
Some New Approaches For Preventing Software Tampering

Bin Fu
∗

Computer Science Dept.
University of New Orleans

New Orleans, LA 70148, and
Research Institute for Children

200 Henry Clay Avenue
New Orleans, LA 70118

fu@cs.uno.edu

Golden Richard III
Computer Science Dept.

University of New Orleans
New Orleans, LA 70148

golden@cs.uno.edu

Yixin Chen
Computer Science Dept.

University of New Orleans
New Orleans, LA 70148, and

Research Institute for Children
200 Henry Clay Avenue
New Orleans, LA 70118

yixin@cs.uno.edu

ABSTRACT
In this paper, we propose several methods to increase the
difficulty of reverse engineering applications, with special
emphasis on preventing the circumvention of copy protec-
tion mechanisms that permit only authorized users to ex-
ecute the applications. We apply the hashing function to
transform some constants in the software and recover them
during the execution with the correct input of the password.
The security of such a method depends on the hardness of
the invertibility of the hashing function.

1. INTRODUCTION
Each year software piracy results in billions of dollars in

lost revenue. Software designers, in particular those serving
vertical markets, need methods for protecting their software
from unauthorized use and reverse engineering.

Reverse engineering serves a number of purposes, from
defeating software copy protection schemes to program un-
derstanding to assisting competitors in duplicating the func-
tionality of a software product. Many vertical market appli-
cations (e.g., those in the digital forensics field) where cost
of development is high, yet the number of licenses sold is
expected to be rather small, are particularly attractive can-
didates for protection from reverse engineering. A number
of general tools are available to reverse engineers. Those in-
clude debuggers, which allow dynamic analysis of a program
during execution, disassemblers, which generate assembler
code from executables, and decompilers, which attempt to
recreate high-level source code which roughly corresponds
to the original source code of an application. In addition, a
number of specialized tools are available, which allow moni-
toring systems calls executed by an application, file activity,
and modification of system data areas such as the Windows

∗Bin Fu is supported by the Louisiana Board of Regents
fund under contract number LEQSF(2004-07)-RD-A-35.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SE’06March 10-12, 2006, Melbourne,Florida,USA
Copyright 2006 ACM 1-59593-315-8/06/0004 ...$5.00.

registry. Preventing reverse engineering of applications exe-
cuting on current computing platforms is essentially impos-
sible. Therefore the goal of any ”anti” reverse engineering
technique is to substantially increase the amount of work
that a reverse engineering attempt entails, hopefully beyond
the useful lifetime of a software application (or a particular
version of the application).

A number of techniques have been proposed to make re-
verse engineering more difficult. These include: code obfus-
cation (e.g., [2, 5, 10, 11, 13, 16, 17, 19]), physical pro-
tection of the computing platform (e.g., Trusted Comput-
ing Platform Alliance (TCPA) [18]), encrypting executables
(e.g., Armadillo system, which is changed to SoftwarePass-
port now), watermarking (e.g., [6, 7]), and the use of secure
coprocessors (e.g., [15, 1, 4, 9, 12, 14]). Many techniques
for protection of software against reverse engineering involve
source code transformations, such as the introduction of
aliases into transformed source code, making static analysis
very difficult, since alias detection is known to be NP-Hard.
Machine code obfuscation is also useful to prevent reverse
engineering. Such obfuscation techniques include changing
executable layouts, splitting data areas, changing the layout
of arrays, and unrolling loops. The problem with such tech-
niques is that many sophisticated tools are available to the
reverse engineering community, and in situations where only
a small block of code is of interest (e.g., code which accesses
a USB dongle to verify a software license or forces an user
to enter a password), the techniques may be ineffective.

Though software obfuscation is perhaps the most active
research area addressing software protection, attackers can
still easily detect code where authorization-to-use checks
(e.g., the entry of passwords or checking for an attached
hardware device) are located and bypass these checks. There-
fore some additional work needs to be done. In [3], some
negative results were presented about the existence of very
general obfuscator, which is expected to obfuscate every pro-
gram. Nevertheless, we can still develop efficient techniques
to obfuscate many concrete computer programs.

