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Abstract

In a number of contexts relevant to control problems, including estimation of robot dynamics, covari-

ance, and smart structure mass and stiffness matrices, we need to solve an over-determined set of linear

equations AX ≈ B with the constraint that the matrix X be symmetric and positive definite. In the

classical least squares method the measurements of A are assumed to be free of error, hence, all errors are

confined to B. Thus, the “optimal” solution is given by minimizing the optimization criterion ‖AX−B‖2
F .

However, this assumption is often impractical. Sampling errors, modeling errors, and, sometimes, human

errors bring inaccuracies to A as well. In this paper, we introduce a different optimization criterion, based

on area, which takes the errors in both A and B into consideration. Under the condition that the data

matrices A and B are full rank, which in practice is easy to satisfy, the analytic expression of the global

optimizer is derived. A method to handle the case that A is full rank and B loses rank is also discussed.

Experimental results indicate that the new approach is practical, and improves performance.

Keywords

Covariance estimation, mass estimation, stiffness estimation, symmetric positive definite matrix, ed-

ucational testing problem, matrix modification problem.

I. Introduction

Estimation of symmetric positive definite matrices is required when solving a variety of

control problems including robotic control, smart structure control, and intelligent control.

In robotics, the mass-inertia matrix of a robotic system is in the symmetric positive definite

class, and the accuracy of its estimate directly affects control performance [15][13][1].

Similarly, controlling vibrations and precise positions of “smart” structures often requires

estimation of the structure’s mass and stiffness matrices [11][12]; both are symmetric

and positive definite. In intelligent control, control decisions are often made based on

estimation of a covariance matrix [14][9][5], which is, of course, symmetric and positive

definite. Estimation of symmetric positive definite matrices also appears, to a lesser extent,

in fields outside control including the educational testing [2] and matrix modification

problems [3]. Most of the above examples can be formulated directly or indirectly into

finding an optimal solution of a set of linear equations

AX ≈ B (1)

where A,B ∈ R
m×n are given, X ∈ P is the fitting matrix, P is the set of symmetric

and positive definite matrices with size n × n. For example, the estimation of the joint
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space mass-inertia matrix of a flexure jointed hexapod (Stewart Platform) [1] and stiffness

matrix directly fit into (1). The covariance matrix estimation problem and the matrix

modification problem (with symmetric positive definite constraint) can be regarded as

extracting a symmetric positive definite matrix (C∗) from a symmetric but indefinite

matrix (C). Thus it can be formulated as solving CX ≈ I where X ∈ P, I being the

identity matrix of size n × n. The “optimal” (under certain criterion) C∗ is given by

C∗ = X−1.

There is a rich resource of prior work on this type of problem. Space limitations do not

allow us to present a broad survey. Instead we try to emphasize some of the work that

is most related to our work. Higham [4] finds an optimal symmetric estimate using the

least squares approach (Symmetric Procrustes Problem). Although the positive definite

constraint is not directly considered in his method, Higham shows that the estimate will

be positive definite (semi-definite) if the data matrix ATB + BTA is positive definite

(semi-definite). If ATB + BTA is indefinite, then nothing can be concluded about the

definiteness of the estimate. Hu [6] presents a least squares based method to handle the

positive definite constraint. In his method, the upper and lower bounds for each entry

of the fitting matrix must be given explicitly as the constraint. A non-negative scalar is

also introduced as a constraint, which measures the degree of positive definiteness. Using

the least squares criterion, ‖AX − B‖2
F , the problem can also be cast as a semi-definite

program [16] by specifying lower (and/or upper) bounds of the eigenvalues of X.

Nevertheless, in many applications, there is a question of the suitability of the least

squares criterion ‖AX−B‖2
F . In the classical least squares approach, the measurements

A are supposed to be free of error, hence, all errors are restricted to B. However, this

assumption is frequently impractical. Sampling errors, modeling errors, and, sometimes,

human errors bring inaccuracies to A as well. For example, in the estimation of a flexure

jointed hexapod’s joint space mass-inertia matrix [1], A and B contain the measurements

of payload accelerations and base forces, respectively. As a result, sampling and instru-

ment noises appear in both A and B. Similar phenomenon happens in identifying a robot

dynamic model [8]. Thus, it is natural for one to expect improved performance by em-

ploying a criterion that is capable of describing the errors occurring in both measurement
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Fig. 1. Geometric interpretations of one parameter estimation using the least squares, the total least

squares, and the new approaches.

matrices, rather than using the least squares criterion in which only the errors in B are

considered.

