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Abstract

Motif discovery from biosequences, a challenging task
both experimentally and computationally, has been a topic
of immense study in recent years. In this paper, we for-
mulate the motif discovery problem as a multiple-instance
problem and employ a multiple-instance learning method,
the MILES method, to identify motif from biological se-
quences. Each sequence is mapped into a feature space
defined by instances in training sequences with a novel
instance-bag similarity measure. We employ 1-norm SVM
to select important features and construct classifiers simul-
taneously. These high-ranked features correspond to dis-
covered motifs. We apply this method to discover transcrip-
tional factor binding sites in promoters, a typical motif find-
ing problem in biology, and show that the method is at least
comparable to existing methods.

1 Introduction

With the increasing volume of biological sequences
available, an important bioinformatics problem is to find
regularities among the sequences as motifs. In biological
sequence analysis, a motif is a short consensus patterns
among a set of biological sequences and it represents a com-
mon feature or inherent pattern in the sequences. For pro-
teins, motifs are generally closely related to their functions
and structures. DNA motifs are often present at the non-
coding region of genome and serve as signals to determine
interactions between DNA, RNA transcripts, and the cellu-
lar machinery. Discovering these motifs plays an important
role in understanding how cell functions. In its simplest
form, the motif discovery problem can be generally formu-
lated as follows.

Given a set of sequences, each of which are
known to be embedded at least one instance of
a motif of lengthl with up tod mutations, recover
the motif.

The development of automated methods for motif find-
ing in biosequence is a challenging task for the following

reasons. First, because the motif instances are subject to
various kinds of mutations such as substitution, deletion and
insertion, the instances could significantly different from
each other although each instance still closely matches the
consensus pattern. For example, suppose the motif consen-
sus isCTTCCT . Two motif instances,ACTCCT and
CTTTCT , each with only one or two mutations from the
motif consensus, show very subtle similarity. Secondly,
some other false signal similar to the motif consensus may
randomly occur in the sequences and obscures the true mo-
tif’s signal.

In the past several years, many motif discovery algo-
rithms have been proposed based on greedy algorithms [9],
Expectation Maximization(EM) algorithms [1, 4], Gibbs
Sampling [12, 13, 19], evolutionary computation [14], and
many other algorithms. Depending on the way of defin-
ing the motif search space, they generally fall into two cat-
egories: pattern-driven approaches [17, 16] and sample-
driven approaches [4, 12, 13, 19, 18]. A hybrid of pattern-
driven and sample-driven approaches, the MULTIPRO-
FILER algorithm, was also proposed [10], where a neigh-
borhood of each segment in the DNA sequences is used as
a possible motif. Sinha [16] proposed Dmotif algorithm to
address the problem from a feature selection perspective.
Each candidate motif is viewed as a feature. Classifiers
are built on each of the features to discriminate positive se-
quences from random sequences. Candidate motifs with the
smallest classification errors are reported as likely patterns.

In this paper, we formulate the motif discovery prob-
lem in bioinformatics as a multiple-instance problem. A
multiple-instance probleminvolves ambiguous training ex-
amples: a single example is represented by a set of in-
stances, some of which may be responsible for the observed
classification of the example; yet, the training label is only
attached to the example instead of the instances. In the
case of motif discovery, sequences embedded with a cer-
tain motif of length are positive examples and random se-
quences are used as negative examples. Suppose the length
of the motif is l. Each sequence is represented by a col-
lection of instances – all the unique overlappingl-mers in



the sequence. The motif discovery problem is similar to
the multiple-instance problem in the sense that each pos-
itive example is known to have one or more positive mo-
tif instances embedded. However, different from a typical
multiple-instance problem, in motif discovery, a true motif
may also randomly appear in a negative sequences. Hence
algorithms which implicitly assume that instances in neg-
ative examples are all negative may not work in this case.
The MILES (Multiple-Instance Learning via Embedded in-
stance Selection) method [5] which converts the multiple-
instance learning problem to a standard supervised learning
problem does not impose the assumption relating instance
labels to example labels and hence is suitable for the motif
discovery problem. We apply this method to discover tran-
scriptional factor binding sites in promoters, a typical motif
finding problem in biology, and show that the method is at
least comparable to existing methods.

2 Review of Multiple-Instance Learning

Multiple-instance learning differs from supervised learn-
ing in that labels are only assigned to collections of in-
stances (bags) rather than individual instances. Generally,
a bag is labeled positive if and only if at least one instance
in that bag is positive. Otherwise it is labeled negative. No
label is given to individual instances. The goal of multiple-
instance learning is to discover instances that are responsi-
ble for positive labeling of the bags using the labeled bags
in training data and hence classify new bags.