One common method for preventing unauthorized soft-
ware access is to provide a serial number, password, or hard-
ware dongle to each legal user, and check it whenever the
software is installed or executed. This method is very easy
to break. On the other hand, the password approach is
still attractive since it is familiar to users and easy to use.
This paper presents two novel methods for protecting soft-

ware via passwords. Both methods involve modifying criti-
cal program constants. Our methods are easy to implement
and difficult to attack if an adversary does not have detailed
information about the algorithms and corresponding imple-
mentations used in a software product. In sections 2-5, we
discuss the basic methods.

In section 6, we apply our methods to the software obfus-
cation. We show how constants can affect the flow of the
program. Applying our method for changing and recovering
constants, we make the program flow confusing.

2. METHOD 1: OBFUSCATING MULTIPLE
CONSTANTS

The first method is based on a very simple observation
that some constants can significantly affect the operation of
an application. If those constants are not correctly set, the
software will not be able to run correctly. A constant c is
selected, and is changed to c-hash(password), where hash is
a hashing function. When the software starts, it expects to
read the password from the user. Then c-hash(password)
is changed back to c by adding hash(password) to c-hash(
password) after the password is read. If the the user inputs
an incorrect password, c will not be recovered correctly.

2.1 Our method by example
Let’s start with a simple example that explains our method.

Our software is for solving quadratic equation x2+bx+c = 0,

which has two roots
−b+

√
b2−4c

2
and

−b−
√

b2−4c

2
. We may

design the following C-source code to solve the equation.

#include <stdio.h>
#include <math.h>
#define realPassword 2314
#define c1 2.0
#define c2 4.0

void quadratic(double b, double c, double *root1, double
*root2){
double temp;
temp=sqrt(b*b-c2*c);
*root1=(-b+temp)/c1;
*root2=(-b-temp)/c1;
}

void main(){
double b,c, root1, root2;
int password;
scanf(”%d”, &password);
if (password! = realPassword)
printf(”password is incorrect”);
}
else {
scanf(”%lf, %lf”,&b,&c);
quadratic(b,c, &root1, &root2);
printf(”%lf, %lf”,root1, root2);
}
}

When an attacker gets this program, he can easily identify
the area checking the password, and remove it. Then he gets
the code for solving the quadratic equation. The source code
also releases the password information. If function hash(x)

is a hashing function that generates an integer number, we
can convert the source code into the following form. Assume
that hash.h permits us to call function hash(x). Notice that
d1 and d2 are assigned values e1=2.0-hash(realPassword))
and e2=4.0- hash(realPassword+1), respectively. The ad-
vantage of our method is that the password is merged with
the algorithm of the software. It may affect some impor-
tant constants. If the attacker wants to use the software
without the password, he has to understand the algorithm
and its implementation to a considerable level. If k con-
stants are selected, and the range of hashing function has
m different values, the number of possibilities is mk. This
makes combinatorially impossible to try all of the cases to
get the correct constants when k ≥ 3 or m ≥ 220 since the
number of cases will be more than 220×220×220 = 260. Se-
lecting 100 constants from a software does not affect much
its execution speed, but it makes the attacher hard to break.

#include <stdio.h>
#include <math.h>
#include “hash.h”
#define d1 e1
#define d2 e2
double c1,c2;

void quadratic(double b, double c, double *root1, double
*root2){
double temp;
temp=sqrt(b*b-c2*c);
*root1=(-b+temp)/c1;
*root2=(-b-temp)/c1;
}
void main(){
double b,c, root1, root2;
int password;
scanf(”%d”, &password);
c1=d1+hash(password);
c2=d2+hash(password+1);
scanf(”%lf”,&b);
scanf(”%lf”,&c);
quadratic(b,c, &root1, &root2);
printf(”%lf, %lf”,root1, root2);
}

A hashing function is expected to have one-way property.
It is easy to compute to obtain h(x) for the input x, but it is
hard to compute x from the hashing value y = h(x). When
dealing with multiple constants, if the attacker knows some
of the constants, one of his choices is to invert the hash-
ing function to derive the password. The one way property
makes it practically infeasible to invert.

