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ABSTRACT

Histology is the science of understanding the structure of animals
and plants, and studying the functional implications of biological
structures. In this paper, we propose a statistical modeling ap-
proach to human histological image categorization. Texture fea-
tures of the images are characterized by localized Gabor filters.
The probabilistic distribution of the texture patterns from each cat-
egory is approximated by a finite Gaussian mixture model. Ex-
pectation maximization (EM) procedure and minimum message
length (MML) principle are used to perform density estimation
and model selection, respectively. Component-wise EM and weak
component annihilation are applied to avoid the drawbacks of the
standard EM. Experimental validation is provided based on images
from different organs and parts of the body.

1. INTRODUCTION

Histology is the science of understanding the structure of animals
and plants, and studying the functional implications of biological
structures [8]. The knowledge of biological structures and their
functions at the subcellular, cellular, tissue and organ levelsis cen-
tral to the understanding of mechanisms of disease and drug ac-
tion. Therefore, histology provides a scientific foundation for clin-
ical research, education, and practice. In order to make cell and
tissue structure visible for microscopic examination, a specimen
needs to go through several preparation steps and is mounted on
a glass dide. Histology slides contain information of the body
from the subcellular through organ levels. Interpreting histology
slides requires expert knowledge and observational skills. The
work istime consuming and human errors can never be completely
avoided. Nevertheless, with proper training, amedical student can
identify the structural features of specific cell types, tissues and or-
gans from microscopic images, and understand structure-function
relationships at different levels. Isit possible to train a computer
program to interpret histology slides? This is the question we at-
tempt to answer in this paper. In particular, we investigate statisti-
cal modeling based classification of human histological images.
Organizing imagesinto semantically meaningful categorieswill
not only help archive images but also be extremely useful for sub-
sequent annotation and retrieval tasks [2]. There have been an
abundance of prior work on general image categorization, espe-
cialy within content-based image retrieval (CBIR). Readers are
referred to [9] for a detailed review. Most existing CBIR meth-
ods may fail when directly extended to the medical image con-
text; since “common CBIR-systems only have a rudimentary un-
derstanding of image content, and within such systems there is

no distinction between important and unimportant features or be-
tween multiple objects in the image” [4]. Clinically useful infor-
mation within medical images is in essence highly localized and
varies drastically. Images obtained from different imaging modali-
tiescould be quite different, therefore, require different treatments.
A review on medical image CBIR was given by Miiller et a. [6].
Compared with other types of medical images, such as, computer
tomography (CT), magnetic resonance image (MRI), X-rays, and
ultrasound (US), the research on histological images is relatively
rare. In |-Browse [10], Tang et a. extract features from image
blocks of various size, and relate image blocks to a set of histo-
logical (semantic) labels. The semantic analyzer uses these labels
to determine the category of the image based on domain knowl-
edge. The performance of the system largely depends on domain
knowledge and reasoning logic.

Histologists distinguish histological images through patterns
that are defined by local structural elements. Figure 1 shows im-
ages from 10 categories corresponding to 10 human organs. We
can see that histological images are essentially composed of tex-
ture patches. Patches from the same category follow certain pat-
terns. However, these patterns usually vary from one image to an-
other and even within the same image. In addition, there are some
random optical noises due to intensity variance, focus of lens, and
color variations. Therefore, a successful categorization system
should be able to characterize these distinct patterns and, at the
same time, overcome random variations and noises. In this paper,
we propose a statistical modeling approach to histological image
categorization. Multi-channel Gabor filters are used to extract tex-
ture features from subimagesin a histological image. It isassumed
that texture patterns from images of the same category follow the
same distribution, which is defined by a Gaussian mixture proba-
bility density function. The expectation maximization (EM) pro-
cedureisused to estimate model parameters. Component-wise EM
and weak component annihilation are used to avoid drawbacks of
standard EM. Minimum message length (MML) model selection
is used to choose the optimal model.

The remainder of the paper is organized as follows. Section 2
describes the feature extraction process. Section 3 presents Gaus-
sian mixture model and component-wise EM parameter estima-
tion. Section 4 discusses the model selection scheme. Experi-
mental results and discussions are given in Section 5. Finally, we
conclude in Section 6 along with a discussion of future work.

2. FEATURE EXTRACTION

Although color provides useful information for visual perception,
it may not be desirable to directly use color as features for his-
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Figure 1: Histological images from 10 categories

tological image classification. This is because the color of his-
tological image depends on the stained material. Since histolo-
gists can interpret gray scale images, we convert theimageto LUV
color space and use the L component for classification. Histogram
equalization isthen applied to the L component to eliminate lumi-
nance variances.

Histological images are composed of texture patches. There
are a bunch of literatures devoted to texture analysis. Most suc-
cessful and commonly used methods include: co-occurrence ma-
trix, Laws filter masks, Gabor filters, Markov random fields, and
fractals. Readers are referred to [7] for a comparative study of
these methods. Gabor texture features become more favorable for
severa reasons. First, Gabor filters based on Gabor function allow
one to choose arbitrary scale and orientation. Textural images are
usually distinguishable with scale and orientation features. Sec-
ond, biological evidence shows that the receptive field of organi-
zation of simple cellsresembles the profile of Gabor element func-
tions. Third, Gabor filters achieve minimum uncertainties in both
spatial and frequency domain. Gabor filters have been successfully
used in the texture image retrieval [5].

