
Learning to Rank Using 1-norm Regularization
and Convex Hull Reduction

Xiaofei Nan
Department of Computer and

Information Science
University of Mississippi

University, MS 38677
xnan@olemiss.edu

Yixin Chen
Department of Computer and

Information Science
University of Mississippi

University, MS 38677
ychen@cs.olemiss.edu

Xin Dang
Department of Mathematics

University of Mississippi
University, MS 38677

xdang@olemiss.edu

Dawn Wilkins
Department of Computer and

Information Science
University of Mississippi

University, MS 38677
dwilkins@cs.olemiss.edu

ABSTRACT
The ranking problem appears in many areas of study such
as customer rating, social science, economics, and informa-
tion retrieval. Ranking can be formulated as a classification
problem when pair-wise data is considered. However this
approach increases the problem complexity from linear to
quadratic in terms of sample size. We present in this paper
a convex hull reduction method to reduce this impact. We
also propose a 1-norm regularization approach to simultane-
ously find a linear ranking function and to perform feature
subset selection. The proposed method is formulated as a
linear program. We present experimental results on artificial
data and two real data sets, concrete compressive strength
data set and Abalone data set.

Categories and Subject Descriptors
L.2 [Learning]: Strategic Aspects of eLearning

General Terms
Theory

Keywords
Ranking, SVM, Convex Hull

1. INTRODUCTION
Most inductive learning work has concentrated on classifi-
cation and regression. However, there are many applica-
tions that reside in between the two: it is desirable to or-
der objects or determine preferences rather than to classify
instances (classification) or to predict ordinal utility values
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(regression). Ranking problems arise from such applications.
For instance, it is common to rank document search results
according to their relevance to a query as “perfect match”,
“relevant”and“non-relevant”. A movie recommendation sys-
tem gives users a list of recommended films where the most
potentially wanted films are placed on the top.

One advantage of formulating an application as a ranking
problem is that preference judgments may be much easier
to obtain than the labels required for classification learning
and the values of the dependent variable in regression [6].
For example, in the design of the above movie recommen-
dation system, a user might easily express his or her pref-
erence of movie A over movie B to generate a training data
set. But it is harder to quantify how much he or she likes
these two movies. Therefore, learning to rank is a natural
choice for many applications in social science, mathematical
economics, and information where human preferences play
an important role.

Ranking problems share some properties with both classifi-
cation and regression problems. These problems can be gen-
eralized as [11]: Given an iid sample (X,Y ) where X ∈ X

and Y ∈ Y, and a set F of mappings f : X → Y, a learning
algorithm is to find an optimal mapping function f⋆ so that
a predefined loss function is minimized. Normally, the loss
function consists of the sum of an empirical risk which mea-
sures the training error and a measure that characterizes the
capacity of F. If Y is a finite unordered set, the problem is
commonly referred to as a classification problem. Especially,
it is a binary classification task when Y = {−1, 1}. Because
Y is unordered, the 0− 1 loss is often used as the loss func-
tion. It counts the number of cases that the estimate label
does not match the given label. On the other hand, if Y

is the set of real numbers, the task is usually referred to as
regression. Because Y is in a metric space, the loss func-
tion should involve the corresponding metric information.
In ranking tasks, Y is finite as in classification and has an
ordering over these finite elements as in regression. In this
sense, ranking lies in between classification and regression.



However, in contrast with regression, Y in ranking does not
have a complete metric structure, in particular, the con-
cept of distance is not available in Y. It hence brings chal-
lenges in defining a ranking loss function. A ranking loss
function should capture the intuition that it is more expen-
sive to make mistakes such as placing “perfect match” to
“non-relevant” than to “relevant”, yet it is difficult to de-
fine the distance of two labels y and y′. One approach to
tackle this dilemma is to cast a ranking problem as a re-
gression problem that imposes a metric on top of the set
of rankings. Balcan et al. [3] proposed and analyzed reduc-
tions from ranking to binary classification problems given
the significant efforts placed on developing classification al-
gorithms. A commonly used method is to act on pairs of
observations, and the loss function measures the probabil-
ity of misclassification of a randomly drawn pair (x1, x2),
where the two classes are x1 being preferred over x2 and
the opposite respectively [11]. However the biggest concern
about this method is that it increases the computational
complexity from linear to quadratic in terms of the number
of samples. In this paper, we incorporate the idea of convex
hull reduction to decrease the computational complexity of
learning to rank.