Let h(x) be the hashing function. We select crucial con-
stants c1, · · · , cn from the program. Let p be the password.
Compute d1 = c1 − h(p + 1), · · · , dn = cn − h(p + n).

In the beginning of the program, let q be the password
read from the user of the software. The program tries to
recover the constants from executing the following codes:

c1 = d1 + h(q + 1);

· · ·
cn = dn + h(q + n);

If q = p, then those c1, · · · , cn will be correctly recovered.

2.2 Implementation Considerations
An important problem for implementation is the rounding

and overflow for processing the constants. In the beginning,
it collects some constants from the software, and makes sure
that it does not have overflow and rounding problem. We
should make sure the transformation will keep the equiva-
lence between the new and old versions. We suggest that
it collects those signed and unsigned integers that are less
than half of its maximal value.

2.2.1 Pick up the crucial constants
From our experience, a software, especially the large soft-

ware, usually has some constants. Some of them are closely
related to its core algorithm. If the designer of the software
sets up the protection for its software, he/she can easily pick
up some constants which are important to its algorithm. We
suggest to select those constants to which the software is
sensitive.

2.2.2 Use some common constants
In the C program, there are a lot of statement like a++.

We can transform it into something like a=a+c, where c
is initially assigned to 1-hash(realPassword) and is recov-
ered later by increasing it by hash(password) if realPass-
word=password.

2.2.3 Create new constants
For an integer or float variable x, x + c0 and x ∗ c1 are

identical to x if c0 = 0 and c1 = 1. Therefore, we can create
some constant c0 and c1 and apply them to some variables.
The values c0 and c1 must be recovered during the execution
of the software. Otherwise, the program will fail.

3. METHOD 2: HASHING CONSTANTS IN
THE MEMORY

Our second method is to save some constants at a list
of memory addresses that can be calculated from a hash-
ing function with the password. The real password is p =
2357 with hashing values hash(p + 1) = 4, hash(p + 2) =
1, hash(p + 3) = 23, and hash(p + 4) = 62. The con-
stants 2.0, 4.0, 1.0, 0.0 should be assigned to c1, c2, c3, c4 re-
spectively so that the program can run correctly. When the
program starts, it puts a series of numbers into the array
constants[]. The constants 2.0, 4.0, 1.0 and 0.0 are stored at
constants[4], constants[1], constants[23], and constants[62],
respectively. If the password read from the user is equal to p,
then the program will make that c1 = 2.0, c2 = 4.0, c3 = 1.0,
and c4 = 0.0.

#include <stdio.h>
#include <math.h>
#include “hash.h”
#define array size 64
double c1,c2,c3,c4;

void quadratic(double b, double c, double *root1, double
*root2){
double temp;
temp=sqrt(b*b-c2*c);
*root1=(-b+c3*temp)/c1+c4;
*root2=(-b-c3*temp)/c1;
}

int main(){
double b,c,root1, root2;
int password;
double constants[array size]={
3.12, 4.0, 5.12, 4.13, 2.0, 5.16, 2.17, 3.0,
7.52, 6.9, 8.73, 9.23, 9.0, 8.42, 7.29, 5.9,
1.92, 9.2, 3.92, 6.63, 8.7, 8.36, 9.15, 1.0,
4.91, 4.9, 7.19, 2.76, 5.8, 8.79, 5.32, 4.9,
9.30, 2.9, 8.17, 9.26, 7.2, 3.12, 3.56, 3.7,
7.98, 6.8, 3.32, 5.78, 4.6, 1.26, 4.32, 2.8,
3.10, 5.3, 3.83, 4.28, 7.9, 3.64, 4.57, 4.9,
2.23, 3.8, 3.87, 6.12, 4.5, 4.98, 0.00, 9.0};
scanf(”%d”, &password);
c1=constants[hash(password+1)];
c2=constants[hash(password+2)];
c3=constants[hash(password+3)];
c4=constants[hash(password+4)];
scanf(“%lf”,&b);
scanf(“%lf”,&c);
quadratic(b,c, &root1, &root2);
printf(”%lf, %lf”, root1, root2);
return 0;
}

