d~x

is positive, that is
∫

X×X
K(~x, ~z)f(~x)f(~z)d~xd~z ≥ 0 (15)

for all f ∈ L2(X). Then we can expand K(~x, ~z) in a uniformly convergent series (on X × X)

in terms of TK’s eigen-functions φi ∈ L2(X), normalized in such a way that ‖φi‖L2
= 1, and

positive associated eigenvalues λj > 0,

K(~x, ~z) =
∞

∑

i=1

λkφi(~x)φi(~z) . (16)

The positivity condition (15) is also called the Mercer condition. A kernel satisfying the

Mercer condition is named a Mercer kernel. An equivalent form of the Mercer condition, which

proves most useful in constructing Mercer kernels, is given by the following lemma [10].

Lemma 3.7: (Positivity Condition for Mercer Kernels [10]) For a kernel K : Rn ×Rn → R,

the Mercer condition (15) holds if and only if the matrix [K(~xi, ~xj)] ∈ Rn×n is positive semi-

definite for all choices of points {~x1, · · · , ~xn} ⊂ X and all n = 1, 2, · · · · · ·.
For most nontrivial kernels, directly checking the Mercer conditions in (15) or Lemma 3.7

is not an easy task. Nevertheless, for the class of translation invariant kernels, to which the

kernels defined by (13) belong, there is an equivalent yet practically more powerful criterion

based the spectral property of the kernel [45].

Lemma 3.8: (Mercer Conditions for Translation Invariant Kernels, Smola et al. [45]) A

translation invariant kernel K(~x, ~z) = K(~x − ~z) is a Mercer kernel if and only if the Fourier

transform

F [K](~ω) =
1

(2π)
n
2

∫

Rn

K(~x)e−i〈~ω,~x〉d~x

is nonnegative.

Kernels defined by (13) do not, in general, have nonnegative Fourier transforms. However,

if we assume that the reference functions are positive definite functions, which are defined by

the following definition, then we do get a Mercer kernel (given in Theorem 3.11).

Definition 3.9: (Positive Definite Function [18]) A function f : R → R is said to be a

positive definite function if the matrix [f(xi − xj)] ∈ Rn×n is positive semi-definite for all

choices of points {x1, · · · , xn} ⊂ R and all n = 1, 2, · · · · · ·.

January 18, 2003 DRAFT

14

Corollary 3.10: A function f : R → R is positive definite if and only if the Fourier trans-

form

F [f](ω) =
1√
2π

∫ ∞

−∞

f(x)e−iωxdx

is nonnegative.

Proof: Given any function f : R → R, we can define a translation invariant kernel K : R×R →
R as

K(x, z) = f(x − z) .

From Lemma 3.8, K is a Mercer kernel if and only if the Fourier transform of f is nonnegative.

Thus from Lemma 3.7 and Definition 3.9, we conclude that f is a positive definite function if

and only if its Fourier transform is nonnegative. 2

Theorem 3.11: (Positive Definite Fuzzy Classifier, PDFC) A standard binary classifier

given by Definition 3.4 is called a positive definite fuzzy classifier (PDFC) if the reference

functions, ak : R → [0, 1], k = 1, · · · , n, are positive definite functions (they do not need to be

the same function). The translation invariant kernel (13) is then a Mercer kernel.

Proof: From Lemma 3.8, it suffices to show that the translation invariant kernel defined by

(13) has nonnegative Fourier transform. Rewrite (13) as

K(~x, ~z) = K(~u) =
n

∏

k=1

ak(uk)

where ~x = [x1, · · · , xn]T , ~z = [z1, · · · , zn]T ∈ Rn, ~u = [u1, · · · , un]T = ~x − ~z. Then

F [K](~ω) =
1

(2π)
n
2

∫

Rn

e−i〈~ω,~u〉

n
∏

k=1

ak(uk)d~u

=
1

(2π)
n
2

∫

Rn

n
∏

k=1

ak(uk)e
−iωkukd~u

=
n

∏

k=1

1√
2π

∫

R
ak(uk)e

−iωkukduk

which is nonnegative since ak, k = 1, · · · , n, are positive definite functions (Corollary 3.10). 2

It might seem that the positive definite assumption on reference functions is quite restrictive.

In fact, many commonly used reference functions are indeed positive definite. An incomplete

list is given in Table I.

More generally, the weighted summation (with positive weights) and the product of positive

definite functions are still positive definite (a direct conclusion from the linearity and prod-

uct/convolution properties of the Fourier transform). So we can get a class of positive definite

January 18, 2003 DRAFT

15

TABLE I

A list of positive definite reference functions and their Fourier transform.

membership functions from those listed above. It is worthwhile noting that the asymmetric

triangle and the trapezoid membership functions are not positive definite.

3.3 The PDFC and Mercer Features

Recall the expansion (16) given by the Mercer Theorem. Let F be an l2 space. If we define

a nonlinear mapping Φ : X → F as

Φ(~x) = [
√

λ1φ1(~x), · · · ,
√

λkφi(~x), · · ·]T , (17)

and define an inner product in F as

〈

[u1, · · · , ui, · · ·]T , [v1, · · · , vi, · · ·]T
〉

F =
∞

∑

i=1

uivi , (18)

then (16) becomes

K(~x, ~z) = 〈Φ(~x), Φ(~z)〉F . (19)

Φ(~x) ∈ F is sometimes referred to as the Mercer features. Equation (19) displays a nice property

of Mercer kernels: a Mercer kernel implicitly defines a nonlinear mapping Φ such that the

kernel computes the inner product in the space Φ maps to. Therefore a Mercer kernel enables

a classifier, in the form of (12), to work on Mercer features (which usually reside in a space

with dimension much higher than that of the input space) without explicitly evaluating the

Mercer features (which is computationally very expensive). The following theorem illustrates

the relationship between the PDFCs and Mercer features.