A 2D Gabor function consists of amodulating Gaussian shape
envelop and a complex sinusoidal carrier:
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where o, and o, define the spreads of Gaussian envelop in x and
y direction, respectively; U and V' define the spatial frequency of
the sinusoidal in Cartesian coordinates. Radial center frequency
F = +/U? + V2 isusualy adopted to measure the frequency in
cycles/pixel.

Self-similar Gabor filters are generated through scaling (s) and
orientation (n):
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where a = (Fh/Fl)ﬁ, 0 = nw/O, r = a”*(zcosf +
ysin @), and y' =a °(—zsinf + ycosh). F, and F; are upper
and lower center frequencies of interest, respectively. Parameters
S and O are the total number of scales and total number orienta-
tions, respectively. Gabor filters comprising the Gabor filter bank
are designed in away that the half-magnitude supports of the filter
responses in frequency domain touch each other [5].

Texture patches in a histological image are not homogenous.
It's difficult to use global Gabor features to categorize histological
images. Instead, a histological image is divided into sub-images
or blocks. We assume that texture patterns within a block are
homogenous, and features calculated from Gabor filter responses
can characterize these patterns. For each block of size M x N,
mean s, and standard deviation o, are calculated from Gabor
responses corresponding to thefilter with scale s and orientation n.
Therefore, a histological image is represented with finite number
of feature vectors each corresponding to one block:
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3. GAUSSIAN MIXTURE MODEL

A Gaussian mixture model is composed of several Gaussian com-
ponents with different mixing weights or probabilities. A Gaussian
mixture distribution with & components can be written as

P(z]©) =Y piP (x|, r) @
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with the constraint 3.5 px = 1. x is the feature vector rep-
resenting a realization of the random variables. © is the param-
eter set (/"/17 Z:17 M2, 227 Ct MK, ZK;p17p27 e 7pK) Pk and
P(z|puk, X)) are the mixing probability and the probability den-
sity function of the k-th component, respectively.

A block in ahistological image is assumed to be generated by
one of these Gaussian components with the corresponding mix-
ing probability. Blocks from the same category are assumed to
be independently generated by a Gaussian mixture model, so the
marginal probability of an image isthe product of probabilities of
all blocks in the image. For atesting image, the likelihood of in-
dividual internal block generated by the model of one category is
calculated using formula (1). The likelihood of the image gener-
ated by themodel isjust the product of the likelihoods of all blocks
in theimage. Theimage is assigned to the category with the max-
imal likelihood.

A Gaussian mixture model treats data samples as redlizations
of continuous random variables, thus avoids quantization process
asin discrete statistical models. The training process of one cate-
gory isindependent to the data of other categories. Therefore our
design has very good scal ability.



4. PARAMETER ESTIMATION AND MODEL
SELECTION

Thetraining processisto find the model that most probably gener-
ates data. For Gaussian mixtures, the estimation is usually solved
with iterative Expectation Maximization (EM) procedure. The
number of componentsis determined with minimum message length
(MML [3]) principle.

The iterative EM algorithm first initializes the model param-
eters, and then breaks down each iteration into two steps: expec-
tation and maximization. Membership probability of each data
sampleis calculated in E step given model parameters, and model
parameters are updated in M-step. The expectation formulais de-
fined asfollows:
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where 2" is the missing label corresponding to sample z(¥. z(¥
has K components taking values of 0 and 1, only one component
can be 1. It tells which component generates (¥, ©,,4 istheini-
tial parameter set or the parameter set updated in previousiteration.
The formulais nothing but Bayesian formula cal culating posterior
probability of the sample data z(*) being generated by component
m given the model parameters. Formulae to update model param-
eters are listed below, where n is total number of instances in the
training data set .
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The major drawback with the standard EM algorithm is its
convergence to local maximum. Component-wise EM [1] can to
certain extent avoid this drawback. Component-wise EM [1] al-
gorithm differs from the standard EM in that only one component
rather than al components gets updated at one iteration while the
likelihood being kept in the ascending trend, so some local max-
ima can be avoided. Another problem with the standard EM algo-
rithm as discussed in [3] is that the learned covariance matrices of
some components tend to be very close to singular matrices espe-
cially when the number of components is larger than the underly-
ing true value. This makes the learned model meaningless. Elim-
inating these so called weak components can avoid this problem.
The weak component is the one with amost 0 mixing probability,
meaning that it is not supported by the data, thus being annihilated.
With the combination of component-wise EM algorithm and weak
component annihilation, drawbacks of the standard EM algorithm
can, to certain extent, be avoided.