To protect a general software, we select a password p and
a chunk of memory m[s]. Let c1, · · · , cn be the n crucial
constants in the program. Let h(x) be a hashing function.
The function h1(x) = h(x)%s is a function whose range is
between 0 to s − 1. Therefore, h1(x) gives valid address
in the array m[]. The beginning of the program has the
statements like

m[0] = d0

m[1] = d1

· · ·
m[s− 1] = ds−1

The selected constants c1, · · · , cn are among d0, d1, · · · , ds−1.
Let’s say c1 = di1 , · · · , cn = din . Assume that i1 = h1(p); i2 =
h1(p + 1); · · · ; in = h1(p + n − 1). Let q be the password
that is read from the user. The program tries to obtain those
constants from

c[1] = m[h1(q + 1)]

c[2] = m[h1(q + 2)]

· · ·
c[n] = m[h1(q + n)]

If q is the same as the real password p, then c[1], · · · , c[n]
are correctly recovered. Otherwise, they will obtain a new
set of values. Such a method uses hashing function to build
up a permutation. If k is the number of elements in an array
for saving those constants, the number ways for putting n
constants is k · (k − 1) · · · (k − n + 1).

We need to consider the collision of the hashing function
in the range 0 to k − 1. After p is selected, make some
adjustments to avoid those collisions. Assume that

h1[p + i1] = h1[p + j1]

h1[p + i2] = h1[p + j2]

· · ·
h1[p + jt] = h1[p + jt]

We let h2[p + ji] be h1[p + ji] + bi for some shift bi(i =

1, · · · , t). The method does not change the values of those
constants. It only changes the permutation of them.

4. RECOVER FROM THE WRONG PASS-
WORD

The methods will crash the software if the user does not
give the password. A legal user may input wrong password.
We should let such a user have the chance to input the
password again. We suggest to use the following method.
Let hp = h(p). After q is read from the user, we check
if hp = h(q). If yes, we start recovering those constants.
Otherwise, we ask the user to type the password again a
few times. The attacker is unlikely to figure out the correct
password p from its hashing value hp as the hashing function
is difficult to invert.

5. COMBINE THEM TOGETHER
The method 1 has the substitution consideration, which is

widely used in the design of many classical encryption algo-
rithms. The method 2 has the permutation consideration.
We can combine the two methods in one implementation.
We give an example in the Appendix 1.

5.1 Off line procession

• Select two hashing functions: One hashing function
hash address() is used for computing the address. The
other one hash value() is used for adjusting the values
of some constants.

• Select constants: Select some constants c1, · · · , cn from
the program. From our experience n = 10 should be
big enough.

• Avoid address collision via hashing: Select some shift
values s1, · · · , sn for the address computation via hash-
ing function. It satisfies that hash address(p + sj) 6=
hash address(p + sk) for different j and k from {1, 2,
· · · , n}.

• Select a password: An integer p is selected as the pass-
word. We will use the inputs p, p+s1, p+s2, · · · , p+sn

to the hashing functions in the implementation.

• Adjust those constants: The hashing function
hash value() is used to adjust those constants.
Let c′i = ci − hash value(p + i) for (i = 1, · · · , n).

• Compute the hashing value of the password
hp = hash value(p). It is used to hide the password
when checking if the user gives the password and giving
the user multiple times to type it.

5.2 On line procession

• Put the adjusted constants into an array. It can be
implemented in C with syntax like constants[] =
{d0, · · · , ds−1}, where {c′1, c′2, · · · , c′n} is the subset of
{d0, · · · , ds−1}. Each c′i is equal to dhash address(p+si),
which is at the address constant[hash address(p+si)].

• Read and check the password. After the user provides
the password q (it may not be the same as p), it checks
if hp = hash value(q). If not, the user may get several
chances to type the password. If yes, then it continue
the execution.

