
Clustering of Defect Reports Using Graph Partitioning Algorithms

Vasile Rus1, Xiaofei Nan2, Sajjan Shiva3, Yixin Chen4

1,3Dept. of Computer Science, University of Memphis, Memphis, TN 38152
2,4Dept. of Computer and Information Science, Univeristy of Mississippi, University, MS 38677

1vrus@memphis.edu, 2xnan@olemiss.edu, 3sshiva@memphis.edu, 4ychen@cs.olemiss.edu

Abstract

We present in this paper several solutions to the chal-
lenging task of clustering software defect reports. Cluster-
ing defect reports can be very useful for prioritizing the test-
ing effort and to better understand the nature of software de-
fects. Despite some challenges with the language used and
semi-structured nature of defect reports, our experiments on
data collected from the open source project Mozilla show
extremely promising results for clustering software defect
reports using natural language processing and graph par-
titioning techniques. We report results with three models
for representing the textual information in the defect reports
and three clustering algorithms: normalized cut, size regu-
larized cut, and k-means. Our data collection method al-
lowed us to quickly develop a proof-of-concept setup. Ex-
periments showed that normalized cut achieved the best
performance in terms of average cluster purity, accuracy,
and normalized mutual information.

1 Introduction

We address in this paper the challenging task of cluster-
ing defect reports. Defect reports are detailed descriptions
in natural language of defects, i.e. problems in a software
product. The proper handling of defect reports throughout
the testing process for various purposes, such as fixing bugs
in the case of developers, could have a great impact on the
quality of the released software product. The defect reports
are currently created and analyzed manually by testers, de-
velopers, and other stakeholders. Manual analysis is te-
dious, error-prone, and time consuming, leading to a less
efficient testing process.

Defect reports are filed by testers (or users) who discover
the defects through testing (or use). Reports include many
details: an id that uniquely identifies the defect, the status
of the defect (e.g. new, verified, resolved), a summaryfield,
and a descriptionfield. The description field is the richest
source of information about the defect. The field describes

details in plain natural language about the defect, including
symptoms and steps to reproduce the defect. The summary
field is a one-sentence description of the problem.

We propose here advanced methods for clustering defect
reports that take advantage of the description and summary
fields of the reports. We regard each defect report as a tex-
tual document and use a well-known technique in informa-
tion retrieval (IR), called the vectorial representation[1], to
represent documents. As clustering algorithms, we applied
the following three algorithms: k-means [4, 18], normalized
cut[15], and size regularized cut [2]. This work extends our
previous work on clustering defect reports in which we only
experimented with the k-means clustering algorithm [13].

Three models were used to represent defect reports, one
based on the summary field alone, one based on the descrip-
tion field alone, and another based on the union of both.
Our experimental data consists of defect reports collected
from the open source Mozilla project (www.mozilla.org).
However, the proposed methods are transferable to defect
reports from other projects, e.g. Eclipse (www.eclipse.org).
The clustering was evaluated based on reports describing
the same underlying problem. That is, defect reports are in
the same cluster if they describe the same underlying prob-
lem.

As a preview of our results, we found that the normalized
cut clustering algorithm [15] proved to be by far the most
successful. Furthermore, using the union of the summary
field and description field for clustering is better than using
either the description field alone or summary field alone.

2. Related Work

There are two major lines of previous research relevant
to our work: research on defect clustering, and research on
using natural language processing (NLP) and information
retrieval (IR) to mine artifacts from software repositories.

Clustering is the unsupervised classification of data
points (usually represented as vectors in a multidimensional
space) into groups (clusters) based on similarity [19]. The
clustering problem has been addressed in many contexts

and by researchers in many disciplines. While we are not
aware of any particular work on clustering defect reports,
there is published research related to clustering defects in
the manufacturing of semiconductors [6] and integrated-
circuits (IC; [16]). Karnowski et al. [6] showed that fuzzy
logic can help better cluster defects on semiconductor wafer
maps. Singh and Krishna [16] have shown that using clus-
tering information in optimization testing can significantly
improve the shipped product.

The usage of NLP applications to improve software
development and testing has been around at least since
1990s [14, 10, 11, 3]. More recently, there has been re-
newed interest in applying natural language techniques to
mine useful artifacts from the various repositories associ-
ated with software projects (see the yearly Workshop on
Mining Software Repositories at http://msr.uwaterloo.ca).