One of the earliest algorithms for multiple-instance
learning is axis-parallel rectangle (APR) method proposed
for drug activity prediction [7]. The idea of the APR method
was extended to a general framework based ondiverse den-
sity (DD) [15], which measures a co-occurrence of similar
instances from different positive bags. Zhang and Gold-
man [21] combined the idea of expectation-maximization
(EM) with diverse density, and developed the EM-DD al-
gorithm to search for the most likely concept. Ensembles
of multi-instance learners were also proposed [22], which
achieved competitive test results in drug activity prediction.
Multiple-instance problems have also been addressed with
standard supervised learning techniques, including decision
trees [25], Support Vector Machines (SVMs) with a kernel
for multiple-instance data [8], logistic regression and boost-
ing approaches [20], and SVMs with DD function [6].

Many of the above multiple-instance formulations ex-
plicitly or implicitly encode the assumption that a bag is
positive if and only if at least one of its instances is positive.
The assumption is valid for the earliest studied multiple in-
stance problems such as drug activity prediction. However,
for applications such as motif discovery, a negative bag
(e.g., a random sequence without the motif embedded) may
also contain instances that are similar to the motif purely by
random. The MILES (Multiple-Instance Learning via Em-

bedded instance Selection) method [5], which converts the
multiple-instance learning problem to a standard supervised
learning problem that does not impose the assumption relat-
ing instance labels to bag labels, is well suited for the motif
discovery task. This method maps each bag into a feature
space defined by the instances in the training bags via an
instance-bag similarity measure and apply 1-norm SVM to
select important features as well as construct classifiers si-
multaneously.

3 MILES for Motif Discovery

MILES [5] extends ideas from the diverse density frame-
work [15, 6] and the wrapper model in feature selec-
tion [11]. It identifies instances that are relevant to the ob-
served classification by embedding bags into an instance-
based feature space and selecting most important features.
Based on an instance-bag similarity measure, a given bag is
embedded into a feature space where each dimension rep-
resents the bag’s similarities to a particular instance in the
training set. The embedding produces a possibly high di-
mensional space when the number of instances is large. In
addition, many features may be redundant or irrelevant be-
cause some of the instances might not be responsible for
the observed classification of the bags, or might be simi-
lar to each other. It is hence essential and indispensable to
select a subset of mapped features that is most relevant to
the classification problem of interest. 1-norm SVM [3, 23]
is applied to construct classifiers and select important fea-
tures simultaneously. Since each feature is defined by an
instance, feature selection is essentially instance selection.
The selected instances define the motifs uncovered.

We denote positive sequences (bags) ass+
i and thej-th

l-mers (instance) in that sequences ass+
ij . The sequence

s+
i consists ofn+

i instancess+
ij , j = 1, · · · , n+

i . Similarly,
s−i , s−ij , andn−

i are defined for random sequences (negative
bags). When the label on the sequences does not matter,
it will be referred to assi with l-mers assij . All l-mers
belong to feature spaceX. The number of positive (neg-
ative) sequences is denoted asℓ+ (ℓ−). For the purpose
of motif discovery, we are interested in finding positive in-
stances. Hence, instances that only occur in negative bags
are ignored. For the sake of convenience, we line up all in-
stances in positive bags together and reindex them asxk,

k = 1, · · · , n, wheren =
∑ℓ+

i=1 n+
i .

Next, we introduce a novel instance-bag similarity mea-
sure designed specifically for motif discovery. We define
the alignment score between the instancec and the sequence
si as the maximum alignment score between the instancec

and alll-mers in the sequencesi.
A(c, si) = max

sij∈si

A(c, sij) , (1)

whereA(c, sij) is the ratio of matched positions when the
two l-mers. The similarity between an instance and a se-



quence is proportion to their alignment score. This defi-
nition has a winner-takes-all flavor, in that, as long as the
sequencesi contains the instance, the winner will be the
segment corresponding to the instance, and the similarity
will be large. Intuitively, given an instancec, the probabil-
ity that the sequencesi are embedded with instancec is high
if we can find a close match forc at the sequence.