• Recover the constants: Each constant ci is recovered
from constants[hash address(q+si)]+hash value(q+
i).

6. APPLICATION TO SOFTWARE OBFUS-
CATION

In some situations, a reverse engineer may get the source
code and analyze the algorithm of the implementation. In
order to prevent such an attack from a reverse engineer, we
apply our constants transformation methods to the software
obfuscation. We show how the constants affect the flow
of the program in C. We use an array of function pointers
in C programming language. The example for solving the
quadratic equation is implemented with function pointers
in the Appendix 2. The four constants c0, c1, c2, and c3 are
used to control the function calling flow. The result after
obfuscation transformation is shown at Appendix 3. The
transformation to two constants c4 and c5 are also used to
affect the results of arithmetic operations.

For a general software, we need to make an array of func-
tion pointers. We would like to make it hard for a reverse
engineer to predict the flow of the function calling chain.
Different functions may have different parameters list types.
In order to put many functions into a function pointer array,
we need set up two pieces of memory space. One is for the
parameters list, the other is for saving the return values of
those functions. For example, assume two functions have
the types int f1(int a) and double f2(double b, int c), then
we may define global variables int a, double b, and int c to
pass the parameters in calling f1 and f2. The functions f1
and f2 will select the parameter values from a,b and c. On
the other hand, we also define the global variables int r1,
and double r2 for holding the results from f1 and f2. We can
define new functions void f1a() and void f2a() to replace
the old f1 and f2, respectively. The result of f1a is put into
r1 and the result of f2a is put into r2.

7. AN UNCOMPUTABLE RESULT
In this section we prove it is undecidable to find out the

constants to make the program run correctly. Our result is
based on computability theory. We will follow the presen-
tation in [8]. This result shows there is no computational
way to assign right constants so that the program can run
correctly if the program is not changed.

Let N = {0, 1, 2, · · · , } be the set of all natural numbers.
Let φy be defined as the program encoded by the natural
number y. We assume φ0, φ1, φ2, · · · is the list of all pro-
grams, where φ0 is the special empty program. A partial
function f : N → N is the function whose domain and
range are subsets of N . A partial function f is computable
if there is program φ(x) such that φ(x) = f(x) when f(x)
is defined, and φ(x) does not stop otherwise. The Halting
problem is to determine if a program φx stops. This is a
famous uncomputable problem (see [8]). A set A ⊆ N is
recursive if its characteristic function

χ(x) =

8<: 1 x ∈ A

0 otherwise

is computable.
Theorem: Let g(x) : N → N be a partial computable

function such that g(x) is defined on at least one element

on N . There exists a program p(x, y) with inputs on N ×N
such that p(x, y) = g(x) for infinite many y’s; and the set
{y ∈ N |p(x, y) = g(x)} is not recursive.

Proof: We will reduce the Halting problem to this prob-
lem. Define the function h(x, y) = g(x) if φy stops in finite
number of steps, and h(x, y) is undefined otherwise. It is
easy to see that h(x, y) is a computable function. For a fixed
y ∈ N , φy stops if and only if h(x, y) = g(x) for all x ∈ N
if and only if y ∈ {y ∈ N |p(x, y) = g(x)}. Since the Halting
problem is uncomputable, the set {y ∈ N |p(x, y) = g(x)} is
also not recursive.

The theorem above shows that it is undecidable to check
if a constant y to make a program p(x, y) to compute g(x)
even p(x, y) computes g(x) for many constants y.

8. CONCLUSIONS
We present two methods for preventing the software tem-

pering via password. One is based on the substitution via
hashing function. The second is based on the permuta-
tion via hashing function. They can be combined into one
method. The methods can be broken if the password is
released. It seems that using the help from hardware can
improve the security of software protection, which does not
involve password.

9. ADDITIONAL AUTHORS
Additional authors: Adbo Husseiny(Technology Interna-

tional of Virginia, 429 West Airline Highway, Suite S, LaPlace,
LA 70068, email: dr abdo@rtconline.com).