We discuss next a series of research efforts that are di-
rectly related to our work on clustering defect reports. Lin-
stead et al. [8] described a framework to automatically mine
developer contributions and competencies from a given
code base, and extract software functions in the form of
topics. Weiss and his colleagues [17] used k nearest neigh-
bor to search for similar historical bug reports and fur-
ther predict the fixing efforts. In other related work, an-
notation graphs have been used to identify bug-introducing
changes [7] and different classification approaches, includ-
ing Bayesian model, support vector machine, classification
trees, and k-nearest neighbor, were tried for classifying soft-
ware maintenance requests by Lucca et al. [9]. The use of
the vectorial representation [1] to address the task of du-
plicate defect report identification has been investigated by
Runeson et al. [12]. In this paper, we use the vectorial
representation for the clustering of software defect reports.
The clustering uses spectral graph partitioning algorithms,
which are described in Section 3.

3. Spectral Graph Clustering

In recent years, spectral clustering based on graph par-
titioning theories has emerged as one of the most effec-
tive data clustering tools. Normalized cut (Ncut; [15]) is
a graph bipartition method that attempts to organize nodes
into groups so that the within-group similarity is high and
the between-group similarity is low. Another graph parti-
tioning method is size regularized cut(SRcut; [2]) which
enables users to incorporate prior knowledge of the size
of clusters into the clustering process and also minimizes
the similarity between two clusters and, at the same time,
searching for a balanced partition. Unfortunately, normal-
ized cut and size regularized cut are both NP-complete
problems. For Ncut, Shi and Malik proposed an approx-
imated solution by solving a generalized eigenvalue prob-
lem [15]. As for SRcut, Chen et al. [2] proposed a relaxed

version of the optimization that finds the largest eigenvalue
of an associated matrix and uses it to bipartition the graph.
These two methods can be recursively applied to get more
than two clusters. In this work, we tested two heuristics
for the Ncut clustering and one heuristic for SRcut clus-
tering. With the first heuristic, used with both Ncut and
SRcut, the subgraph with the maximum number of nodes
is recursively partitioned (random selection is used for tie
breaking). With the second heuristic, the subgraph with the
minimal cut value is bipartitioned.

4. Experiments and Results

In this section, we address in detail the issues of data rep-
resentation, similarity measure, and evaluation metrics. We
also present performance results on clustering defect reports
collected from Mozilla’s Bugzilla, its the defect database.

4.1 Defect Reports Representation

A first issue we must address is the logical view of
the defect reports (see [1] for more information on logical
view). We chose a representation in which we retain all the
words (after applying some preprocessing steps) but no po-
sitional information. Furthermore, we experimented with
three models models for representing reports: using words
in the summary, description, and the union of both. The
advantage of using only the summary would be its relative
small size, usually less than 50 words, which leads to fast
clustering.

Another important issue to address is the formalism used
for the representation. We used the vector space model [1].
A key feature in the vector space model is the weighting
scheme of the words. We used the TF-IDF scheme (TF -
term frequency; IDF - inverted document frequency).

4.2 Evaluation Metrics

Purity, accuracy, and normalized mutual information are
our evaluation metrics. The purity of a cluster is the ratio
of the dominant class size in the cluster to the cluster size
itself. A larger value means that the cluster is a “purer” sub-
set of the dominant class. We assign the dominant class of
the documents within a cluster as the label of that cluster.
A document is correctly clustered if its cluster label is iden-
tical to its class label provided by ground truth. The per-
centage of correctly clustered documents among the corpus
is the accuracy. Purity and accuracy tend to increase with
the number of clusters. However, mutual information is a
measure that avoids this drawback. If normalized, mutual
information values near 1 indicate that the similar partition-
ing, while a value close to 0 implies significantly different
partitions.

4.3 Clustering Experiments

In our experiments, we chose to cluster bugs based on
the fact that they describe the same defect. We regard a
bug and its duplicates as a cluster. The data used in our ex-
periments comes from Mozilla’s Bugzilla, where accurate
duplicate information about defects, as entered by human
experts (developers), is available.