2. PREVIOUS WORK
The procedure of robust reduction from ranking to classifica-
tion was summarized in [3] where the first step is to minimize
the number of inconsistencies (cases where a less preferred
instance is ranked higher than a more preferred instance)
and then find the ordering that agrees best with the esti-
mated preferences. Cohen et al. [6] proved that the latter
procedure is NP-complete and described a simple greedy al-
gorithm to rank observations based on how many other ob-
servations are ranked lower. They also made use of Hedge al-
gorithm to find a good linear combination of multiple“weak”
ranking“experts”. Herbrich et al. [11] cast the ranking prob-
lem as a variation of classification, called ordinal regression,
which modeled ranks as intervals on the real line and consid-
ered the loss functions based on pairs of observations. The
margins of neighbor ranking boundaries had crucial impacts
on the performance. Shashua and Levin [13] discussed this
large margin principle and introduced two main approaches,
fixed margin and sum of margins. The former strategy max-
imized the margin of the closest neighboring ranks, while the
latter allows different margins for different observations and
maximizes the sum of margins. Agarwal and Roth [1] stated
the large margin principle theoretically and discussed the
learnability of bipartite ranking functions. It is shown that
the sufficient and necessary conditions of the learnability of
a class of ranking functions are related with its rank-shatter
coefficients in the same way as the VC-dimension related
shatter coefficients for classification functions.

Instead of using SVM-like large margin methods, Freund et
al. [8] combined preferences based on the boosting approach.
Rudin et al. [12] modified Freund’s work using a method
analogous to Approximate Coordinate Ascent Boosting and
proved that the algorithm makes progress with respect to the
ranking margin at each iteration and converges to a maxi-
mum margin solution.

Crammer and Singer [7] projected observations on a real line
as in [11]. Their online learning algorithm used one example

at a time instead of using the pairwise data as in [11]. The
loss function was defined as the sum of differences between
the estimated ranks and real rank values. Burges et al. [5]
built their loss function based on the cross entropy cost and
utilized a neural network to solve this optimization problem.
All these existing approaches implicitly operate on a non-
calibrated utility scale which restricts the expressive power
of these methods. Brinker and Hüllermeier [4] extended the
conventional ranking framework with a natural zero point.

Clearly, using pairs of observations and casting ranking prob-
lems as classifications are a commonly used strategy. How-
ever, the major limitations are the high computational com-
plexity and the lack of robustness to noise. The complexity
issue is due to the usage of pairs of data. This problem is
tackled in our paper by only selecting a small number of
representative observations for each rank label, which dra-
matically reduces the size of the training data. Moreover, in
many high dimensional applications, some attributes have
little contribution to the ranking function, and these in-
consequential attributes are removed automatically by the
means of 1-norm SVM learning.

The remainder of the paper is organized as follows. In
Section 3, we briefly introduce the concept of Kendall τ
rank correlation coefficient as the performance measure and
present the formulation of our ranking problem. We review
the 1-norm SVM and convex hull construction in Section 4
and propose the ranking algorithm that combines convex
hull reduction and 1-norm SVM. In Section 5, we present
details about the experiments performed and the results ob-
tained. We conclude in Section 6 with a discussion on future
directions.

3. PRELIMINARIES
Performance metrics are fundamental in assessing any learn-
ing method. We first discuss a way to quantify the perfor-
mance of ranking algorithms. We then describe the formu-
lation of the ranking problem used in this work.

3.1 Kendall τ Correlation Coefficient
Fung et al. [9] used generalized Wilcoxon-Mann-Whitney
Statistics to measure the probability of any pair of data
being ordered correctly. A similar but simpler concept is
Kendall τ rank correlation coefficient (simply the Kendall
τ), which is a non-parametric statistic used to measure the
degree of correspondence between two rankings. It assesses
the significance of this correspondence. Considering the oc-
currence of ties, we use Kendall τ -b variation.