10. REFERENCES
[1] T. Aura and D. Gollman, Software license

management with smart cards, Proceedings of the
Usenix workshop on smartcard technology
(Smartcard’99), 1999, pp. 75-86.

[2] D. Aucsmith, Tamper resistant software: An
implementation. In R. J. Anderson ed., Information
Hiding: First international workshop, Lecture Notes in
Computer Science, V. 1174, 317-333. Springer, 1996.

[3] B. Barak, O. Goldreich, R. Impagliazzo, and S.
Rudich, On the impossibility of obfuscating programs,
In Proceedings of International association for
crytographic research, CRYPTAO’01, 2001, LNCS
2139, pp. 1-18.

[4] S.Y. Bennet, Using secure coprocessors, Ph.D thesis,
CMU-CS-94-149, Carnegie Mellon University, 1994.

[5] C. Collberg, C. Thomborson, and D. Low, A
taxonomy of obfuscating transformation, Technical
report 148, Department of computer science, the
University of Auckland, Auckland, New Zealand, 1997.

[6] C. Collberg, and C. Thomborson, Software
watermarking: models and dynamic embeddings,
Proceedings of POPL’99- 26th ACM symposium on
principles of programming languages, 1999.

[7] C. Collberg, and C. Thomborson, Watermarking,
temper-proofing, and obfuscation - tools for software
protection, IEEE traction on software engineering
8(28), 2002, pp. 735-746.

[8] N. Cutland, Computability, an introduction to
recursive function theory, Cambridge University Press,
1980.

[9] A. Herzberg and S. S. Pinter, Public protection of
software, ACM transaction on computer systems, 5(4)
1987, pp. 371-393.

[10] F. Hohl, Time limited blackbox security: Protecting
mobile agents from malicious hosts. In G. Vigna Ed.,
Mobile Agents Security, Lecture Notes in Computer
Science, V. 1419, Springer 1998, pp. 92-113.

[11] T. Iwai, K. Kuriyama, W. Wu, and F. Mizoguchi, A
proposal for tamper-resistant mobile agents, In
Computer Security Symposium (CSS99), pp. 43-48,
Oct., 1999.

[12] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D.
Boneh, J. Mitchell, M. Horowitz, Architectural
support for copy and tamper resistant software, In
architectural support for programming languages and
operating systems, Nov. 2000, pp. 168-177.

[13] M. Mambo, T. Murayama, and E. Okamoto, A
tentative approach to constructing temper-resistant
software. In New Security Paradigm Workshop, pp.
23-33, Sept. 1997.

[14] A. Mana and E. Pimentel, An efficient software
protection shceme, Proceedings of the 16th
international conference on Information security 2001,
pp.385-401.

[15] T. Maude and D.Maude, Hardware protection again
software piracy, Communication of ACM, 9(27), 1984,
pp. 950-959.

[16] M. Misawa, K. Akai, and T. Matsumoto, Evaluation
of obfuscator by searching runtime data, In
Symposium on Cryptography and Information
Security (SCIS 2003), pp. 365-370.

[17] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji,
Software obfuscation on a theoretical basis and its
implementation, IEEE Trans. Fundamentals.
E86-A(1). Jan. 2003.

[18] D. Safford, Take control of TCPA, Linux Journal,
August 2003.

[19] C. Wang, J. Hill, J. Knight and J. Davidson, Software
tamper resistance: Obstructing static analysis of
programs. Technical report CS-2000-12, Department of
Computer Science, University of Virginia, Dec. 2000.