Theorem 3.12: Given n positive definite reference functions, ak : R → [0, 1], k = 1, · · · , n,

and a compact set X ⊂ Rn, we define a Mercer kernel K(~x, ~z) =
∏n

k=1 ak(xk − zk) where

~x = [x1, · · · , xn]T , ~z = [z1, · · · , zn]T ∈ X. Let F be an l2 space, Φ : X → F be the nonlinear

January 18, 2003 DRAFT

16

mapping given by (17), and 〈·, ·〉F be an inner product in F defined by (18). Given a set of

points {~z1, · · · , ~zm} ⊂ X, we define a subspace W ⊂ F as W = Span{Φ(~z1), · · · , Φ(~zm)}, and a

function space H on F as H = {h : h(~u) = sign(〈~w, ~u〉F + b0), ~w ∈ W, ~u ∈ F, b0 ∈ R}. Then

we have the following results:

1. For any g ∈ H, there exists a PDFC with ak, k = 1, · · · , n, as reference functions such that

the decision rule, f , of the PDFC satisfies f(~x) = g(Φ(~x)), ∀~x ∈ X.

2. For any PDFC using ak, k = 1, · · · , n, as reference functions, if ~zj contains location parame-

ters of the IF-part membership functions associated with the jth fuzzy rule for j = 1, · · · ,m (as

defined in Corollary 3.5), then there exists g ∈ H such that the decision rule, f , of the PDFC

satisfies f(~x) = g(Φ(~x)), ∀~x ∈ X.

Proof:

1. Given g ∈ H, we have g(~u) = sign(〈~w, ~u〉F + b0). Since ~w ∈ W, it can be written as a linear

combination of Φ(~zj)’s, i.e., ~w =
∑m

j=1 bjΦ(~zj). Thus g(~u) becomes

g(~u) = sign

〈

m
∑

j=1

bjΦ(~zj), ~u

〉

F

+ b0

= sign

(

m
∑

j=1

bj 〈Φ(~zj), ~u〉F + b0

)

.

Now we can define a PDFC using ak, k = 1, · · · , n, as reference functions. For j = 1, · · · ,m,

let ~zj contain location parameters of the IF-part membership functions associated with the jth

fuzzy rule (as defined in Corollary 3.5), and bj be the THEN-part of the jth fuzzy rule. The

THEN-part of Rule 0 is b0. Then from (12) and (19), the decision rule is

f(~x) = sign

(

m
∑

j=1

bjK(~x, ~zj) + b0

)

= sign

(

m
∑

j=1

bj 〈Φ(~x), Φ(~zj)〉F + b0

)

Clearly, f(~x) = g(Φ(~x)), ∀~x ∈ X.

2. For a PDFC described in the theorem, let bj be the THEN-part of the jth fuzzy rule, and

b0 be the THEN-part of Rule 0. Then from (12) and (19), the decision rule is

f(~x) = sign

(

m
∑

j=1

bj 〈Φ(~x), Φ(~zj)〉F + b0

)

January 18, 2003 DRAFT

17

= sign

〈

m
∑

j=1

bjΦ(~zj), Φ(~x)

〉

F

+ b0

 .

Let ~w =
∑m

j=1 bjΦ(~zj) and g(~u) = sign(〈~w, ~u〉F + b0), then g ∈ H and f(~x) = g(Φ(~x)), ∀~x ∈ X.

This completes the proof. 2

Remark 3.13: The compactness of the input domain X is required for purely theoretical

reason: it ensures that the expansion (16) can be written in a form of countable sum, thus the

nonlinear mapping (17) can be defined. In practice, we don’t need to worry about it provided that

all input features (both training and testing) are within certain range (which can be satisfied

via data preprocessing). Consequently, it is reasonable to assume that ~zj is also in X for

j = 1, · · · ,m because this essentially requires that all fuzzy rule “patches” center inside the

input domain.

Remark 3.14: Since g(~u) = sign(〈~w, ~u〉F + b) = 0 defines a hyperplane in F, Theorem 3.12

relates the decision boundary of a PDFC in X to a hyperplane in F. The theorem implies

that given any hyperplane in F, if its orientation (normal direction pointed by ~w) is a linear

combination of vectors that have preimage (under Φ) in X, then the hyperplane transforms to a

decision boundary of a PDFC. Conversely, given a PDFC, one can find a hyperplane in F that

transforms to the decision boundary of the given PDFC. Therefore, we can alternatively consider

the decision boundary of a PDFC as a hyperplane in the feature space F, which corresponds

to a nonlinear decision boundary in X. Constructing a PDFC is then converted to finding a

hyperplane in F.

Remark 3.15: A hyperplane in F is defined by its normal direction ~w and the distance to

the origin, which is determined by b for fixed ~w. According to the proof of Theorem 3.12, ~w

and b are defined as ~w =
∑m

j=1 bjΦ(~zj) and b = b0, respectively, where {~z1, · · · , ~zm} ⊂ X is

the set of location parameters of the IF-part fuzzy rules, and {b0, · · · , bm} ⊂ R is the set of

constants in the THEN-part fuzzy rules. This implies that the IF-part and THEN-part of fuzzy

rules play different roles in modeling the hyperplane. The IF-part parameters, {~z1, · · · , ~zm},
defines a set of feasible orientations, W = Span{Φ(~z1), · · · , Φ(~zm)}, of the hyperplane. The

THEN-part parameters {b1, · · · , bm} select an orientation,
∑m

j=1 bjΦ(~zj), from W. The distance

to the origin is then determined by the THEN-part of Rule 0, i.e., b = b0.

