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ABSTRACT

Over-constrained parallel manipulators can be used for fault tolerance. This paper derives the differential
kinematics and static force model for a general over-constrained rigid multibody system. The result shows that
the redundant constraints result in constrained active joints and redundant internal force. By incorporating
these constraints, general methods for overcoming stuck legs or even the complete loss of legs are derived. The
Stewart platform special case is studied as an example, and the relationship between its forward Jacobian and
its inverse Jacobian is also found.
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1. INTRODUCTION

A multibody system is a kind of parallel mechanism, which consists of multiple serial manipulators connected
together with multiple closed kinematic loops. For a generally constrained multibody mechanism, typically
the number of the independent constraints equals the number of the passive joints so that the system has the
maximum degrees of freedom (DOF’s) without unactuated internal motion. If there are not enough constraints
to keep the mechanism kinematically stable at the current configuration, then the system is under-constrained.
On the other hand, if there are too many constraints, then the system is over-constrained. The system might lose
DOF’s because of the extra constraints. Many discussions of the generally constrained multibody mechanism
are based on the assumptions that the system is neither under-constrained nor over-constrained. For most
applications, it is nonsense to discuss the under-constrained case since the system is unstable. However, the
over-constrained case is useful for singularity avoidance,1 for improvement in force control, for kinematic
calibration2,3 etc. This paper exploits the redundancy of over-constrained systems to tolerate faults.

Fault tolerance is a major consideration for military, space and some manufacturing applications, because
a single failure can jeopardize the entire mission or cause costly down-time. Basically, there are two kinds of
failures: soft failures and hard failures, depending on whether the failed struts (the serial manipulators which
form the multibody system) are present or not.

Soft failures refer to the cases in which the failed struts are present but work improperly. Soft failures can be
characterized as two types: position failures and torque failures. Position failure occurs when some joints (both
active joints and passive joints are possible) are stuck and cannot move. This can be viewed as adding more
constraints to the system since the velocities of the stuck joints must be zero, and the resulting system might
become over-constrained. Torque failure occurs when an active joint cannot be actuated actively and becomes a
passive joint. In this case, the number of the passive joints increases while the number of the constraints remains
unchanged. Consequently, to keep the system stable after failure, the nominal system should be designed as
over-constrained. Some work has been done to tolerate position failures. Ref. 4 can tolerate active joint position
failure by choosing sacrificed DOF’s from redundant DOF’s and then reconfiguring the Jacobian matrix. Then
Ref. 5 extends the work by using all the redundant DOF’s to reconfigure the Jacobian matrix. Ref. 6 provides
a general method to re-derive kinematics by treating position failures as increased constraints.
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Hard failures refer to the case when some struts are totally lost. It is mainly caused by mechanical fatigue
or a blown-off strut. Hard failures will increase the number of passive joints and possibly decrease the number
of independent constraints. This can result in kinematic instability. To maintain kinematic stability, when hard
failures occur, a high reliable system should be designed as over-constrained.

From the above analysis, we can see that a system may become over-constrained because of position failures.
To tolerate hard or torque failures, the nominal system must be over-constrained. However, a general method
to analyze an over-constrained system is still unavailable. In an over-constrained system, the active joints are
constrained because of the extra constraints. If the joint torque is not properly exerted, the struts will fight
against each other, wasting energy and exerting large internal force. Based on the work of Ref. 7 and Ref. 8,
the first part of this paper will discuss the kinematics and static force models for over-constrained multibody
systems.

This paper is arranged as follows. In section 2, the kinematics and static force models for an over-constrained
multibody system will be derived, and the relationship between the forward Jacobian and the inverse Jacobian
for a Stewart platform will be found. Soft failures and hard failures are considered in section 3. Finally, these
theories are verified on the UW hexapod.

2. KINEMATICS AND STATIC FORCE MODELS

Terminology and Notation

• Spatial velocity at a given frame means the 6× 1 vector of

[
angular velocity

linear velocity

]
, and Spatial force at a

given frame means the 6 × 1 vector of

[
torque

force

]
.

• Given a matrix A, we use LÃ to denote the annihilator of A( LÃA = 0) and RÃ to denote the transpose
of annihilator of AT (ARÃ = 0).

2.1. Kinematics model

First the method for analyzing differential kinematics will be derived. For a general kinematically constrained
rigid multibody system, the differential kinematics model developed by Wen and Wilfinger8 becomes:

V = JT (θ)θ̇ (1)

with constraint
JC(θ)θ̇ = 0, (2)

where V is the spatial velocity, θ̇ is the joint velocity vector, and θ represents joint positions.