Let ai and bi be the rank of observation xi given by two
ranking algorithms, Kendall τ -b rank correlation coefficient
for the two ranking algorithms on the given set of observa-
tions is defined as

τ =

∑

i<j sgn(ai − aj)sgn(bi − bj)
√

(T0 − T1)(T0 − T2)

where T0 = n(n − 1)/2, T1 =
∑

k tk(tk − 1)/2, and T2 =
∑

l ul(ul − 1)/2. The tk is the number of tied a values in
the k-th group, ul is the number of tied b values in the l-th
group, n is the number of observations.

If the two rankings are identical, the Kendall τ -b value is



equal to 1. If two rankings are totally opposite, Kendall
τ -b equals negative one. It approaches zero when the two
rankings are irrelevant.

3.2 A Ranking Problem Formulation
In this work the ranking problem is formulated as below.
Given observation set X ∈ R

n, let R be a relation on X×X

that for any (xi, xj) ∈ R, xi is ranked higher than xj . We
are interested in learning a ranking function f to capture
this relation, i.e.,

f(xi) > f(xj), ∀(xi, xj) ∈ R.

If we consider the family of linear ranking functions, f(x) =
wTx + b, the given relation R is linear rankable (similar to
linear separable in binary classification) if and only if

wTxi + b > wTxj + b, ∀(xi, xj) ∈ R,

which is equivalent to

wT (xi − xj) > 0, ∀(xi, xj) ∈ R.

If R is linear rankable, there exists an n-vector w such that

wT (xi − xj) ≥ 1, ∀(xi, xj) ∈ R.

For the non-rankable cases, slack variables could be intro-
duced into the model, i.e.,

wT (xi − xj) ≥ 1− ηi,j , ηi,j ≥ 0, ∀(xi, xj) ∈ R. (1)

Therefore, the ranking problem has been cast as a classifi-
cation problem where the loss function acts on pairs of pref-
erences. In order to have some indication that the learning
algorithm will generalize well, the loss function should in-
volve both the complexity of the ranking function class and
the empirical error. This complexity can be achieved by
an informative quantity, for example, VC dimension or an
upper bound on VC dimension.

However, it is clear that the number of constraints grows
quickly as the size of observation increases, roughly quadratic
in the number of training samples, which poses a significant
computational burden and even makes the solution infeasi-
ble.

4. RANKING WITH 1-NORM REGULAR-
IZATION AND CONVEX HULL REDUC-
TION

Our goal is to decrease the number of constraints that are in-
herent with pairwise data without compromising the ranking
relationships. The basic idea is to select a subset of represen-
tative preference constraints instead of using all preference
pairs.

4.1 Convex Hull Reduction
When there are multiple ranking labels {y1, y2, . . . , yk}, let
Ys be the set of all observations with rank label ys. A pref-
erence relation is specified as

R = {(xi, xj) : ∀i, j, xi ∈ Ys, xj ∈ Yt, Ys ≺ Yt} ,

where ≺ denotes “being preferred to”.

The size of R is |R| =
∑

s,t,Ys≺Yt
|Ys||Yt|. For a ranking

problem in Section 3.2, there will be |R| constraints of form
(1). For almost all ranking problems, |R| is much larger than
the number of ranking labels. In fact, the size of constraints
is approximately the quadratic of the observation size, i.e.,
the number of constraints is O(ℓ2) where ℓ is the number of
training observations. Therefore, the number of constraints
is prohibitively large even for a training set of medium size,
say 1000.

Our approach to reduce the number of constraints is to select
a small subset of representative preference constraints with-
out compromising the ranking performance significantly. These
representative constraints are constructed using observations
lying on the convex hulls of Ys (s = 1, . . . , k).