In this paper, we present a new method of solving an over-determined set of linear

equations (1) with X being symmetric positive definite, and both A and B containing

errors.

II. Problem Formulation

A simple example will be more intuitive than a complex one for illustrating and un-

derstanding the motivation for the new optimization criterion. So let’s consider the

following problem with only one variable: estimating a single parameter from a set of

over-determined equations

�ax ≈ �b

where �a = [a1, a2, · · · , am]
T , �b = [b1, b2, · · · , bm]

T ∈ R
m are known data vectors with

�aT�a > 0 and�bT�b > 0, x ∈ R is the variable to be estimated. Using the classical least squares

approach, the solution is the minimizer of the optimization criterion (�b − �ax)T (�b − �ax) or

equivalently
∑m

i=1 (bi − aix)
2. Geometrically, as shown in Figure 1, this criterion is the

summation of the squared vertical “errors” (the distance from a data point (ai, bi) to the

fitting line along the direction of b axis). This criterion is reasonable if the errors only

occur in the data vector �b, because we are making predictions based on �a that is free of
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error. If the errors are confined to �a, and �b is free of error, the least squares approach is

still appropriate, because we can minimize (�a− 	b
x
)T (�a− 	b

x
) or equivalently

∑m
i=1 (ai − bi

x
)2,

which will give the estimate of 1
x
. As shown in Figure 1, this time, the least squares

solution minimizes the summation of the squared horizontal “errors” (the distance from a

data point to the fitting line along the direction of a axis).

However, in many applications, both �a and�b are measurements containing errors. Under

this scenario, a more appropriate approach of fitting is the total least squares method [7]

(termed orthogonal regression or errors-in-variables regression in the statistical literature).

For the above single parameter estimation problem, the total least squares solution min-

imizes
∑m

i=1
(bi−aix)2

(1+x2)
, which, as shown in Figure 1, is the summation of the squared min-

imum “errors” (the minimum distance from a data point to the fitting line) 1. From the

properties of the right triangle we can easily derive (bi−aix)2

(1+x2)
=

(bi−aix)2(ai− bi
x

)2

(bi−aix)2+(ai− bi
x

)2
, i.e., the

minimum “error” contains the information of both the vertical “error” and the horizontal

“error”.

Motivated by above geometric interpretations of the least squares and the total least

squares methods, we introduce a new optimization criterion, the area criterion, which is

defined as the summation of the areas of the “error rectangles”, i.e.,
∑m

i=1 |bi − aix||ai − bi

x
|.

As shown in Figure 1, the ith “error rectangle” is constructed by the ith vertical and ith

horizontal “errors”. Considering the symmetric and positive definite constraints (in this

example, it implies x > 0), the area criterion can be equivalently written as

m∑
i=1

|bi − aix|
∣∣∣∣ai − bi

x

∣∣∣∣ =
m∑

i=1

(aix − bi)

(
ai − bi

x

)

= (�ay2 −�b)T

(
�a −

�b

y2

)

=

∥∥∥∥∥�ay −
�b

y

∥∥∥∥∥
2

2

where y ∈ R, y �= 0, x = yyT = y2. Note that we have transformed the positive constraint

on x to the invertible constraint on y.

1To our knowledge, employing the symmetric and positive definite matrix constraints in the total least squares

method is still an open problem.
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Now let’s consider the original problem given by (1). The area criterion is then extended

as Tr[(AX−B)T (A−BX−1)] whereAX−B represents the errors inB from the predictions

based on A, and A−BX−1 represents the errors in A from the predictions based on B.

Using the properties of matrix calculus and the well known fact that X = YYT for any

X ∈ P where Y ∈ I, I being the set of real invertible matrices, the above extended

area criterion can be equivalently written as ‖AY − BY−T‖2
F . Thus, we can define an

optimization problem as follows.

Definition II.1: (Symmetric Positive Definite Estimation problem, SPDE) For an over-

determined set of m linear equations AX ≈ B, where A,B ∈ R
m×n are given, X ∈ P is

the fitting matrix, let the area criterion, f : I → R, be defined as

f(Y) = ‖AY −BY−T‖2
F (2)

with ‖ · ‖F being the Frobenius norm of a real matrix. The SPDE problem seeks to

minimize the area criterion on I. The symmetric positive definite estimate X∗ is given by

X∗ = Y∗Y∗T where Y∗ is a minimizer of (2).

III. Finding The Optimizer

To simplify derivations, we introduce two optimization criteria which are different to

(2) by only a constant.