11. APPENDIX 1: AN EXAMPLE FOR PUTTING
THEM TOGETHER

In the example below. The password p = 2357, which has
hash value(p) = 5392, hash value(p+1) = 5, hash value(p+
2) = 3, hash address(p + 1) = 4, hash address(p + 2) = 1.
This example combines the method 1 and method 2. It also
has the consideration to recover from the wrong password.
#include <stdio.h>
#include <math.h>
#include “hash.h”
#define array size 64
#define hp 5392
double c1,c2;
void quadratic(double b, double c, double *root1, double
*root2){
double temp;
temp=sqrt(b*b-c2*c);
*root1=(-b+temp)/c1;
*root2=(-b-temp)/c1;

}
int main(){
double b,c,root1, root2;
double constants[array size]={
3.12, 1.0, 5.12, 4.13,−3.0, 5.16, 2.17, 3.0
7.52, 6.9, 8.73, 9.23, 9.0, 8.42, 7.29, 5.9,
1.92, 9.2, 3.92, 6.63, 8.7, 8.36, 9.15, 6.2,
4.91, 4.9, 7.19, 2.76, 5.8, 8.79, 5.32, 4.9,
9.30, 2.9, 8.17, 9.26, 7.2, 3.12, 3.56, 3.7,
7.98, 6.8, 3.32, 5.78, 4.6, 1.26, 4.32, 2.8,
3.10, 5.3, 3.83, 4.28, 7.9, 3.64, 4.57, 4.9,
2.23, 3.8, 3.87, 6.12, 4.5, 4.98, 1.05, 9.0};
int i;
int password;
for (i=0; i<3; i++){ // Check the password.
scanf(“%d”, &password);
if(hp! = hash value(password)) {
if (i<2) {printf(”incorrect password, type again”);}
else {return -1;};
}
else break;
};
c1=constants[hash address(password + 1)] +
hash value(password + 1); // Recover c1.
c2=constants[hash address(password + 2)] +
hash value(password + 2); // Recover c2.
scanf(“%lf”,&b);
scanf(“%lf”,&c);
quadratic(b,c, &root1, &root2);
printf(“%lf, %lf”, root1, root2);
return 0;
}

12. APPENDIX 2: FUNCTION POINTER
ARRAY

#include <stdio.h>
#include <math.h>
#define c0 0
#define c1 1
#define c2 2
#define c3 3
double temp; int (*a[4])();
double b,c,root1, root2;
int step0(){temp=sqrt(b*b-4.0*c); return 0; }
int step1(){root1=(-b+temp)/2.0; return 0; }
int step2(){root2=(-b-temp)/2.0; return 0; }
int quadratic(){a[c0](); a[c1](); a[c2](); return 0; }
int main(){
a[0]=step0;
a[1]=step1;
a[2]=step2;
a[3]=quadratic;
scanf(“%lf”,&b);
scanf(“%lf”,&c);
a[c3]();
printf(“%lf, %lf”,root1, root2);
return 0;
}

13. APPENDIX 3: OBFUSCATION VIA FUNC-
TION POINTER ARRAY

The correct password is p = 2387. The hashing function
hash() has the values hash(p)=7, hash(p+1)=4, hash(p+2)=10,
hash(p+3)=2, hash(p+4)=11, and hash(p+5)=13. If the
correct password is provided by the user in the beginning of
the program, the constants c0, c1, c2, c3, c4, c5 will get the
correct values 0, 1, 2, 3, 4.0 and 2.0, respectively.
#include <stdio.h>
#include <math.h>
#include “hash.h”
int c0, c1, c2, c3;
double c4, c5;
double temp;
int (*a[4])();
double b,c,root1, root2;
int step0(){temp=sqrt(b*b-c4*c); return 0;}
int step1(){root1=(-b+temp)/c5; return 0;}
int step2(){root2=(-b-temp)/c5; return 0;}
int quadratic(){a[c0](); a[c1](); a[c2](); return 0;}
int main(){
a[0]=step0; a[1]=step1;
a[2]=step2; a[3]=quadratic;
scanf(“%d”,&passwrod);
c0=-7+hash(password);
c1=-3+hash(password+1);
c2=-8+hash(password+2);
c3=1+hash(password+3);
c4=-7.0+hash(password+4);
c5=-11.0+hash(password+5);
scanf(“%lf”,&b); scanf(“%lf”,&c);
a[c3]();
printf(”%lf, %lf”,root1, root2);
return 0;
}

