
A Probabilistic Kernel for Splice Site Prediction

Ya Zhang∗ Chao-Hisen Chu∗ Hongyuan Zha† Yixin Chen‡ Xiang Ji§

Abstract
One of the most important tasks in correctly annotat-
ing genes in higher organism is to accurately locate the
DNA splice sites. Although relatively high accuracy has
been achieved by the existing methods, most of these
prediction methods are computationally very expensive.
Considering the enormousness of DNA sequences, the
computing speed is an important issue. In this paper,
we propose to use a probabilistic kernel-based method
to predict DNA splice sites, which project the sequence
data into a new probabilistic feature space. We then use
Support Vector Machines to recognize the true splice
sites. While the performance is comparable to the re-
sults obtained with polynomial kernels, the computation
is performed much faster.

1 Introduction
The advances in sequencing technologies have resulted
in a large amount of DNA sequence information and
therefore a dramatic increase in the size of genetic and
genomic databases. With the whole genomes for many
organisms available, an important goal in bioinformatics
is to accurately annotate genes from DNA sequence in-
formation. Many efforts have been made to predict gene
structures [1] from DNA sequences and aid the whole-
sale analysis of the DNA sequences, including recogniz-
ing translation initiation site [8], discovering transcrip-
tional factor binding sites [3], identifying DNA splice
sites [2, 4, 7].

In this paper, we target on the problem of identifying
DNA splice sites. Splicing is one of the primary post-
processing steps of gene expression in eukaryotes. Dur-
ing splicing, the introns, the non-coding regions, are
removed from the primary transcripts, and the exons,
the coding regions, are joined to form a continuous se-
quence that specifies a functional polypeptide. The pairs
of residuesGT and AG are highly conserved at the
donor and acceptor splice sites respectively. However,
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this canonicalGT -AG rule does not always hold. Thus,
it is natural to model the prediction of splice sites as a
two-class classification problem, using DNA sequences
with experimentally confirmed splice sites as positive
training examples and those DNA sequences withGT -
AG structure but confirmed not to be real splice sites as
negative training examples.

Machine learning methods such as Artificial Neu-
ral Network[4], Perceptron[7], and Support Vector
Machine[2] have been employed to approach the prob-
lem of recognizing true splice sites. Relatively high ac-
curacy has been achieved with the methods currently
available. However, almost all of the existing methods
are computationally very demanding, and as a matter of
fact splice site prediction has been a bottle neck in gene
annotation.

The DNA sequences are provided as strings while most
classifiers only take numerical inputs. Thus, the very
first step of classification is often to encode the DNA se-
quences with numbers. A widely used encoding method
is sparse encoding[2], where each letter in the DNA se-
quence is represented in four bits. This encoding treat
the four nucleotides equally and failed to consider the
probability of natural mutation in DNA sequences. As a
result, it may not perform well in some cases. Specifi-
cally, for our problem of classifying splice sites, the data
is linearly inseparable with the common sparse encoding
method. Therefore, we propose to use a probabilistic
kernel, which projects the data into a new probabilistic
feature space and accounts for the natural mutations in
the sequences. The true splice sites and the false splice
sites is better distinguished by linear SVMs at this fea-
ture space. Experimental results with SVM classifier
have shown that the performance of the proposed ker-
nel is comparable to that of polynomial kernels, in terms
of accuracy, precision and recall, while its speed is sig-
nificantly faster. Considering the overwhelming amount
of DNA sequences that needs to be processed, this is a
very desirable property.