A convex hull is the smallest convex polygon containing all
the points in a set. It captures the shape of a data set. The
convex hull computation could be finished in O(|Y |lg(|Y |))
time for each observations set Y . After finding convex hulls
for each set Ys(s = 1, . . . , k), constraints in (1) are reduced
to

wT (xi − xj) ≥ 1− ηi,j , ηi,j ≥ 0, ∀(xi, xj)

that xi ∈ CH(Ys), xj ∈ CH(Yt), and Ys ≺ Yt,

where CH(Ys) denotes the observations on the convex hull
of the set Ys.

After convex hull reduction, the number of constraints shrinks
to O(

∑

s,t,Ys≺Yt
|CH(Ys)||CH(Yt)|), where |CH(Ys)| is the

size of the convex hull of set Ys. We will show later that in
most applications this procedure will reduce the constraint
size dramatically.

4.2 1-norm Support Vector Machines
Support Vector Machines (SVMs) are a supervised learning
technique based on statistical learning theory. The standard
two-norm Support Vector Machines have been proven effec-
tive in learning classification, regression and ranking func-
tions.

In the cases of classification, a SVM is formulated as the
solution of a quadratic program. Given a set of training
data (x1,y1),. . . ,(xl,yl), where the input xi ∈ R

n, and the
output yi ∈ {1,−1} has binary values, the standard SVM
with linear kernel is found by solving the following quadratic
program:

minw,b,η λ‖w‖2
2
+

∑ℓ

i=1
ηi

s.t. yi(w
Txi + b) + ηi ≥ 1

ηi ≥ 0, i = 1, . . . , ℓ
(2)

where λ > 0 is a fixed penalty parameter that specifies the
tradeoff between empirical misclassification error and the
complexity of the classifier. Zhu et al. [14] argued that the
1-norm SVM may have some advantage over the standard
2-norm SVM, especially when there are redundant noise fea-
tures. Similarly, 1-norm SVM can be formulated by replac-
ing the ‖·‖2 regularization operator in (2) with ‖·‖1 regular-
ization. Hence we have the following optimization problem:

minw,b,η λ‖w‖1 +
∑ℓ

i=1
ηi

s.t. yi(w
Txi + b)T + ηi ≥ 1

ηi ≥ 0, i = 1, . . . , ℓ
(3)



where ‖w‖1 =
∑n

j=1
‖wi‖.

The optimization problem (3) can be formed as a linear pro-
gram. We rewrite wj = uj − vj where uj , vj ≥ 0. If either
uj or vj has to equal zero, then | wj |= uj + vj . Then (3)
becomes

minu,v,b,η λ
∑n

j=1
(uj + vj) +

∑ℓ

i=1
ηi

s.t. yi[(u− v)Txi + b] + ηi ≥ 1
uj , vj ≥ 0, j = 1, . . . , n
ηi ≥ 0, i = 1, . . . , ℓ.

(4)

Solving (4) yields solutions equivalent to those obtained by
(3) because any optimal solution to (4) has at least one
of the two variables uj , vj equal to 0 for all j = 1, . . . , n.
Otherwise, assume uj > vj > 0 without loss of generality,
and we can find a better solution by setting uj = uj − vj
and vj = 0, which contradicts to the optimality of (u, v).

The popularity of standard two-norm SVM is based on the
concept of kernel, which may create non-linear classifiers by
transforming the original input space to high dimensional
feature space though the transformation functions are un-
known. One of the kernel trick’s sufficient conditions is the
existence of dot product. Although the kernel trick does
not apply to 1-norm SVM, it has a major advantage over
the 2-norm SVM: 1-norm regularization favors sparse solu-
tion hence provides an embedded feature subset selection
capability [14]. Learning accuracy does not always go up
along with an increase in the number of features. In many
applications for which data sets with tens or hundreds of
thousands variables are available, it is important but diffi-
cult to find a subset of features that maximizes the learning
accuracy. This problem is known as feature selection. The
related literature can be found in [10]. 1-norm regulariza-
tion is especially suitable for data sets that have redundant
and/or irrelevant features.