Lemma III.1: Let g : I → R and h : P → R be defined by

g(Y) = Tr(YTPY +Y−1QY−T ), (3)

h(X) = Tr(PX+X−1Q) (4)

where P = ATA and Q = BTB. Then minimizing f(Y) on I, minimizing g(Y) on I,

and minimizing h(X) on P are equivalent, i.e., Y∗ ∈ I minimizes f(Y) if and only if Y∗

minimizes g(Y) if and only if X∗ = Y∗Y∗T ∈ P minimizes h(X).

Proof: From the identities in matrix calculus, we have

f(Y) = g(Y)− 2Tr(ATB) = h(X)− 2Tr(ATB) (5)

where X = YYT . ✷
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In the following two theorems, we assume that Rank(A) = Rank(B) = n, i.e., P,Q ∈ P.

This assumption is easy to satisfy in most applications. At the end of this section, we will

show that with only minor modification the results can be easily extended to the case that

A is full rank and B loses rank.

Lemma III.1 implies that it is sufficient to derive the normal equation for one of the

optimization criteria (f(Y), g(Y), or h(X)). We derive the normal equation for g(Y) as

follows.

Theorem III.2: Let g(Y) be defined by (3). If Y∗ is a minimizer of g(Y), then it

satisfies

Y∗Y∗TPY∗Y∗T = Q. (6)

Proof: Let g′ : X × X → R be defined as

g′(Y,Z) = Tr(YTPY + ZQZT )

where X is the set of real n × n matrices. Then minimizing g(Y) on I is equivalent to

minimizing g′(Y,Z) on X × X with the constraint YZ = I where I ∈ R
n×n is the identity

matrix.

Let Y,Z,Ψ ∈ X, Y = [�y1, �y2, · · · , �yn]
T , and Z = [�z1, �z2, · · · , �zn]. Let yij, zij, and ψij

be the ijth entries of Y, Z, and Ψ, respectively. The Lagrangian, L : X × X × X → R,

associated with the constraint YZ = I is defined as

L(Y,Z,Ψ) = Tr[YTPY + ZQZT +Ψ(YZ− I)].

Setting the partial derivatives of L with respect to yij, zij, and ψij to 0’s for all 1 ≤ i, j ≤ n

gives,

2YTP+ ZΨ = 0, (7)

2QZT +ΨY = 0, (8)

YZ = I. (9)

Solving (7-9) for Y gives (6). ✷

Theorem III.2 and Lemma III.1 imply two facts:

1. Any symmetric and positive definite estimate, X∗, of the SPDE problem must satisfy

X∗PX∗ = Q (10)
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where X∗ = Y∗Y∗T , Y∗ is a solution of (6).

2. Any minimizer for (4) must also satisfy (10).

However, we still need to show that the solutions (or a solution) of (6) minimize(s) (3).

From Lemma III.1 and the above facts, this is equivalent to verifying that the solutions

(or a solution) of (10) minimize(s) (4), which is proven in the following theorem.

Theorem III.3: The unique minimizer of (4), which is the unique solution of (10), is

given by

X∗ = UPΣ
−1
P UQ̃ΣQ̃U

T
Q̃
Σ−1

P U
T
P (11)

where

P = UPΣ
2
PU

T
P, (12)

Q̃ = ΣPU
T
PQUPΣP = UQ̃Σ

2
Q̃
UT

Q̃
(13)

are the Schur decomposition of P and Q̃ respectively, and

ΣP = diag[
√

λ1
P,

√
λ2

P, · · · ,√λn
P],

ΣQ̃ = diag[
√

λ1
Q̃
,
√

λ1
Q̃
, · · · ,

√
λn

Q̃
]

where λi
P’s and λj

Q̃
’s are eigenvalues of P and Q̃, respectively.

Proof: Substituting (12) into (10) gives

X∗UPΣPU
T
PUPΣPU

T
PX

∗ = Q. (14)

Left multiplying both sides of (14) by ΣPU
T
P, right multiplying both sides of (14) by

UPΣP, substituting (13) into (14), and collecting terms, we have

(ΣPU
T
PX

∗UPΣP)
2 = (UQ̃ΣQ̃U

T
Q̃
)2.