January 18, 2003 DRAFT

18

4 An SVM Approach to Build PDFCs

A PDFC with n inputs and m, which is unknown, fuzzy rules is parameterized by n, possibly

different, positive definite reference functions (ak : R → [0, 1], k = 1, ...n), a set of location

parameters ({~z1, · · · , ~zm} ⊂ X) for the membership functions of the IF-part fuzzy rules, and a

set of real numbers ({b0, · · · , bm} ⊂ R) for the constants in the THEN-part fuzzy rules. Which

reference functions to choose is an interesting research topic by itself [33]. But it is out of the

scope of this article. Here we assume that the reference functions ai : R → [0, 1], i = 1, · · · , n
are predetermined. So the remaining question is how to find a set of fuzzy rules ({~z1, · · · , ~zm}
and {b0, · · · , bm}) from the given training samples {(~x1, y1), · · · , (~xl, yl)} ⊂ X × {+1,−1} so

that the PDFC has good generalization.

As given in (13), for a PDFC, a Mercer kernel can be constructed from the positive definite

reference functions. The kernel implicitly defines a nonlinear mapping Φ that maps X into a

kernel-induced feature space F. Theorem 3.12 states that the decision rule of a PDFC can be

viewed as a hyperplane in F. Therefore, the original question transforms to: given training

samples {(Φ(~x1), y1), · · · , (Φ(~xl), yl)} ⊂ F × {+1,−1}, how to find a separating hyperplane in

F that yields good generalization, and how to extract fuzzy rules from the obtained optimal

hyperplane. We have seen in Section 2.2 that the SVM algorithm finds a separating hyperplane

(in the input space or the kernel induced feature space) with good generalization by reducing

the empirical risk and, at the same time, controlling the hyperplane margin. Thus we can use

the SVM algorithm to find an optimal hyperplane in F. Once we get such a hyperplane, fuzzy

rules can be easily extracted. The whole procedure is described by the following algorithm.

Algorithm 4.1: SVM Learning for PDFC

Inputs: Positive definite reference functions ak(xk), k = 1, · · · , n, associated with n input

variables, and a set of training samples {(~x1, y1), · · · , (~xl, yl)}.
Outputs: A set of fuzzy rules parameterized by ~zj, bj, and m. ~zj (j = 1, · · · ,m) contains the

location parameters of the IF-part membership functions of the jth fuzzy rule, bj (j = 0, · · · ,m)

is the THEN-part constant of the jth fuzzy rule, and m + 1 is the number of fuzzy rules.

Steps:

1 Construct a Mercer kernel, K, from the given positive

definite reference functions according to (13).

2 Construct an SVM to get a decision rule of the form

(6):

January 18, 2003 DRAFT

19

1) Assign some positive number to C, and solve the

quadratic program defined by (5) to get the

Lagrange multipliers ~α.

2) Find b (details can be found in, for example, [7]).

3 Extracting fuzzy rules from the decision rule of the

SVM:

b0 ← b

j ← 1

FOR i = 1 TO l

IF αi > 0

~zj ← ~xi

bj ← yiαi

j ← j + 1

END IF

END FOR

m ← j − 1

It is straightforward to check that the decision rule of the resulting PDFC is identical to (6).

Once reference functions are fixed, the only free parameter in the above algorithm is C.

According to the optimization criterion in (2), C weights the classification error versus the

upper bound on the VC dimension. Another way of interpreting C is that it affects the sparsity

of ~α (the number of nonzero entries in ~α) [4]. Unfortunately, there is no general rule for picking

C. Typically, a range of values of C should be tried before the best one can be selected.

The above learning algorithm has several nice properties:

• The shape of the reference functions and C parameter are the only prior information needed

by the algorithm.

• The algorithm automatically generates a set of fuzzy rules. The number of fuzzy rules is

irrelevant to the dimension of the input space. It equals the number of nonzero Lagrange

multipliers. In this sense, the “curse of dimensionality” is avoided. In addition, due to the

sparsity of ~α, the number of fuzzy rules is usually much less than the number of training

samples.

• Each fuzzy rule is parameterized by a training sample (~xj, yj) and the associated nonzero

Lagrange multiplier αj where ~xj specifies the location of the IF-part membership functions,

January 18, 2003 DRAFT

20

and yjαj gives the THEN-part constant.

• The global solution for the optimization problem can always be found efficiently because of

the convexity of the objective function and of the feasible region. Algorithms designed specifi-

cally for the quadratic programming problems in SVMs make large-scale training (for example

200, 000 samples with 40, 000 input variables) practical [23], [25], [37]. The computational com-

plexity of classification operation is determined by the cost of kernel evaluation and the number

of support vectors.

• Since the goal of optimization is to lower an upper bound on the expected risk (not just the

empirical risk), the resulting PDFC usually has good generalization, which will be demonstrated

in the coming section.

5 Experimental Results

Using Algorithm 4.1, we design PDFCs with different choices of reference functions 4. Based

on the IRIS data set [3] and the USPS data set 5, we evaluate the performance of PDFCs in

terms of generalization (classification rate) and number of fuzzy rules. Comparisons with fuzzy

classifiers described in [19] and results in [35] are also provided.

5.1 IRIS Data Set

The IRIS data set consists of 150 samples belonging to 3 classes of iris plants namely Setosa,

Versicolor, and Verginica. Each class contains 50 samples, and each sample is represented by

four input features (sepal length, sepal width, petal length, and petal width) and the associated

class label. The Setosa class is linearly separable from the Versicolor and Verginica classes, the

latter are not linearly separable from each other. Clearly, this is a multi-class classification

problem. But the Algorithm 4.1 only works for binary classifiers. So we design three PDFCs,

each of which separates one class from the rest two classes. The final predicted class label is

decided by the winner of three PDFCs, i.e., one with the maximum un-thresholded output.