Because the biological sequences are assumed to be gen-
erated from a random background distribution, it is reason-
able to assume that an instance would more likely to be a
positive instance if the probability that it is generated from
the background model is low. Therefore the similarity be-
tween an instance and a sequence is inverse proportion to
the probability that the instancec is generated by the back-
ground model (P (c)). The length of the instancel accounts
for P (c) (longer instances generally have lower probabil-
ity). To eliminate this factor, we normalize the probability
P (c) with the length of the instancel. The similarity be-
tween an instancecj and a sequencesi is therefore formu-
lated as

mij = eαA(si,cj)−log P (cj)/l. (2)

In this way, we map each sequence into a feature space
defined by the instances in the training examples via an
instance-bag similarity measure. This feature mapping of-
ten provides a large number of redundant or irrelevant fea-
tures. We apply 1-norm SVM to select important instances
(features) as well as construct classifiers of the examples
simultaneously.

Next we present a brief review the 1-norm SVM formu-
lation. The class label of the sequences are denoted byy,
which takes values of+1 and−1 (+1 for those sequences
with motif embedded and−1 for those without). We con-
sider the classification problem of finding a linear classi-
fier y = sign

(

wT m + b
)

in the feature spaceFC to dis-
tinguish between positive examples and negative examples
wherew andb are model parameters,m ∈ FC corresponds
to a bag. The SVM approach constructs classifiers based
on hyperplanes by minimizing a regularized training error
λP [·] + error whereP [·] is a regularizer,λ is called the
regularization parameter, anderror is commonly defined as
a total of the loss that each bag introduces through a hinge
loss functionξ = max{1−y(wTm+b), 0}. When an opti-
mal solutionw is obtained, the magnitude of its component
wk indicates the significance of the effect of thek-th fea-
ture inFC on the classifier. Those features corresponding to
a non-zerowk are selected and used in the classifier.

The regularizer in standard SVMs is the squared2-
norm of the weight vector‖w‖, which formulates SVMs
as quadratic programs (QP). Solving QPs is typically com-
putationally expensive. Alternatively, SVMs are formu-
lated as Linear programs (LPs) [2, 23] by regularizing with
a sparse-favoring norm, e.g., the 1-norm ofw (‖w‖1 =
∑

k |wk|). Thus 1-norm SVM is also referred to as sparse
SVM and has been applied to other practical problems such

as drug discovery [3]. By rewritingw asw = u − v, the
LP for 1-norm SVM can be formulated as:

min
u,v,b,ξ,η

λ

n
X

k=1

(uk + vk) + µ

ℓ+
X

i=1

ξi + (1 − µ)
ℓ−
X

j=1

ηj

s.t.
ˆ

(u − v)T
m

+

i + b
˜

+ ξi ≥ 1, i = 1, · · · , ℓ+,

−
ˆ

(u − v)T
m

−

j + b
˜

+ ηj ≥ 1, j = 1, · · · , ℓ−,

uk, vk ≥ 0, k = 1, · · · , n,

ξi, ηj ≥ 0, i = 1, · · · , ℓ+, j = 1, · · · , ℓ−. (3)

whereξ, η are hinge losses. Letw∗ = u∗−v∗ andb∗ be the
optimal solution of (3). The magnitude ofw∗

k determines
the influence of thek-th feature on the classifier. The set of
selected features is given as{xk : k ∈ I}, whereI = {k :
|w∗

k| > 0} is the index set for nonzero entries inw∗.

4 Experiments and Results

In this section, we present the experiments of apply-
ing MILES to a specific motif discovery problem – dis-
covering transcriptional factor binding sites at Yeast pro-
moter regions. The binding sites of transcriptional factors
usually display a motif pattern. The Promoter Database
of Saccharomyces Cerevisiae(SCPD)1 catalogs more than
100 transcriptional factors. For each transcriptional factor,
it provides information about genes under its regulation,
experimentally-mapped binding sites, as well as a consen-
sus binding site. To test the performance of our algorithm,
test sets are built from SCPD for transcriptional factors oc-
curring in no less than 3 promoters and having a consensus
binding site. Totally 22 transcriptional factors are selected,
and each data set contains the promoter sequences of the
corresponding genes and consensus binding site. The length
of the promoter sequences is 600 bps. A3rd-order Markov
chain model is built for background sequences with all yeast
promoter sequences that are publicly available2.