2 The probabilistic kernel
The probabilistic kernel method is built from the bayes’
rule. Suppose we have a set of examples E =
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{X1,X2, ...,XN}. Let Xi = {a1, ..., an}(Xi ∈ E) de-
notes a DNA sequence, where eachaj (j=0, 1, ..., n) is an
nucleotide. EachXi ∈ E falls into one of the two cat-
egories:c1 or c

−1, wherec1 stands for true splice sites,
andc

−1 for false splice sites. According to the Bayes’
rule:

P (c1|Xi) =
P (Xi|c1) · P (c1)

p(Xi)
(1)

P (c−1|Xi) =
P (Xi|c−1) · P (c−1)

p(Xi)
. (2)

Assume thataj(j = 1, 2, ..., n) are independent. Thus,
we get

P (Xi|c1) =

n∏

j=1

P (aj |c1) (3)

P (Xi|c−1) =

n∏

j=1

P (aj |c−1). (4)

After a few manipulations of the above equations, Equa-
tion. 1 and 2 can be reformulated as:

log(P (c1|Xi)) =

n∑

j=1

log(P (aj |c1))−log(P (Xi))+a, (5)

log(P (c−1|Xi)) =

n∑

j=1

log(P (aj |c−1)) − log(P (Xi)) + b,

(6)
wherea = log(P (c1)) and b = log(P (c

−1)). With
the n̈aive bayesian classifier, the classification decision
is made to maximize the log likelihood.Xi is assigned
to the classck (k = 1 or −1) that would maximize
log(P (ck|Xi)). Thus the decision function can be ex-
pressed as:

f(Xi) = sgn(log(P (c1|Xi)) − log(P (c−1|Xi))). (7)

Assuming uniform prior, i.e.P (c1) = P (c
−1) and thus

a = b, we get:

f(Xi) = sgn(

n∑

j=1

log(P (aj |c1)) −

n∑

j=1

log(P (aj |c−1))).

(8)
Equation. 8 can be reformulated as:

f(X) = sgn(~w · ~p), (9)

where ~w = {w1, w2, ..., w2n} is the weight vector,
and ~P = {p1, p2, ..., p2n} is the posterior probability
vector. In n̈aive Bayesian classifier, we havewi = 1
for i ∈ {1, ..., n}, wi = −1 for i ∈ {n + 1, ...2n},
pi = P (xi|c1) for i ∈ {1, ..., n}, andpi = P (xi−n|c−1)
for i ∈ {n+1, ...2n}. The positional profile of an align-
ment of DNA sequences of lengthl is defined as a4 × l

matrix (pN,i), wherepN,i is the frequency of nucleotide

N in the ith position in the alignment. The positional
profiles may be obtained from DNA sequences with true
splice sites and DNA sequences with false splice sites,
respectively (Step 1 of Figure 1). Thepi value can be ob-
tained by looking up the corresponding positional pro-
files (Step 2 of Figure 1).

The n̈aive bayesian classifier is guaranteed to be opti-
mal only when the attributes are independent given the
class. However, this independence assumption may not
always be true. Thus, the estimation of the distribu-
tion of Xi may not be accurate. In addition, the näive
bayesian classifier assumes each position is equally im-
portant, which might not be true in the case of splice
site prediction. Some position may be essential while
some others may be trivial. The idea here is to use the
probabilistic feature mapping to project the data into a
new feature space where the data are more likely to be
linearly separable, and then use linear SVM to learn the
optimal weight vectors. We expect that this can improve
the classification accuracy gained by the näive bayesian
classifier while maintaining the simplicity in computa-
tion. The overflow of the encoding process is illustrated
in Fig 1.

3 Experiment
To evaluate the performance of the probabilistic ker-
nel, Support Vector Machine (SVM)[6] is employed as
the classifier. The SVMs with the probabilistic kernel
(thereafter BMSVMs) is used to recognize true splice
sites. A series 10-fold cross validation experiment was
performed. The BMSVMs method was compared with
näive bayesian classifier, with SVMs with linear kernel,
and with SVMs with polynomial kernels.

Two data sets,Dsmall and Dlarge, are used for the
experiments. They contain 1,000 and 10,000 nucleotide
sequences of splice site data, respectively. All the se-
quences are 50 bases long, and for each sequence the
GT -AG structure occurs at the middle. Both data sets
contain examples of true splice sites as well as false
splice sites.