4.3 Ranking with 1-norm Regularization
Combing the results of (2) and (4), the 1-norm ranking prob-
lems could be regularized as

minu,v,b,η λ
∑n

j=1
(uj + vj) +

∑ℓ

i=1
ηi,j

s.t. wT (xi − xj) ≥ 1− ηi,j , ηi,j ≥ 0
xi ∈ CH(Ys), xj ∈ CH(Yt), Ys ≺ Yt,
uj , vj ≥ 0, j = 1, . . . , n
ηi,j ≥ 0, i = 1, . . . , ℓ.

Slack variables are necessary in the non-rankable applica-
tions. But the above formula shows that the size of slack
variables is equal to the number of convex hull point pairs,
which is another computational burden, especially when the
sample points are mostly distributed on the surface of the
high dimensional cube and convex hull reduction cannot re-
lieve the computational load a lot.

To relieve the computational load, we not only reduce the
number of constraints but also reduce the number of vari-
ables in the optimization problem. To fulfill the second
purpose, we assign each convex hull point a slack variable.
Therefore, the original slack variable for each pair (xi, xj)
can be represented by the addition of the slack variables of

xi and xj . And the number of slack variables is dramatically
reduced from |R| =

∑

s,t,Ys≺Yt
|Ys||Yt| to

∑

s |Ys|.

As a result, the ranking function is specified as the solution
of the following linear program:

minu,v,b,η λ
∑n

j=1
(uj + vj) +

∑

s,t(ηs + ηt)

s.t. (u− v)T (xs − xt) + (ηs + ηt) ≥ 1
xs ∈ CH(Ys), xt ∈ CH(Yt), Ys ≺ Yt

uj , vj ≥ 0, j = 1, . . . , n
ηs, ηt ≥ 0, s, t = 1, . . . , n.

(5)

Moreover, we could further reduce the number of constraints
using the transitive property of the preference over ranking
labels. For example, we have preference relation denoting
as Ys ≺ Yt ≺ Yu. Instead of considering all the preference
constraints in the relation R1 = {(Ys, Yt), (Ys, Yu), (Yt, Yu)},
relations R2 = {(Ys, Yt), (Yt, Yu)} is sufficient to express R1

in the sense that the transitive closure of R2 is R1. There-
fore, the number of constraints after reduction is bounded
by O(

∑

s,Ys≺Ys+1
|CH(Ys)||CH(Ys+1)|).

5. EXPERIMENTS AND RESULTS
We tested our approach on three data sets: an artificial
data set, a concrete compressive strength data set, and an
Abalone data set. The artificial data set consists of 2000
samples in two size-balanced groups with dimension 6. Three
features out of six are generated according to the uniform
distribution on two regions with little overlapping so that
the two groups are linear separable. The other three fea-
tures are random noises with little discriminative power.

The two real data sets are publicly available from UCI ma-
chine learning repository 1. They were used as benchmark
data sets for ordinal regression methods in the literature.
The dependent variable of the concrete strength data set is
continuous. In the Abalone data set, the dependent variable
is discrete taking integer values between 1 and 29. The con-
crete compressive strength data set has 1030 instances and
8 attributes. We discretize the values of continuous depen-
dent variable into five bins of equal size. Observations in
the same bin share the same ranking label. Although the
dependent variable of the Abalone data set is discrete, con-
sidering the fact that most applications do not have such a
large number of ranking labels as 29, we grouped the ob-
servations into three rank classes. All observations whose
dependent variable is smaller than 6 are assigned a ranking
label 1. All observations whose dependent variable is greater
than 15 are assigned a ranking label 3. All the remaining
observations belong to rank class 2. The Abalone data set
has 4177 instances and 8 attributes.

We used 5-fold cross validation in all data sets. On the
artificial data set, our approach showed perfect ranking per-
formance with Kendall τ coefficient being 1. Moreover, the
weights for the three noise features were all 0, which im-
plies that the noise features were rejected by the ranking
algorithm. This confirms that 1-norm regularization favors
sparse solution and is able to select the most discriminative
features under a proper value of the λ parameter.