To create our experimental data set, we started collect-
ing 20 Bugs from the Hot Bugs Listof Mozilla’s Bugzilla
which contains the most filed recent bugs. We chose the
top 20 defect reports from the Hot Bugs Listin terms of
largest number of duplicates and retrieved about 50 dupli-
cates for each. We automatically collected the Description
and Summarydata of these bugs and stored them locally in
text files. The final data set contained 1003 data points in
50 clusters. Some defect reports out of the 1020 that we
collected initially (20 original defects at 50 duplicates each)
were dropped because the description field was empty or
was simply redirecting the user to another bug, e.g. the field
contained textual pointers such as see bug #123. As such,
the size of the clusters varies from 46 reports to 51 reports,
i.e. we have approximately balanced cluster sizes.

For each report, three vectorial representations were cre-
ated based on the description field, summary field, and the
union of the two fields. The vocabulary size/ dimensional-
ity for the three representations are 4569, 991, and 5128,
respectively.

We applied three clustering algorithms, Ncut, SRcut, and
k-means, to data set. It should be noted that the data set is
balanced. That is, each cluster contains approximately same
number of instances (50) as explained above. For the Ncut
algorithm, two heuristics were tested to iteratively divide
the data set into 20 clusters. In the first heuristic, named
largest first (LF), the largest subgraph was divided in each
iteration. In the second heuristic, named best first (BF), the
subgraph with the minimal Ncut value was divided in each
step. The SRcut used the first heuristic to iteratively gen-
erate 20 clusters. The α parameter of the SRcut algorithm
was chosen to be 0.8.

The three evaluation metrics, average purity, accuracy,
and normalized mutual information are reported in Table 1.
Because the results of k-means depend on the initial choice
of the seeds, we repeated 20 runs of k-means on the data
set and reported the average and standard deviation of each
metric. From Table 1, we can draw the following conclu-
sions.
• Ncut with the largest first heuristic outperforms, on any

evaluation metric given above, Ncut with the best first
heuristic, SRcut and k-means algorithms on all three
vectorial representations. The only exception is the av-
erage purity metric for the summaries data. This proves
that the largest first heuristic Ncut method is suitable for

balanced scenarios.
• The purity metric is biased towards smaller clusters.

This is demonstrated by the k-means results. On all
three vectorial representations, the average purity of k-
means clustering is comparable to or higher than Ncut
clustering. However, the accuracy and normalized mu-
tual information of k-means are significantly lower than
those of Ncut on all three vectorial representations. This
is because k-means tends to generate a large number of
small clusters.

• Using the combination of descriptions and summaries
for clustering is better than using either representation
separately.

• SRcut performed poorly on this data set. This is mainly
due to the fact that the SRcut algorithm is designed for
graph bipartition. When applied iteratively, it is difficult
to find a proper value of the α parameter that works in
all iterations.

5. Conclusions and Future Work

We addressed in this paper the challenging task of clus-
tering defect reports based on their textual descriptions,
summaries, and both descriptions and summaries. Our ex-
periments on defect reports from Mozilla’s Bugzilla and
with three clustering algorithms showed that normalized cut
using a TF-IDF vectorial representation based on a com-
bination of descriptions and summaries of reports leads to
better clustering than using the summary or the description
of defects alone. Our work has been motivated by our belief
that the rich information in software defect reports, which
are generated during the testing phase in the form of textual
reports, can be of great value. For instance, if open defect
reports are clustered and a resulting cluster seems to be large
compared to the others then the testing effort should focus,
during the next testing cycles, on the defects in the large
cluster. The large cluster may be an indication of an ex-
tremely faulty component or connected components which
generate many related defects.

We plan to continue our investigation of clustering defect
reports by using other representations of the defect reports,
e.g. using only the overviewsection of the description field
of a software report, and other text and knowledge process-
ing techniques, e.g. exploiting knowledge about the particu-
lar software product being developed. As each defect report
has a specific structure, we are also interested in exploring
clustering techniques that take into account the structure in-
stead of treating a report as a bag of words.

ACKNOWLEDGEMENT

The work of Rus and Shiva was sponsored by The Uni-
versity of Memphis under a Systems Testing Excellence

Table 1. Comparisons of clustering performance for Ncut, SRcut, and k-means algorithms with bal-
anced class-size. Three vectorial representations (VR) are used: description field (VR1), summary
field (VR2), and the union of description and summary fields (VR3). NcutLF and NcutBF denote Ncut
algorithm with largest first heuristic and best first heuristic, respectively.