The generalization performance is evaluated via 2-fold cross-validation. The IRIS data set is

randomly divided into two subsets of equal size (75 samples). A PDFC is trained 2 times, each

time with a different subset held out as a validation set. The classification rate is then defined

as the number of correctly classified validation samples divided by the size of the validation

set. We repeat the 2-fold cross-validation 200 times using different partitions of the IRIS data
4The SVMLight [23] is used to implement the SVMs. This software is available at http://svmlight.joachims.org.
5The USPS data set is available at http://www.kernel-machines.org/data.

January 18, 2003 DRAFT

21

set, and compute the mean of the classification rates. This quantity is viewed as an estimation

of the generalization performance.

10
−2

10
−1

10
0

0.9

0.95

1

1.05

d

M
e
a
n
 C

la
s
s
if
ic

a
ti
o
n
 R

a
te

C=100
C=1000
C=10000

10
−2

10
−1

10
0

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

d

M
e
a
n
 C

la
s
s
if
ic

a
ti
o
n
 R

a
te

C=100
C=1000
C=10000

10
−3

10
−2

10
−1

10
0

0.7

0.75

0.8

0.85

0.9

0.95

1

d

M
e
a
n
 C

la
s
s
if
ic

a
ti
o
n
 R

a
te

C=100
C=1000
C=10000

(a) Setosa versus the rest. (b) Versicolor versus the rest. (c) Verginica versus the rest.

10
−2

10
−1

10
0

4

6

8

10

12

14

16

d

M
e
a
n
 N

u
m

b
e
r

o
f
F

u
z
z
y
 R

u
le

s

C=100
C=1000
C=10000

10
−2

10
−1

10
0

10

15

20

25

30

35

40

45

50

55

d

M
e
a
n
 N

u
m

b
e
r

o
f
F

u
z
z
y
 R

u
le

s

C=100
C=1000
C=10000

10
−3

10
−2

10
−1

10
0

5

10

15

20

25

30

35

40

45

50

55

d

M
e
a
n
 N

u
m

b
e
r

o
f
F

u
z
z
y
 R

u
le

s

C=100
C=1000
C=10000

(d) Setosa versus the rest. (e) Versicolor versus the rest. (f) Verginica versus the rest.

Fig. 2. Performance of PDFCs in terms of the mean classification rate and the mean number of fuzzy rules for

the IRIS data set. (a) and (d) give the mean classification rate and the mean number of fuzzy rules, respectively,

of PDFCs designed to separate Setosa class from the other two classes. (b) and (e) give the mean classification

rate and the mean number of fuzzy rules, respectively, of PDFCs designed to separate Versicolor class from the

other two classes. (c) and (f) give the mean classification rate and the mean number of fuzzy rules, respectively,

of PDFCs designed to separate Verginica class from the other two classes.

For all input variables, we use the Gaussian reference function given in Table I. PDFCs are

designed for different values of C (in Algorithm 4.1) and d (of the Gaussian reference function).

The mean classification rate and the mean number of fuzzy rules for different values of C and d

are plotted in Figure 2. Separating the Setosa class from the other two classes is relatively easy

since they are linearly separable. Consequently, as shown in Figure 2(a), the PDFCs generalizes

perfectly for all values of C and d. Separating the Versicolor (or Verginica) class from the rest

two classes requires slightly more efforts. Figure 2(b) and (c) show that the generalization

January 18, 2003 DRAFT

22

TABLE II

Mean classification rate r and mean number of fuzzy rules m (for multi-class classifiers). A

comparison of multi-class classifiers constructed from three PDFCs and fuzzy classifiers

built from Ishibuchi’s approach using the IRIS data set.

performance depends on the choices of C and d. However, for different values of C, we get very

similar generalization performance by picking a proper d value. In Figure 2(b), the maximum

mean classification rates for C = 100, 1000, and 10000 are 96.81% (d = 1
4
), 96.61% (d = 1

16
),

and 96.45% (d = 1
32

), respectively. In Figure 2(c), the maximum mean classification rates for

C = 100, 1000, and 10000 are 96.57% (d = 1
16

), 96.61% (d = 1
256

), and 96.56% (d = 1
2048

),

respectively. Moreover, Figure 2(d), (e), and (f) demonstrate that C affects the number of

fuzzy rules. For a fixed value of d, a larger C value corresponds to a smaller mean number

of fuzzy rules. This complies with the observation in the SVM literature that the number of

support vectors decreases when C is large.

To get the final multi-class classifier, we need to combine three PDFCs (each one is designed

to separate one class from the rest two classes). Here we use the following strategy:

• Pick three PDFCs with the same C and d values.

• The predicted class label is given by the PDFC with the maximum un-thresholded output.

This strategy is by no means optimal. But it is very simple, and works very well. The results

for C = 100, d = 1, 1
2
, 1

4
, 1

8
, and 1

16
are summarized in Table II, where we also cite the results

reported by Ishibuchi et al. [19]. In their approach, input features are normalized to the interval

[0, 1], and each axis of the input space is assigned M uniformly distributed fuzzy sets. The rule

weights and THEN-part of fuzzy rules are determined by a reward-and-punishment scheme [19].

Clearly, the number of fuzzy rules for such a system is M 4.

From Table II we can see that the classification rates of classifiers built on PDFCs (with a

range of d values) are higher than those of the classifiers constructed from Ishibuchi’s approach.

Moreover, the number of fuzzy rules used by PDFCs is less than that of Ishibuchi’s approach

(except for M = 2 which gives a less favorable classification rate of 91.73%). In addition, for

January 18, 2003 DRAFT

23

TABLE III

USPS data set. Mean classification rate r ± standard deviation and mean number of fuzzy

rules m (for one PDFC) using different reference functions.

a PDFC, the number of fuzzy rules is bounded above by the number of training samples since

each fuzzy rule is parameterized by a training sample with nonzero Lagrange multiplier. While,

using Ishibuchi’s approach, the number of fuzzy rules increases exponentially as M 4.