Without loss of generality, θ may be partitioned into active joints (θa) and passive joints (θp):

θ =

[
θa

θp

]
, JT =

[
JTa JTp

]
, JC =

[
JCa JCp

]
.

Then the model can be rewritten as
V = JTaθ̇a + JTpθ̇p (3)

JCaθ̇a + JCpθ̇p = 0. (4)

Solving for θ̇p in terms of θ̇a from (4), we obtain

{
θ̇p = −J+

CpJCaθ̇a + RJ̃Cpξ
LJ̃CpJCaθ̇a = 0

. (5)

2



where ξ is an unconstrained vector. Inserting (5) into (3), we get

V = Jθ̇a + JTp
R
J̃Cpξ (6)

with constraint
L
J̃CpJCaθ̇a = 0, (7)

where J = JTa − JTpJ
+
CpJCa.

Typically, JCp is a square matrix with LJ̃Cp = 0 and RJ̃Cp = 0. Physically, this means that the number
of independent constraints is the same as the number of passive joints. In this case, the motion of active joints
can uniquely determine the motion of passive joints.

If JCp is not full column rank (fat), then RJ̃Cp 6= 0. This happens when the number of independent

constraints is not enough to uniquely determine θ̇p given θ̇a. In other words, the passive joints can move even

if the active joints are locked. This will cause unactuated task motion if JTp
RJ̃Cp 6= 0. In this case, the

system is under-constrained. This paper will not consider this unstable situation in detail, but concentrate
on the over-constrained case. In the following discussion, we assume that there is no unactuated task motion
(JTp

RJ̃Cp = 0).

On the other hand, if JCp is not full row rank (tall), then the system is over-constrained, meaning the
number of independent constraints is greater than the number of the passive joints. In this case, the motion of
active joints must be restricted, because for some θ̇a, θ̇p may have no solution. This over-constrained case will
be used in this paper to add fault tolerance to the system.

Generally, the following two cases should be considered.

Case 1. LJ̃CpJCa = 0.

Obviously, this case includes the situation when JCp is square with full rank. Another possible situation

is, although LJ̃Cp 6= 0, LJ̃CpJCa = 0. This means that the system has redundant but dependent constraints.
This case is not considered as over-constrained because it does not provide independent constraint to affect the
system’s motion. The advantage of having dependent constraints is that when one of them cannot be enforced,
such as in hard failures, others can replace it. In this paper, when we talk about redundant constraints, we
always refer to the independent constraints.

When LJ̃CpJCa = 0, (7) is always satisfied, so θ̇a is not constrained. Since JTp
RJ̃Cp = 0 also, the kinematics

model becomes
V = Jθ̇a. (8)

Case 2. LJ̃CpJCa 6= 0.

It is clear that LJ̃CpJCa cannot be full column rank. Otherwise, θ̇a must equal zero in order to satisfy

constraint (7). It is meaningless to discuss this case, so we always assume LJ̃CpJCa is not full column rank.

To satisfy (7), θ̇a should be chosen to be in the null space of LJ̃CpJCa. Solving for θ̇a, we get

θ̇a =
R
( ˜LJ̃CpJCa) ˙̄θa = T ˙̄θa, (9)

where ˙̄θa is an arbitrary vector, and T = R( ˜LJ̃CpJCa).

The above equation means that because of the redundant constraints on the system, the motions of active
joints are constrained. The number of constrained active joints (redundant actuators) equals the number of
redundant constraints.

T is a mapping matrix. It maps from a lower dimension, unconstrained space to the active joint space. T

has some important attributes:

• T is a tall matrix with full column rank.
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• All the column vectors of T are orthonormal.

• TT T = In×n, where n is the number of columns in T .

• Because all the singular values of T are 1’s, ‖a‖=‖Ta‖, where a is any n × 1 vector.

Inserting θ̇a into (6), we get

V = (JT ) ˙̄θa = J̄ ˙̄θa, (10)

where J̄ = JT . J̄ reveals the relation between the velocities of constrained active joints and the spatial
velocity.

2.2. Static force balance

Using the principle of virtual work, the static force model is Ref. 8

[
τ

0

]
= JT

T f + JT
C fC , (11)

where f is the spatial force, τ is the active torque vector, and fC is the internal force. Note that because the
passive joints cannot be actuated, the torques corresponding to the passive joints are zero. Internal force fC is
the force that enforces constraints. It can be unambiguously determined if N (JT

C ) = {0}, which implies that
there is no dependent constraint in the system.