4.1 Experiments

We apply the MILES algorithm to discovering the
experimentally-mapped transcriptional factor binding sites
in the 22 sets of promoter sequences. For each transcrip-
tional factor, we are given a set of DNA sequences which
the transcriptional factor is known to bind to. These se-
quences serve as the positive examples (bags) for multiple-
instance learning. We randomly generate an equal number
of sequences of the same length using the above background
model and use them as the negative examples (bags) for the
learning task. Two key parameters are required by the al-
gorithm: the length of motif instancel and the length of
spacesk. A sliding window of sizel is used to extract in-
stances from positive sequences. We also allow spacer in

1http://cgsigma.cshl.org/jian/index.html
2The sequences retrieval tool provided by SCPD is used to retrieve

yeast promoters to estimate the parameters for the background model.



the motif. According to previous findings [16, 24], if a mo-
tif contains spacer, the spacer usually presents at the middle
of the motif with length from 1 to 11 base pairs. Suppose
k is the length of spacer allowed. We maskk consecutive
letters at the center of each instance.

4.2 Results

The experimental results are summarized in Table 1.
Column 1 lists the names of the transcriptional factors. Col-
umn 2 shows the biologically-mapped binding site consen-
sus of the corresponding transcriptional factors. The first
close match to the consensus binding site and its rank, re-
ported by the MILES algorithm, are presented in columns 3
and 4. The first close match reported by Dmotif algorithm
and its rank are given in columns 5 and 6. It can be seen
that in 11 out of 22 categories of promoters, the known con-
sensus closely matches the top ranking motifs reported by
MILES algorithm.

We here compare the prediction results of MILES algo-
rithm with the published results of Sinha’s Dmotif algo-
rithm [16]. We compute the percentage of cases in which
the first-ranked motif reported by the algorithms closely
matches the known consensus. For our algorithm, this value
is 50%, while the value for Dmotif algorithm is 45%. Thus,
in terms of the percentage of first-ranked true motifs, our
algorithm performs comparably to the Dmotif algorithm. In
nine out of 22 cases, our algorithm assigns the experimen-
tally determined binding sites a higher rank than the Dmotif
algorithm, while in five out of 22 cases, Dmotif algorithm
ranks them higher.

In addition, our algorithm also successfully recover the
binding sites of the regulonsTBP andUASPHR, which
Dmotif algorithm failed to identify. The highest-ranked mo-
tif patternTATAAA closely matches the experimentally
identified binding sites ofTBP . CTTCCT , which ex-
actly matches the binding siteCTTCCT of UASPHR,
is reported at rank 15. Both our proposed algorithm and
Dmotif algorithm are unable to discover the annotated mo-
tif consensus of regulonSFF .

5 Discussion and Conclusions

Discovering motifs from biological sequences is a very
difficult task. In this paper, we have formulated the mo-
tif discovery problem as a multiple instance problem and
applied a multiple-instance learning algorithm, the MILES
algorithm, to finding motifs. Using a novel an instance-bag
similarity measure, we map each sequence into a feature
space defined by the instances in the training sequences. We
employ 1-norm SVM to select important features as well as
construct classifiers simultaneously. Our experimental re-
sults have shown that this algorithm is capable of ranking
the true motifs as top matches in 50% of the cases as com-
pared with 45% of the cases with Dmotif algorithm.

The motif length and the length of spaces are given as
parameters for our motif discovery algorithm. Although the
length of the motif is in general 6 to 8, the possible range of
the length of spaces could be large. One extension of this
work is to automatically find the two parameters.

In this paper, we limit the motif search space to the pat-
terns that actually appear in the positive sample sequences,
as sample-driven algorithms do. However, in the cases that
variations are allowed in the sequences or in the cases that
most motif instances are differently mutated and hence sig-
nificantly from each other, sample-driven approach may not
work well. One way to avoid the problem is to construct a
feature space using a neighborhood of each segment in the
DNA sequences as a possible motif instance.

References

[1] T. L. Bailey and C. Elkan. Unsupervised learning of multi-
ple motifs in biopolymers using expectation maximization.
Machine Learning, 21(1/2):51–80, 1995.

[2] K. P. Bennett.Advances in Kernel Methods – Support Vec-
tor Machines, chapter Combining Support Vector and Math-
ematical Programming Methods for Classification, pages
307–326. 1999.

[3] J. Bi, K. P. Bennett, M. Embrechts, C. Breneman, and
M. Song. Dimensionality reduction via sparse support
vector machines.Journal of Machine Learning Research,
3:1229–1243, 2003.

[4] J. Buhler and M. Tompa. Finding motifs using random
projections. InProc. RECOMB, pages 69–75, Montreal,
Canada, 2001.

[5] Y. Chen, J. Bi, and J. Z. Wang. Miles: Multiple-instance
learning via embedded instance selection.IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, to ap-
pear, 2006.