It is clear that (UQ̃ΣQ̃U
T
Q̃
)2 ∈ P, and X∗ ∈ P if and only if ΣPU

T
PX

∗UPΣP ∈ P. Since a

symmetric positive definite matrix has a unique symmetric positive definite square root,

we have

ΣPU
T
PX

∗UPΣP = UQ̃ΣQ̃U
T
Q̃
. (15)

Solving (15) gives (11).
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Next we will show that the X∗ given by (11) minimizes h(X). Let the Schur decompo-

sition of X ∈ P be

X = UXΣ
2
XU

T
X (16)

where ΣX = diag[
√

λ1
X,

√
λ2

X, · · · ,√λn
X] with λi

X being the ith eigenvalue of X. Equation

(13) can be written as

Q = UPΣ
−1
P UQ̃ΣQ̃U

T
Q̃
UQ̃ΣQ̃U

T
Q̃
Σ−1

P U
T
P. (17)

Substituting equations (12,16,17) into (4), we have

h(X) = Tr(UPΣ
2
PU

T
PUXΣ

2
XU

T
X +UPΣ

−1
P UQ̃ΣQ̃U

T
Q̃
UQ̃

ΣQ̃U
T
Q̃
Σ−1

P U
T
PUXΣ

−2
X U

T
X)

= Tr[(ΣPU
T
PUXΣX)(ΣXU

T
XUPΣP) + (UQ̃ΣQ̃U

T
Q̃

Σ−1
P U

T
PUXΣ

−1
X )(Σ−1

X U
T
XUPΣ

−1
P UQ̃ΣQ̃U

T
Q̃
)]

= Tr[(ΣPU
T
PUXΣX −UQ̃ΣQ̃U

T
Q̃
Σ−1

P U
T
PUXΣ

−1
X )

(ΣPU
T
PUXΣX −UQ̃ΣQ̃U

T
Q̃
Σ−1

P U
T
PUXΣ

−1
X )

T
+

ΣPU
T
PUXΣXΣ

−1
X U

T
XUPΣ

−1
P UQ̃ΣQ̃U

T
Q̃
+

UQ̃ΣQ̃U
T
Q̃
Σ−1

P U
T
PUXΣ

−1
X ΣXU

T
XUPΣP]

= ‖ΣPU
T
PUXΣX −UQ̃ΣQ̃U

T
Q̃
Σ−1

P U
T
PUXΣ

−1
X ‖2

F

+2Tr(ΣQ̃). (18)

It is clear that h(X) achieves the global minimum when

ΣPU
T
PUXΣX = UQ̃ΣQ̃U

T
Q̃
Σ−1

P U
T
PUXΣ

−1
X , (19)

and X∗ is the only solution to (19). ✷

Corollary III.4: The symmetric positive definite estimate, X∗, of the SPDE problem

is given by equation (11). The minimum of the area criterion, f(Y), is 2Tr(ΣQ̃ −ATB).

Proof: It follows directly from the Definition II.1 and equations (5) and (18). ✷

Remark III.5: Actually, the set of linear equations (1) to be solved need not be over-

determined. All the above results still hold when m = n provided that Rank(A) =

Rank(B) = n.
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Remark III.6: Theorem III.3 says that h(X) has a unique minimizer on P. But the

minimizers of f(Y) or g(Y) on I are not unique. In fact, it is easy to show that if Y∗ ∈ I

is a minimizer of f(Y) or g(Y) then Y∗U is also a minimizer of f(Y) and g(Y) for

any orthonormal matrix U. Thus f(Y) and g(Y) have infinitely many minimizers on I.

Moreover, all these minimizers are related to the unique minimizer, X∗, of h(X) on P

by Y∗Y∗T = X∗. Consequently, the symmetric positive definite estimate of the SPDE

problem is unique.

In the above discussions the data matrices A and B are assumed to be full rank. If

either A or B lose rank, the method described above can not produce a symmetric positive

definite optimizer. However, if B loses rank and A remains full rank, i.e., P ∈ P and

Q ∈ P (the set of symmetric positive semi-definite matrices), we can still find a positive

semi-definite optimizer provided that h(X) is optimized on PRank(Q) (the set of symmetric

positive semi-definite matrices with rank equal to the rank of Q), and X−1 in h(X) is

replaced by X+ (Moore-Penrose pseudo-inverse of X). The result is given as follows.

Corollary III.7: If P ∈ P, Q ∈ P, Rank(Q) = r, then the X∗ ∈ Pr given by equation

(11) minimizes the optimality criterion h(X) = Tr(PX+X+Q). The global minimum of

h(X) on Pr equals 2Tr(ΣQ̃).