1http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Figure 1: The relationship between λ, feature
weights (wj’s), and Kendall τ-b rank correlation co-
efficient on the Abalone data set.

Similar observations were obtained on the other two data
sets. The top plots in Figure 1 and Figure 2 show the fea-
ture selection process as the λ parameter in (5) varies. The
horizontal axis indicates the value of λ. The vertical axis
represents the values of the weights. We can see from both
figures that as the value of λ increases the absolute values of
feature weights decrease. Eventually all the feature weights
drop to zero. However, some feature weights decrease more
quickly than others. Thus the non-zero-weight features are
selected. The bottom plots in Figure 1 and Figure 2 present
the ranking performance as the λ parameter changes. The
vertical axis represents the Kendall τ -b value. In the con-
crete strength data set, 2 feature weights out of 8 drop to
zero after λ is equal to 2, which indicates that these two fea-
tures are “useless” compared with others. The best Kendall
τ result, 0.80325, is achieved when λ ranges from 12 to 14.
Similar scenario happens in Abalone set. One feature weight
drops to zero when λ is greater than 2. It hits the best per-
formance 0.643775 when λ is within the range between 9
and 9.5.

Next, we look at the effect of convex hull reduction on the
number of constraints. In our experiment, the preference
pairs are specified as between group observations. We use
Quick Hull 2 as the convex hull algorithm. The numbers
of preference constraints before and after convex hull reduc-
tion are given in Table 1. Because 5-fold cross validation
is used, we average the number from each run and provide
the standard deviation as well. The number of constraint
for concrete strength data set is reduced by 34.16%. For the
artificial data set and Abalone data set, the reduction ratios
are 72.69% and 83.90%, respectively. Although the reduc-

2http://www.qhull.org/
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Figure 2: The relationship between λ, feature
weights (wj’s), and Kendall τ-b rank correlation co-
efficient on the Concrete Strength data set.

tion ratio differs in different data sets, convex hull seems to
be an effective option in reducing the constraint set.

Theoretically predicting the number of observations on a
convex hull is not an easy task because it depends on the
number of observations, the dimension of feature space, and
the distribution of the observations. Hueter [15] developed a
central limit theorem for the convex hull size in high dimen-
sional spaces. To further investigate how well convex hull
reduction works on the ranking problems, we randomly gen-
erate 1000 observations with feature dimension varies from
2 to 9, and record the number of observations on the convex
hull. Table 2 shows that the convex hull size increases with
the feature dimension. In a 9-dimensional feature space, the
number of observations on the convex hull is close to the size
of the whole data set. This is an empirical validation of the
curse of dimensionality, which limits the use of convex hull
reduction in applications with high feature dimension.

6. CONCLUSIONS
We proposed a ranking algorithm on pair-wise preference
constraints. A convex hull reduction algorithm is used to
reduce the number of constraints. A linear ranking function
is computed by minimizing the sum of ranking error and
a 1-norm regularization term. The 1-norm regularization
favors sparse solutions, hence selects a subset of features.
Experimental results demonstrate good performance on the
data sets tested.

Due to the curse of dimensionality, in a high dimensional
space, almost all observations lie on the surface of a convex
hull. Therefore we don’t expect significant improvements
from the proposed ranking algorithm when the feature di-



Table 1: Number of constraints before and after convex hull reduction. The reduction ratio is the percentage
of the constraints that are removed.

Data Set Before Convex Hull Reduction After Convex Hull Reduction Reduction ratio

Artificial 640000 174816± 2670 72.69%
Concrete Strength 271590± 466 178822± 4440 34.16%

Abalone 1105700± 2556 178060± 8833 83.90%

Table 2: Convex hull reduction on uniform and normal distributions. There are 1000 observations before the
reduction. The right two columns contain the number of observations that are on the convex hull.

Dimension of Feature Space Normal Distribution Uniform Distribution

2 Dimension 13 19
3 Dimension 32 72
4 Dimension 85 152
5 Dimension 159 306
6 Dimension 274 496
7 Dimension 358 661
8 Dimension 527 759
9 Dimension 637 852

mension is large (10 or higher).
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