[6] Y. Chen and J. Z. Wang. Image categorization by learning
and reasoning with regions.Journal of Machine Learning
Research, 5:913–939, 2004.

[7] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solv-
ing the multiple instance problem with axis-parallel rectan-
gles.Artificial Intelligence, 89(1-2):31–71, 1997.

[8] T. Gärtner, P. A. Flach, A. Kowalczyk, and A. J. Smola.
Multi-instance kernels. InProc. 19th Int’l Conf. on Machine
Learning, pages 179–186, 2002.

[9] G. Z. Hertz and G. D. Stormo. Identifying dna and protein
patterns with statistically significant alignments of multiple
sequences.Bioinformatics, 15:563–577, 1999.

[10] U. Keich and P. Pevzner. Finding motifs in the twilight
zone. In Proc. RECOMB, pages 195–204, Washington,
D.C., USA, 2002.

[11] R. Kohavi and G. H. John. Wrappers for feature subset se-
lection. Artificial Intelligence, 97(1-2):273–324, 1997.

[12] J. S. Liu, A. F. Neuwald, and C. E. Lawrence. Bayesian
models for multiple local sequence alignment and gibbs
sampling strategies.J. Am. Stat. Assoc, 90(432):1156–1170,
1995.



Table 1. Results of predicting transcriptional factor binding sites in yeast promoter regions. The
results of Dmotif algorithm [16] are included here for ease of comparison. The consensus binding
sites from SCPD and the results of Dmotif algorithm are built upon International Union Of Pure
And Applied Chemistry (IUPAC) degenerate symbols ({A,C,G,T,R,S,W,M,Y,K,N}) that are restricted
expressions over {A, C, G, T}. ∗ The reported motif overlaps with the binding sites cataloged in
SCPD. Thus, it is considered a close match.

REGULON BINDING SITE MILES DMOTIF

MOTIF FOUND RANK MOTIF FOUND RANK

ABF1 TCRNNNNNNACG CACNNNNNNCGT 4 TCANNNNNNAMG 2
CPF1 TCACGTG CACGTGG 1 CACGTG 1
CSRE YCGGAYRRAWGG ACGGATAG 7 CGGATGRA 8
SCB CNCGAAA GTCACGA 1 TCGCGAA 2
GAL4 CGGNNNNNNNNNNNCCG CGGNNNNNNNNNNNCCG 1 CGGNNNNNNNNNNNCCG 1
GCR1 CWTCC CCTTC 7 CTTCC 13
HAP1∗ CGGNNNTANCGG GGGNNNNNCGG 2 GGANNNNNCGG 1
HSE TTCNNGAA TTCTAGAA 1 TTMTAGAA 6

TTCNNNGAA
GAANNTCC
GAANNNTCC

MCB WCGCGW CGCGTG 2 ACGCGT 1
MCM1∗ CCNNNWWRGG CCTAATTGGG 4 TTTCCTAA 1
MATA2 CRTGTWWWW CATGTAAT 1 CATGTMA 2
M1G1 CCCCRNNWWWWW CCCCAG 1 MCCCCAG 1
PHO4 CACGTK CACGTG 1 CACGTG 1
PDR3 TCCGYGGA TCCGCGGA 1 TCCGYGGA 2
REB1 YYACCCG TACCCGC 1 YTACCCG 1
ROX1 YYNATTGTTY GCCTATTGTT 1 CCTATTG 7
RAP1 RMACCCA GAACCCA 5 ACCCAGW 1
CAR1 AGCCGCSA TAGCCGC 2 TAGCCGCS 2
SFF GTMAACAA NOT FOUND - NOT FOUND -
STE12 ATGAAA ATGAAAC 1 ATGNAAC 1
TBP TATAWAW TATAAA 3 N OT FOUND -
UASPHR CTTCCT CTTCCT 15 NOT FOUND -

[13] X. Liu, D. L. Brutlag, and J. S. Liu. Bioprospector: Discov-
erying conserved dna motifs in upstream regulatory regions
of co-expressed genes. InProc. of Pac. Symp. Biocomput,
pages 127–38, 2001.

[14] M. A. Lones and A. M. Tyrrell. The evolutionary computa-
tion approach to motif discovery in biological sequences. In
Proc. Workshop on Biological Applications of Genetic and
Evolutionary Computation (BioGEC), GECCO2005, 2005.

[15] O. Maron and T. Lozano-Pérez. A framework for multiple-
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