The data set is randomly split into ten sets of equal size.
Each time, one set is used for testing, and the rest nine
are combined and used for training. First, the posi-
tional profiles are estimated for the true splice sites from
the positive examples in the training set and for false
splice sites from negative examples. We assume that
the sequences in the training set are representative for
all DNA sequences. Therefore, entries of the positional
profiles for the true and false splice sites can be ap-
proximated with the observed frequency of occurrence
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TGGCTTAAACT...GTACGTAGACTAG

1

−

2

GAGTTTGGTGACTATAAGGGACAAAGTTTTGCAGGTAGGCCATTGAAACA−

TGGAATTGGTTTTGATCAGTTAGTTGTGGTACAGTATAGATGTAATCTAA−

AGAATGACTGTTCTGCAGCAGGTTCGTTTGGTTTCCAAAATTGACAAATA−

Training set

TGTGGTCAACGCGAACTTGCAGATTGTACGTAAATTGGTAGAAAACTTGT+

AGAAGGAGATGAGATCACTTCGGAGGTTTTTTTTTAATTCTGAATAAAAA+

AAATGACTATCATTTACCAGTACAGGTATTTCAAATATGTTTGACATACA+

positional profiles

DNA sequence

Encoded DNA sequence

+

C: 0.30 0.24 0.23 0.26 0.20  .... 0.21 0.24 0.24 0.24 0.23

A: 0.21 0.29 0.25 0.26 0.28  .... 0.32 0.11 0.22 0.31 0.25

T: 0.23 0.25 0.28 0.21 0.23  .... 0.20 0.40  0.28 0.21 0.29

G: 0.26 0.22 0.24 0.27 0.29  .... 0.27 0.25 0.26 0.24 0.23

C: 0.26 0.25 0.25 0.27 0.26  .... 0.27 0.25 0.26 0.24 0.23

A: 0.23 0.26 0.28 0.24 0.23  .... 0.23 0.25  0.28 0.27 0.26
T: 0.24 0.25 0.25 0.26 0.27  .... 0.28 0.26 0.22 0.25 0.25
G: 0.27 0.24 0.22 0.23 0.24  .... 0.22 0.24 0.24 0.24 0.26

encoding

0.21 0.25 0.28 0.27 0.23 .... 0.25 0.22 0.23 0.27 0.22

Figure 1: Overflow of the algorithm.

of given nucleotide at given position in the positive and
negative examples of the training set, respectively. This
is to estimate the posterior probabilityP (xik|cj).(i ∈
{1, ..., n}.k ∈ {A, T,C,G}, .j ∈ {1,−1}) from the
training set, wherec1 means the true splice sites,c

−1

means the false splice sites, andxi represents theith nu-
cleotide. Then, the logarithms of each posterior prob-
ability log(P (xik|cj)) was input to a linear Support
Vector Machine. The Support Vector Machines soft-
waresvm-light is downloaded fromhttp://www.support-
vector.net.

As a comparison, we also conducted experiments with
SVMs methods with linear kernel and polynomial ker-
nels. In these cases, DNA sequences are first encoded
with sparse encoding. Similar to the experiment with
the BMSVMs method, a 10-fold validation experiments
were conduct for each method.

4 Results
Our BMSVMs method was compared with the näive
bayesian classifier as well as with SVM classifiers with
linear and polynomial kernels. The parameterC of the
SVM classifiers is empirically set to be 150 based on our
experiments (result not shown). We report the results in
terms ofaccuracy, precision, recall andF -measure.
These measures are defined as follows:

Accuracy =
tp + tn

tp + tn + fp + fn
, (10)

Precision =
tp

tp + fp
, (11)

Recall =
tp

tp + fn
, (12)

F − measure =
2 × Precision × Recall

Precision + Recall
, (13)

wherefp is the number of sequences with real splice
sites which are predicted to be true,tn is the number of
sequences without real splice sites which are predicted
to be false,fp is the number of sequences without real
splice sites which are predicted to be true,fn is the num-
ber of sequences with real splice sites which are pre-
dicted to be false. They are illustrated in Fig. 2.

true

real true falsepredict

false fp tn

tp fn

Figure 2: Illustration offp, tn, fp, andfn.