5.2 USPS Data Set

The USPS data set contains 9298 grayscale images of handwritten digits. The images are

size normalized to fit in a 16× 16 pixel box while preserving their aspect ratio. The data set is

divided into a training set of 7291 samples and a testing set of 2007 samples. For each sample,

the input feature vector consists of 256 grayscale values.

In this experiment, we test the performance of PDFCs for different choices of reference

functions given in Table I. For different input variables, the reference functions are chosen to

be identical. Ten PDFCs are designed, each of which separates one digit from the rest nine

digits. The final predicted class label is decided by the PDFC with the maximum un-thresholded

output. Based on the training set, we use 5-fold cross-validation to determine the d parameter

of reference functions and the C parameter in support vector learning (for each PDFC) where

C takes values from {100, 1000, 10000}, and d takes values from { 1
2n : n = 2, · · · , 10}. For each

pair of d and C, the average cross-validation error is computed. The optimal d and C are the

values that gives the minimal mean cross-validation error. Based on the selected parameter,

the PDFCs are constructed and evaluated on the testing set. The whole process is repeated

5 times. The mean classification rate (and the standard deviation) on the testing set and the

mean number of fuzzy rules (for one PDFC) are listed in Table III. For comparison purpose,

we also cite the results from [35]: linear SVM (classification rate 91.3%), k-nearest neighbor

(classification rate 94.3%), SVM with Gaussian kernel (classification rate 95.8%), and virtual

SVM (classification rate 97.0%).

Note that the Gaussian reference function corresponds to the Gaussian RBF kernel used in

January 18, 2003 DRAFT

24

the SVM literature. For the USPS data, all six reference functions achieve similar classification

rates. The number of fuzzy rules varies significantly. The number of fuzzy rules needed by the

squared sinc reference function is only 68.2% of that needed by the Gaussian reference function.

Compared with the linear SVM and k-nearest neighbor approach [35], the PDFCs achieve a

better classification rate. SVMs can be improved by using prior knowledge. For instance the

virtual SVM [35] performs better than current PDFCs. However, same approach can be applied

to build PDFCs, i.e., PDFCs can also benefit from the same prior knowledge.

6 Discussion

6.1 The Relationship between PDFC kernels and RBF Kernels

In the literature, it is well-known that a Gaussian RBF network can be trained via support

vector learning using a Gaussian RBF kernel [41]. While the functional equivalence between

fuzzy inference systems and Gaussian RBF networks is established in [21] where the membership

functions within each rule must be Gaussian functions with identical variance. So connection

between such fuzzy systems and SVMs with Gaussian RBF kernels can be established. The

following discussion compares the kernels defined by PDFCs and RBF kernels commonly used

in SVMs.

The kernels of PDFCs are constructed from positive definite reference functions. These

kernels are translation invariant, symmetric with respect to a set of orthogonal axes, and tailing

off gradually. In this sense, they appear to be very similar to the general RBF kernels [16]. In

fact, the Gaussian reference function defines the Gaussian RBF kernel. However, in general, the

kernels of PDFCs are not RBF kernels. According to the definition, an RBF kernel, K(~x, ~z),

depends only on the norm of ~x−~z, i.e., K(~x−~z) = KRBF (‖~x−~z‖). It can be shown that for a

kernel, K(~x, ~z), defined by (13) using symmetric triangle, Cauchy, Laplace, hyperbolic secant,

or squared sinc reference functions (even with identical d for all input variables), there exists

~x1, ~x2, ~z1, and ~z2 such that ‖~x1 − ~z1‖ = ‖~x2 − ~z2‖ and K(~x1, ~z1) 6= K(~x2, ~z2). Moreover, a

general RBF kernels (even if it is a Mercer kernel) may not be a PDFC kernel, i.e., it can not

be in general decomposed as product of positive definite reference functions. It is worth noting

that the kernel defined by symmetric triangle reference functions is identical to the Bn-splines

(or order 1) kernel that is commonly used in the SVM literature [55].

January 18, 2003 DRAFT

25

6.2 Advantages of Connecting Fuzzy Systems to Kernel Machines

Kernel methods represent one of the most important directions both in theory and application

of machine learning. While fuzzy classifier was regarded as a method that “are cumbersome

to use in high dimensions or on complex problems or in problems with dozens or hundreds

of features (pp. 194, [13]).” Establishing the connection between fuzzy systems and kernel

machines has the following advantages:

• A novel kernel perspective of fuzzy classifiers is provided. Through reference functions, fuzzy

rules are related to translation invariant kernels. Fuzzy inference on the IF-part of a fuzzy rule

is equivalent to evaluating the kernel. If the reference functions are restricted to the class of

positive definite functions then the kernel turns out to be a Mercer kernel, and the corresponding

fuzzy classifier becomes a PDFC. Since Mercer kernel induces a feature space, we can consider

the decision boundary of a PDFC as a hyperplane in that space. The design of a PDFC is then

equivalent to finding an “optimal” hyperplane.

• A new approach to build fuzzy classifiers is proposed. Based on the link between fuzzy systems

and kernel machines, a support vector learning approach is proposed to construct PDFCs so that

a fuzzy classifier can have good generalization ability in a high dimensional feature space. The

resulting fuzzy rules are determined by support vectors, corresponding Lagrange multipliers,

and associated class labels.