Proof: The proof is similar to that of Theorem III.3. ✷

IV. Numerical Results

In this section, two numerical examples of estimating symmetric positive definite ma-

trices are given. The least squares (LS) estimates [4], the total least squares (TLS) esti-

mates [7], and the estimates using the new method (SPDE method) are compared.

The first example is the identification of the joint space mass-inertia matrix, M, of

a University of Wyoming (UW) flexure jointed hexapod [1]. In the vibration isolation

control of the flexure jointed hexapod, the performance depends critically on the precision

of the decoupling matrix which is calculated from the joint space mass-inertia matrix of

the hexapod. Although M can be calculated from the design parameters of the hexapod,

it is laborious to do so and can introduce errors due to manufacturing variances and

payload changes. Thus a better approach is to estimate M from the measured payload

accelerations and base forces. The relationship between payload accelerations and base
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Fig. 2. Comparison of the LS and the SPDE methods: absolute mean and standard deviation of the

estimation errors of M’s entries. Mean{} and STD{} stand for the mean and the standard deviation,

respectively.

forces is described as AM ≈ B where A contains the payload accelerations, B contains

the base forces, and there are sampling and instrument noises in both A and B. The

matrix data given below is calculated from the real design parameters of the UW’s flexure

jointed hexapod.

M =




4.688 0.198 −0.404 1.798 −0.405 0.611

0.198 4.688 0.611 −0.405 1.798 −0.404

−0.404 0.611 4.688 0.198 −0.404 1.798

1.798 −0.405 0.198 4.688 0.611 −0.404

−0.405 1.798 −0.404 0.611 4.688 0.198

0.611 −0.404 1.798 −0.404 0.198 4.688




.

Six PCB load cells measure force and six Kistler accelerometers measure acceleration

to provide the data. For both methods, 100 experiments were performed and the absolute

mean and the standard deviation of the estimation errors for 21 independent parameters

(since M is a 6 × 6 symmetric matrix) are shown in Figure 2. Compared with the LS

method, the SPDE method provides more accurate estimates for all 21 parameters.
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In the second numerical example, we are trying to estimate a 2× 2 symmetric positive

definite matrix, X, from a set of linear equations (A + Va)X ≈ B + Vb where A + Va

and B+Vb are noise-corrupted data matrices,Vb contains normal distributed noises with

0 mean and standard deviation STD{vb} = 1, Va contains normal distributed noises

with 0 mean and standard deviation, STD{va}, varying from 0 to 1.9 in the experiments,

X = [xij] =


 3 1

1 1


, A =


 5 −3 1 −1
2 1 −2 1




T

, B =


 17 −8 1 −2

7 −2 −1 0




T

. At each

value of STD{va}, the absolute mean and the standard deviation of the estimation errors

for x11, x12, and x22 are calculated for all three methods based on 10, 000 experiments 2.

As shown in Figure 3, the SPDE method outperforms the LS method significantly

at large values of STD{va}. This is reasonable because the area criterion includes the

information of both Vb and Va while the least squares criterion only considers Vb. For

the same reason, we can’t expect performance improvements when STD{va} equals 0 or

is much smaller than STD{vb}, which is also verified by Figure 3. Compared with the

TLS approach, the SPDE method also produces significantly more stable estimates when

STD{va} varies (note that in Figure 3 the estimation errors are displayed on a log scale for
the TLS/SPDE comparision). We argue that this is because the positive definite constraint

is not enforced (recall that employing symmetric and positive definite constraints in the

TLS method is still an open problem).

V. Conclusions and Future Work

A new method (SPDE) of solving an over-determined set of linear equations AX ≈ B
with a symmetric positive definite constraint and errors in both data matrices A and B

is proposed. This type of problem arises in a number of contexts relevant to control prob-

lems, including estimation of mass-inertia and covariance matrices. The SPDE method

transforms the original problem into an optimization problem seeking to minimize the so

called area criterion. Compared with the least squares method, the new method improves

the estimation accuracy because it takes errors in both A and B into consideration. In

addition, no prior knowledge of the upper and lower bounds for the entries or eigenval-

2The TLS estimate is computed from the closed-form expression given by the Theorem 2.7 of [7]. The positive

definite constraint is not taken into consideration.
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Fig. 3. Comparison of the LS, the TLS, and the SPDE methods: absolute mean and standard deviation

of the estimation errors of X’s entries. Mean{} and STD{} stand for the mean and the standard

deviation, respectively.

ues of the fitting matrix are needed for the new method, which makes the new method

easy to apply. Experiment results demonstrate the superiority of the new algorithm. The

statistical properties of the SPDE method are under further investigation.
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