Table 1: Results of BMSVMs method (C=150).
Data set accuracy precision recall F-

measure

Dsmall
Avg 89.2 90.9 87.8 89.3
Std 3.4 3.9 5.3 -

Dlarge
Avg 91.4 92.0 90.6 91.3
Std 0.9 1.3 1.4 -

Table 1 summarizes the result of BMSVMs method.
First, the accuracy, precision and recall are averaged
among each ten-fold cross validation experiments. Their
standard deviations are also computed. Based on the av-
erage precision and recall, we compute the F-measure.
The F-measure for theDsmall data set and theDlarge

data set are 89.3 and 90.3, respectively. Similarly, we
present the results of näive Bayesian classifier in Table
2, and the results of SVM classifier in Table 3 and Table
4.

As can be seen from the above tables, in terms of ac-
curacy andF -measure, our BMSVMs method outper-
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Table 2: Results of n̈aive bayesian as classifier.
Data set accuracy precision recall F-

measure

Dsmall
Avg 89.0 90.5 87.9 89.2
Std 2.7 3.3 3.7 -

Dlarge
Avg 91.1 90.8 91.5 91.1
Std 1.0 1.6 1.4 -

Table 3: Results of using SVM as classifier for the
Dsmall data set (C=150).

Kernel accuracy precision recall F-
measure

Linear
Avg 86.6 88.2 85.1 86.6
Std 2.6 2.5 6.6 -

polynomial
d=2

Avg 88.9 89.3 88.8 89.0
std 2.7 3.6 3.9 -

polynomial
d=3

Avg 89.8 90.9 88.8 89.8
std 3.2 3.6 4.6 -

forms n̈aive Bayesian classifier and SVM classifier with
linear kernel and polynomial kernel ofd = 2 when the
Dsmall data set is used. The results of SVM classi-
fier with polynomial kernel ofd = 3 are slightly better.
WhenDlarge data set is used, the BMSVMs method
outperforms all the other methods: näive Bayesian clas-
sifier and SVM classifier with linear kernel and polyno-
mial kernel ofd = 2 andd = 3.

5 Discussion
In this paper, we present a novel idea of constructing
a probabilistic kernel mapping method from Bayesian
classifier. This mapping method is then integrated with
SVM classifier and applied to the problem of splice site
prediction from DNA sequences. Experiments on two
data sets have demonstrated that our method outper-
forms the benchmark methods: Näive Bayesian classi-
fier, SVM classifier with linear kernel and polynomial
kernel (d = 2 andd = 3) in terms of accuracy and F-
measure.

The results show that the BMSVMs method enhances
the performance of N̈aive Bayesian classifier. Further-
more, when the speed of computation are taken into con-
sideration, the method is as quick as the Näive Bayesian
classifier and much faster than SVM with non-linear ker-
nel methods.

Table 4: Results of using SVM as classifier for the
Dlarge data set (C=150).

Kernel accuracy precision recall F-
measure

Linear
Avg 91.0 91.5 90.3 90.9
Std 1.3 1.4 2.0 -

polynomial
d=2

Avg 89.2 89.0 89.4 89.2
std 0.7 0.8 1.3 -

polynomial
d=3

Avg 90.7 91.0 90.5 90.7
std 0.9 1.0 1.3 -

Bayesian classifier is a simple generative learning
method and SVM classifier represents a type of discrim-
inative learning methods [5]. This proposed method
represents an effort in integrating the generative learn-
ing methods into discriminative learning. With the suc-
cess of the proposed method, more complex genera-
tive learning methods, such as Hidden Markov Model
(HMM) may be integrated into SVM classifier in a sim-
ilar fashion as a probabilistic kernel. Therefore, future
research can introduce some other model building tech-
niques such as HMM or improved Bayesian method to
better capture of the feature distribution.
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