• It points out a future direction of applying techniques in fuzzy systems literature to improve

the performance of kernel methods. The link between fuzzy systems and kernel machines implies

that a class of kernel machines, such as those using Gaussian kernels, can be interpreted by a set

of fuzzy IF-THEN rules. This opens interesting connections between fuzzy rule base reduction

techniques [43] and computational complexity issues in SVMs [6] and kernel PCA (principal

component analysis) [40]:

– The computational complexity of an SVM scales with the number of support vectors. One

way of decreasing the complexity is to reduce the number of support-vector-like vectors in the

decision rule (6). For the class of kernels, which can be interpreted by a set of fuzzy IF-THEN

rules, this can be viewed as fuzzy rule base simplification.

– In kernel PCA [40], given a test point ~x, the kth nonlinear principal component, βk, is

computed by βk =
∑l

i=1 αk
i K(~x, ~xi) where l is the number of data points in a given data set

(details of calculating αk
i ∈ R can be found in [40]). Therefore, the computational complexity

of computing βk scales with l. For the class of kernels discussed in this paper, it is not difficult

January 18, 2003 DRAFT

26

to derive that βk can be equivalently viewed as the output of an additive fuzzy system using

first order moment defuzzification without thresholding unit. Here ~xi and αk
i parameterize the

IF-part and THEN-part of the ith fuzzy rule (i = 1, · · · , l), respectively. As a result, fuzzy

rule base reduction techniques may be applied to increase the speed of nonlinear principal

components calculation.

7 Conclusions and Future Work

In this paper, we exhibit the connection between fuzzy classifiers and kernel machines, and

propose a support vector learning approach to construct fuzzy classifiers so that a fuzzy classifier

can have good generalization ability in a high dimensional feature space. As future work,

we intend to explore in the following directions: 1) The requirement that all membership

functions associated with an input variable are generated from the same reference function

maybe somewhat restrictive. However, it can be shown that this constraint can be relaxed; 2)

The positivity requirement on reference functions can also be relaxed. In that case, the kernel in

general will not be a Mercer kernel. But the fuzzy classifiers can still be related to the generalized

support vector machines [31]; 3) Although our work focuses on the classification problem, it is

not difficult to extend the results to function approximations. Fuzzy function approximation

(using positive definite reference functions) is equivalent to support vector regression [55] using

the kernel defined by reference functions; 4) Apply fuzzy rule base reduction techniques to

reduce computational complexities of the SVM and kernel PCA.

Acknowledgments

The material is based upon work supported by The Pennsylvania State University, the PNC

Foundation, the National Science Foundation under Grant No. IIS-0219272, and SUN Mi-

crosystems under Grant EDUD-7824-010456-US. The authors would like to thank anonymous

reviewers and the associate editor for their comments that led to improvements of the paper.

References

[1] S. Abe and R. Thawonmas, “A Fuzzy Classifier with Ellipsoidal Regions,” IEEE Transactions on Fuzzy Systems,

vol. 5, no. 3, pp. 358-368, 1997.

[2] P. L. Bartlett, “For Valid Generalization, the Size of the Weights is More Important Than the Size of the Network,” in

Advances in Neural Information Processing Systems 9, M.C. Mozer, M.I. Jordan, and T. Petsche, (eds.), Cambridge,

MA: The MIT Press, pp. 134-140, 1997.

January 18, 2003 DRAFT

27

[3] C. L. Blake and C. J. Merz, “UCI Repository of Machine Learning Databases,”

[http://www.ics.uci.edu/∼mlearn/MLRepository], University of California, Irvine, Dept. of Information and

Computer Sciences, 1998.

[4] P. S. Bradley and O. L. Mangasarian, “Feature Selection via Concave Minimization and Support Vector Machines,”

Proceedings of the 15th International Conference on Machine Learning, pp. 82-90, Morgan Kaufmann, San Francisco,

CA, 1998.

[5] C. J.C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” Data Mining and Knowledge

Discovery, vol. 2, no. 2, pp. 121-167, 1998.

[6] C. J.C. Burges and B. Schölkopf, “Improving the Accuracy and Speed of Support Vector Machines,” in Advances

in Neural Information Processing Systems 9, M.C. Mozer, M.I. Jordan, and T. Petsche, (eds.), Cambridge, MA: The

MIT Press, pp. 375-381, 1997.

[7] C.-C. Chang and C.-J. Lin, “LIBSVM: A Library for Support Vector Machines,”

[http://www.csie.ntu.edu.tw/∼cjlin/libsvm], 2001.

[8] S.-M. Chen, Y.-J. Horng, and C.-H. Lee, “Document Retrieval Using Fuzzy-Valued Concept Networks,” IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 31, no. 1, pp. 111-118, 2001.

[9] C.-K. Chiang, H.-Y, Chung, and J.-J Lin, “A Self-Learning Fuzzy Logic Controller Using Genetic Algorithms with

Reinforcements,” IEEE Transactions on Fuzzy Systems, vol. 5, no. 3, pp. 460-467, 1997.

[10] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning

Methods, Cambridge University Press, 2000.

[11] J. A. Dickerson and B. Kosko, “Fuzzy Function Approximation with Ellipsoidal Rules,” IEEE Transactions on

Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 26, no. 4, pp. 542-560, 1996.

[12] D. Dubois and H. Prade, “Operations on Fuzzy Numbers,” International Journal of Systems Science, vol. 9, no. 6,

pp. 613-626, 1978.

[13] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, Second Edition, John Wiley and Sons, Inc., 2000.

[14] M. R. Emami, I. B. Türksen, and A. A. Goldenberg, “Development of a Systematic Methodology of Fuzzy Logic

Modeling,” IEEE Transactions on Neural Networks, vol. 6, no. 3, pp. 346-361, 1998.

[15] S. Geman, E. Bienenstock, and R. Doursat, “Neural Networks and the Bias/Variance Dilemma,” Neural Compu-

tation, vol. 4, no. 1, pp. 1-58, 1992.