Another important issue isto choose an appropriate number of
Gaussian components. With too many components, the model is
likely to overfit the training data. On the other hand, a model with
very few components may not be able to accurately approximate
the underling density function. In our work, Minimum Message

Length (MML) principle is adopted to select the number of mix-
ture components. MML captures both data and model complexity.
The message length L is expressed as
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where D is the training data set containing n training samples,
and each sample is a vector of dimension d. K isthe number of
components, and N is the number of parameters specifying each
component. Inour case, N = d+d * (d+1)/2. p,,, isthemixing
probability of the m'" component. The term log P(D|©) is the
pure data driven part representing the likelihood that the model
generates D. Other terms describe the model complexity.

The following algorithm describes the training process. The
number of components takes from K,,in, t0 Kpqz. k-means clus-
tering algorithm is applied to set the initial model parameters. The
difference of model message lengths of neighboring iterations is
used as the termination criterion. The model with the minimum
message length is selected.

Algorithm 1 Training Algorithm

Input: Data Vector X,xq
K’minu Kma,a:u Lmzn = 400, 67_11 6L
Output: O pt, Kopt

1 FOR K = Kmin, *+ , Kmax

2 set © = Kmeans(X, K)

3 set Ly =400

4 set K1 =K

5 REPEAT

6 set Ly =1Lo

7 FORI=1,--- Ky

8 calculate w¥ where (2) where
i=1,---,nand m=1,--- , K3

9 update pr wWith (3) where k=1,--- K3

10 IF pr > 6p

11 update p; and ¥; with (4) and (5)

12 ELSE

13 set pp=0

14 swap p; and pg,

15 swap p; and px,

16 swap ¥; and Xk,

17 set Ki=K1—1

19 break repeat |oop

20 END IF

21 END IF

22 END FOR

23 calculate Ly, with (6)

24 UNTIL |L1 — L2| < 4L

25 IF Ly < Lmin

26 set Lyin = Lo

27 set Kopt = Ky

28 END IF
29 set O,y = noOnzero conmponents in ©
30 END FOR



Histological Images Classification Accuracy
1D Cate. Name | Num. of Images | Training | Testing
C1 adrenal 25 0.800 0.480
c2 heart 114 0.844 0.808
C3 kidney 20 0.825 0.650
C4 liver 107 0.848 0.813
C5 lung 288 0.902 0.872
C6 pancreas 120 0.656 0.608
c7 spleen 18 0.930 0.933
c8 testis 25 0.750 0.440
C9 thyroid 39 0.952 0.900
C10 | uterus 22 0.920 0.730

Table 1: The category labels of the images and 5-fold crossvalida-
tion results.

5. EXPERIMENTAL RESULTSAND DISCUSSIONS

To validate the methods we have described, we implemented the
histological image categorization system and tested with 778 his-
tological images from 10 categories as shown intable 1. Theseim-
ages are of 40x magnification (4 objective lens x 10 ocular lens)
stored in JPEG format with size 3072 x 3840. To reduce compu-
tational cost, each image is downsampled to 1536 x 1920. The
block sizeis 64 x 64. The Gabor filter bank consists of filters of
3 scales and 6 orientations. Five fold crossvalidation is conducted
on these histological images. The average train classification ac-
curacy is 84.3%, and the average testing accuracy is 72.3%. The
results are also shown in table 1.

Several interesting observations are worthy mentioning. First,
even though the number of Gaussian components are chosen from
3 to 9 during the training process, all categories take value of 3,
4 or 5; and most of them take 4 as optimal. As we know that all
organs, no matter how complicated itsfunctionalities are, are com-
posed of 4 basic tissue types (connective, epithelial, nerve, and
muscle). The observation suggests that Gaussian mixture model
can to certain extent reflect underlying biological compositions
and that the learning results during categorization stage can be
extremely useful in subsequent annotation tasks. Second, many
images of C1 (adrenal) are misclassified as C6 (pancreas), and
vice versa. This observation suggests that the designed classifier
doesn't classify these categories. The interesting thing isthat these
two categories are glands. This suggests that the performance may
be improved by arranging classifiers in hierarchy. For example,
an organ can be first classified as gland versus not gland, and fur-
ther divided into detailed categories. The last observation is that
the misclassification rates of the boundary images are much higher
than that of the non-boundary images. The boundary images are
usually taken from the boundary of the slide or the boundary of the
organ. Most of the misclassified boundary images contain regions
from other organs.

6. SUMMARY AND FUTURE WORK

In this paper, a statistical modeling approach to histological im-
age categorization is proposed. Texture patterns of the images are
characterized by localized Gabor features. Finite Gaussian mixture
model is used to approximate the distribution of texture patterns
from the same category. The well-known expectation maximiza-

tion (EM) procedure and MML principle are used to perform pa-
rameter estimation and model selection, respectively. Component-
wise EM and weak component annihilation are used to avoid draw-
back of standard EM. Experiment shows promising results.

The current system has several limitations. First, we assume
that blocks in a histological image are identicaly and indepen-
dently distributed. This assumption is somewhat restrictive. The
model that captures spatial correlation of subimages may increase
the categorization accuracy. Second, current study focus on histo-
logical images of single magnification. Test on histological images
over arange of magnifications is needed to show the robustness of
the method. We |eave these to future work. We will aso add more
images and images from new categories to test the performance
and scalability.
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