Evaluation Metric Average Purity Accuracy Normalized Mutual Information

V
R

1

NcutLF 0.8509 0.8235 0.8225
NcutBF 0.8554 0.7468 0.7778
SRcutLF 0.6448 0.6471 0.6479
k-means 0.8566 ± 0.0240 0.7579 ± 0.0382 0.7710 ± 0.0247

V
R

2

NcutLF 0.7856 0.7677 0.7525
NcutBF 0.8207 0.7069 0.7124
SRcutLF 0.6215 0.6092 0.5938
k-means 0.7934 ± 0.0279 0.6252 ± 0.0250 0.6368 ± 0.0227

V
R

3

NcutLF 0.8864 0.8614 0.8540
NcutBF 0.8665 0.7587 0.7906
SRcutLF 0.6767 0.6800 0.6845
k-means 0.8879 ± 0.0232 0.7899 ± 0.0354 0.8187 ± 0.0201

Program (STEP) project. The work of Nan and Chen was
supported by The University of Mississippi.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley, 1999.

[2] Y. Chen, Y. Zhang, and X. Ji. Size regularized cut for data
clustering. In Advances in Neural Information Processing
Systems (NIPS), 18, MIT Press, Cambridge, pages 211–218,
2006.

[3] L. Etzkorn, L. Bowen, and C. Davis. An approach to
program understanding by natural language understanding.
Natural Language Engineering, 5(1):1–18, 1999.

[4] J. Hartigan and M. Wong. A k-means clustering algorithm.
Applied Statistics, 28, 100–108, 1979.

[5] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a
review. ACM Computing Surveys, 31(3):264–323, 1999.

[6] T. P. Karnowski, S. S. Gleason, and K. W. Tobin. Fuzzy logic
connectivity in semiconductor defect clustering. In Proc.
SPIE Machine Vision Applications in Industrial Inspection
VI, A. R. Rao; Ning Chang; Eds., 3306, pages 44–53, 1998.

[7] S. Kim, T. Zimmermann, K. Pan, and E.J. Whitehead, Jr.
Automatic idenfification of bug-introducing changes. In
Proceedings of the 21st IEEE/ACM International Confer-
ence on Automated Software Engineering, pages 81–90,
2006.

[8] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi.
Mining Eclipse developer contributions via author-topic
models. In International Workshop on Mining Software
Repositories, 2007.

[9] G. A. Di Lucca, M. Di Penta, S. Gradara. An approach
to classify software maintenance requests. In Proceedings
of the International Conference on Software Maintenance
(ICSM’02), pages 93–102, 2002.

[10] P. Lutsky. Documentation parser to extract software test con-
ditions. In Proceedings of the 30th Annual Meeting of the

Association for Computational Linguistics, pages 294–296
1992.

[11] P. Lutsky. Using a document parser to automate software
testing. In Proceedings of the 1994 ACM Symposium on
Applied Computing, pages 59–63, Phoenix, Arizona, 1994.

[12] P. Runeson, M. Alexandersson, and O. Nyholm. Detection
of duplicate defect reports using natural language process-
ing. In Proceedings of the 29th International Conference on
Software Engineering, pages 499–510, 2007.

[13] V. Rus, S. Mohammed, and S. Shiva. Automatic Clustering
of Defect Reports. Proceedings of the 20th International
Conference on Software and Knowledge Engineering, pages
291–297, 2008.

[14] J. Schlimmer. Learning meta knowledge for database check-
ing. In Proceedings of the National Conference of the Amer-
ican Association of Artificial Intelligence (AAAI’91), pages
335–340, 1991.

[15] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8):888–905, 2000.

[16] A. Singh and C. Krishna. On the effect of defect clustering
on test transparency and IC test optimization. IEEE Trans-
actions on Computers, 45(6):753–757, 1996.

[17] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How
long will it take to fix this bug?. In Proceedings of the Fourth
International Workshop on Mining Software Repositories,
pages 1–8, 2007.

[18] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques.Morgan Kaufmann, 2005.

[19] R. Xu and D. Wunsch. Clustering. John Wiley & Sons,
2008.