[16] M. G. Genton, “Classes of Kernels for Machine Learning: A Statistics Perspective,” Journal of Machine Learning

Research, vol. 2, pp. 299-312, 2001.

[17] R. J. Hathaway and J. C. Bezdek, “Fuzzy c-means Clustering of Incomplete Data,” IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics, vol. 31, no. 5, pp. 735-744, 2001.

[18] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.

[19] H. Ishibuchi and T. Nakashima, “Effect of Rule Weights in Fuzzy Rule-Based Classification Systems,” IEEE

Transactions on Fuzzy Systems, vol. 9, no. 4, pp. 506-515, 2001.

[20] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Construction of Fuzzy Classification Systems with Rect-

angular Fuzzy Rules Using Genetic Algorithms,” Fuzzy Sets and Systems, vol. 65, pp. 237-253, 1994.

[21] J.-S.R. Jang and C. T. Sun, “Functional Equivalence Between Radial Basis Function Networks and Fuzzy Inference

Systems,” IEEE Transactions on Neural Networks, vol. 4, no. 1, pp. 156-159, 1993.

[22] J.-S.R. Jang and C.-T. Sun, “Neuro-Fuzzy Modeling and Control,” Proceedings of the IEEE, vol. 83, no. 3, pp.

378-406, 1995.

[23] T. Joachims, “Making Large-Scale SVM Learning Practical,” Advances in Kernel Methods - Support Vector

Learning, edited by B. Schölkopf, C. J.C. Burges, and A.J. Smola, Cambridge, MA: MIT Press, pp. 169-184, 1999.

[24] N. K. Kasabov, “Learning Fuzzy Rules and Approximate Reasoning in Fuzzy Neural Networks and Hybrid Systems,”

Fuzzy Sets and Systems, vol. 82, no. 2, pp. 135-149, 1996.

January 18, 2003 DRAFT

28

[25] L. Kaufman, “Solving the Quadratic Programming Problem Arising in Support Vector Classification,” Advances

in Kernel Methods - Support Vector Learning, edited by B. Schölkopf, C. J.C. Burges, and A.J. Smola, Cambridge,

MA: MIT Press, pp. 147-167, 1999.

[26] F. Klawon and P. E. Klement, “Mathematical Analysis of Fuzzy Classifiers,” in Lecture Notes in Computer Science,

vol. 1280, pp. 359-370, 1997.

[27] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall, 1995.

[28] B. Kosko, “Fuzzy Systems as Universal Approximators,” IEEE Transactions on Computers, vol. 43, no. 11, pp.

1329-1333, 1994.

[29] L. I. Kuncheva, “How Good Are Fuzzy If-Then Classifiers,” IEEE Transactions on Systems, Man, and Cybernetics—

Part B: Cybernetics, vol. 30, no. 4, pp. 501-509, 2000.

[30] C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller – Part I, Part II,” IEEE Transactions on

Systems, Man, and Cybernetics, vol. 20, no. 2, pp. 404-435, 1990.

[31] O. L. Mangasarian, “Generalized Support Vector Machines,” Advances in Large Margin Classifiers, edited by A.J.

Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, Cambridge, MA: MIT Press, pp. 135-146, 2000.

[32] J. Mercer, “Functions of Positive and Negative Type and Their Connection with the Theory of Integral Equations,”

Philosophical Transactions of the Royal Society London, A209, pp. 415-446, 1909.

[33] S. Mitaim and B. Kosko, “The Shape of Fuzzy Sets in Adaptive Function Approximation,” IEEE Transactions on

Fuzzy Systems, vol. 9, no. 4, pp. 637-656, 2001.

[34] S. Miyamoto, “Two Approaches for Information Retrieval Through Fuzzy Associations,” IEEE Transactions on

Systems, Man, and Cybernetics, vol. 19, no. 1, pp. 123-130, 1989.

[35] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf, “An Introduction to Kernel-Based Learning

Algorithms,” IEEE Transactions on Neural Networks, vol. 12, no. 2, pp. 181-202, 2001.

[36] P. J. Pacini and B. Kosko, “Adaptive Fuzzy Frequency Hopper,” IEEE Transactions on Communications, vol. 43,

no. 6, pp. 2111-2117, 1995.

[37] J. C. Platt, “Fast Training of Support Vector Machines Using Sequential Minimal Optimization,” Advances in

Kernel Methods - Support Vector Learning, edited by B. Schölkopf, C. J.C. Burges, and A.J. Smola, Cambridge, MA:

MIT Press, pp. 185-208, 1999.

[38] R. Rovatti, “Fuzzy Piecewise Multilinear and Piecewise Linear Systems as Universal Approximators in Sobolev

Norms,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 2, pp. 235-249, 1998.

[39] F. Sattar and D. B.H. Tay, “Enhancement of Document Images Using Multiresolution and Fuzzy Logic Techniques,”

IEEE Signal Processing Letters, vol. 6, no. 10, pp. 249-252, 1999.

[40] B. Schölkopf, A. J. Smola, and K.-R. Müller, “Nonlinear Component Analysis as a Kernel Eigenvalue Problem,”

Neural Computation, vol. 10, pp. 1299-1319, 1998.

[41] B. Schölkopf, K.-K. Sung, C. Burges, F. Girosi, P. Niyogi, T. Poggio, and V. Vapnik, “Comparing support vector

machines with Gaussian kernels to radial basis function classifiers,” IEEE Transactions on Signal Processing, vol.45,

no. 11, pp. 2758-2765, 1997.

[42] M. Setnes, “Supervised Fuzzy Clustering for Rule Extraction,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 4,

pp. 416-424, 2000.

[43] M. Setnes and R. Babuška, “Rule Base Reduction: Some Comments on the Use of Orthogonal Transforms,” IEEE

Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews, vol. 31, no. 2, pp. 199-206,

2001.

[44] R. Silipo and M. R. Berthold, “Input Features’ Impact on Fuzzy Decision Process,” IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics, vol. 30, no. 6, pp. 821-834, 2000.

[45] A. J. Smola, B. Schölkopf, and K.-R. Müller, “The Connection Between Regularization Operators and Support

Vector Kernels,” Neural Networks, vol. 11, no. 4, pp. 637-649, 1998.

January 18, 2003 DRAFT

29

[46] M. Sugeno and G. T. Kang, “Structure Identification of Fuzzy Model,” Fuzzy Sets and Systems, vol. 28, pp. 15-33,

1988.

[47] Y. Suzuki, K. Itakura, S. Saga, and J. Maeda, “Signal Processing and Pattern Recognition with Soft Computing,”

Proceedings of the IEEE, vol. 89, no. 9, pp. 1297-1317, 2001.

[48] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications to Modeling and Control,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. 15, no. 1, pp. 116-132, 1985.

[49] K. Tang, K. Man, Z. Liu, and S. Kwong, “Minimal Fuzzy Memberships and Rules Using Hierarchical Genetic

Algorithms,” IEEE Transactions on Industrial Electronics, vol. 45, no. 1, pp. 162-169, 1998.

[50] R. Thawonmas and S. Abe, “Function Approximation Based on Fuzzy Rules Extracted From Partitioned Numerical

Data,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 29, no. 4, pp. 525-534, 1999.

[51] V. Vapnik, Estimation of Dependences Based on Empirical Data (in Russian), Nauka, Moscow, 1979. (English

translation: Springer Verlag, New York, 1982).

[52] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.

[53] V. Vapnik, Statistical Learning Theory, John Wiley and Sons, Inc., New York, 1998.

[54] V. Vapnik and A. Chervonenkis, “On the Uniform Convergence of Relative Frequencies of Events to Theirs Proba-

bilities,” Theory of Probability and its Applications, vol. 16, no. 2, pp. 264-280, 1971.

[55] V. Vapnik, S. E. Golowich, and A. Smola, “Support Vector Method for Function Approximation, Regression

Estimation, and Signal Processing,” in Advances in Neural Information Processing Systems 9, M.C. Mozer, M.I.

Jordan, and T. Petsche, (eds.), Cambridge, MA: The MIT Press, pp. 281-287, 1997.

[56] L. Wang and J. M. Mendel, “Fuzzy Basis Functions, Universal Approximation, and Orthogonal Least-Squares

Learning,” IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 807-814, 1992.

[57] L.-X. Wang, Adaptive Fuzzy Systems And Control: Design and Stability Analysis, Englewood Cliffs, NJ: Prentice-

Hall, 1994.

[58] L.-X. Wang, “Analysis and Design of Hierarchical Fuzzy Systems,” IEEE Transactions on Fuzzy Systems, vol. 7,

no. 5, pp. 617-624, 1999.

[59] C.-C. Wong and C.-C. Chen “A GA-Based Method for Constructing Fuzzy Systems Directly from Numerical Data,”

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 30, no. 6, pp. 904-911, 2000.

[60] S. Wu, M. J. Er, and Y. Gao, “A Fast Approach for Automatic Generation of Fuzzy Rules by Generalized Dynamic

Fuzzy Neural Networks,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 4, pp. 578-594, 2001.

[61] J. Yen, “Fuzzy Logic—A Modern Perspective,” IEEE Transactions on Knowledge and Data Engineering, vol. 11,

no. 1, pp. 153-165, 1999.

[62] J. Yen and L. Wang, “Application of Statistical Information Criteria for Optimal Fuzzy Model Construction,” IEEE

Transactions on Fuzzy Systems, vol. 6, no. 3, pp. 362-372, 1998.

[63] H. Ying, “General SISO Takagi-Sugeno Fuzzy Systems with Linear Rule Consequent are Universal Approximators,”

IEEE Transactions on Fuzzy Systems, vol. 6, no. 4, pp. 582-587, 1998.

[64] L. A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, pp. 338-353, 1965.

[65] H.-J. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer Academic Publishers, 1991.

January 18, 2003 DRAFT

30

Yixin Chen received the B.S. degree from the Department of Automation, Beijing Polytechnic

University, China, in 1995, the M.S. degree in control theory and application from Tsinghua Univer-

sity, China, in 1998, and the M.S. and Ph.D. degrees in electrical engineering from the University

of Wyoming, Laramie, WY, in 1999 and 2001, respectively. Since August 2000, he has been a Ph.D

student in the Department of Computer Science and Engineering, The Pennsylvania State Univer-

sity, University Park, PA. He is expected to receive the Ph.D. degree in 2003. His research interests

include machine learning, content-based image retrieval, computer vision, precision and fault toler-

ant robotic control, and soft computing. He is a student member of the IEEE, the IEEE Computer Society, the IEEE

Neural Networks Society, and the IEEE Robotics and Automation Society.

James Z. Wang received the Summa Cum Laude bachelor’s degree in mathematics and computer

science from University of Minnesota (1994), the MSc degree in mathematics and the MSc degree in

computer science, both from Stanford University (1997), and the PhD degree in medical information

sciences from Stanford University Biomedical Informatics Program and Computer Science Database

Group (2000). Since 2000, he has been the holder of the PNC Technologies Career Development En-

dowed Professorship and an assistant professor at the School of Information Sciences and Technology

and the Department of Computer Science and Engineering at The Pennsylvania State University.

He has been a visiting scholar at Uppsala University in Sweden, SRI International, IBM Almaden Research Center, and

NEC Computer and Communications Research Lab. He is a member of the IEEE.

January 18, 2003 DRAFT