Partitioning JT and JC according to active and passive joints, the above equation is rewritten as

τ = JT
Taf + JT

CafC

0 = JT
Tpf + JT

CpfC
. (12)

Left multiplying by ( RJ̃Cp)
T on both sides of the second equation yields

(JTp
R
J̃Cp)

T f = 0. (13)

This is the condition that must be satisfied in order to make (12) hold. If JTp
RJ̃Cp = 0, then the condition is

always satisfied. If JTp
RJ̃Cp 6= 0, then there exists some task space spatial forces (f ∈ N ((JTp

RJ̃Cp)
T )) that

cannot be resisted by internal forces and active torques. This is exactly the case of unstable singularity. So we
assume that JTp

RJ̃Cp=0.

From the constraint (12), we can solve for fC given f :

fC = −(JTpJ
+
Cp)

T f + (
L
J̃Cp)

T fη, (14)

where fη is an arbitrary vector. In (14), the internal force fC is decomposed into two orthogonal parts. The first
part consists of forces that are required to maintain kinematic stability. The other part consists of redundant
internal forces that correspond to the redundant constraints. Redundant internal forces imply fighting among
struts, thus causing constrained active joints.

Inserting fC into (12), we get

τ = JT f + (
L
J̃CpJCa)T fη, (15)

where J = (JTa − JTpJ
+
CpJCa).

Corresponding to the kinematics analysis, we consider the same two cases.

Case 1. LJ̃CpJCa = 0.

Now (15) becomes
τ = JT f. (16)
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In this case, the redundant internal force is zero, which means that there is no fight among struts. All the
components of the active torques contribute to generate the spatial force. This is consistent with the fact that
all the active joints can move freely.

Case 2. LJ̃CpJCa 6= 0.

If LJ̃CpJCa is full column rank, then according to (15), any spatial force or any torque exerted on active
joints can be resisted only by the internal force. So the system cannot move. Here we only discuss the case
when LJ̃CpJCa is not full column rank.

Remember that we have defined T = R( ˜LJ̃CpJCa). Since T T (LJ̃CpJCa)T = 0, we can get the relation
between the torque on the active joints and the spatial force by left multiplying T T on both sides of (15):

TT τ = TT JT f = (JT )T f. (17)

The torque τ exerted on the active joints can be decomposed into two parts

τ = T τ̄ + (
L
T̃ )T τη. (18)

These two parts are orthogonal to each other. They can be obtained by τ̄ = T T τ and τη = LT̃ τ . Inserting the
decomposed τ into (17), and using the fact that T T T = I, we obtain the static force model:

τ̄ = (JT )T f = J̄T f. (19)

In a general mechanism, internal force may determine if a constraint can be enforced. For example, in a
multifinger grasp with frictional contacts, each contact force needs to be in the friction cone to ensure that the
contact can be sustained. Solving for fC from(15) yields

fη = ((
L
J̃CpJCa)T )+(τ − JT f) +

R ˜(LJ̃CpJCa)T ξ, (20)

where ξ is arbitrary. The second term stands for unresolvable internal force. Previously, from (11), we found
that fC can be unambiguously solved if JT

C has full column rank, which means that there is no dependent

constraint. Actually, this is equivalent to that ( LJ̃CpJCa)T has full column rank. This can be proved as follows.

Suppose we can find a nonzero vector y ∈ N (( LJ̃CpJCa)T ). According to the attributes of the annihilator,
LJ̃Cp has full row rank, thus N (( LJ̃Cp)

T ) = 0. Then there exists a nonzero vector x = ( LJ̃Cp)
T y that belongs

to N (JT
C ), because JT

C x =

[
JT

Ca

JT
Cp

]
(LJ̃Cp)

T y = 0. This implies if JT
C has full column rank, then ( LJ̃CpJCa)T

also has full column rank.

Generally, JT
C has full column rank. So R ˜(LJ̃CpJCa)T = 0. Then fη can be unambiguously solved as:

fη = ((
L
J̃CpJCa)T )+(τ − JT f). (21)

However, if N (JT
C ) 6= {0}, then there exists unresolvable internal force because of dependent constraints.

Combining (21) with (14) and rearranging terms, the internal force, fC , can be obtained as

fC = ((
L
J̃CpJCa)+

L
J̃Cp)

T τ − [J(
L
J̃CpJCa)+

L
J̃Cp + (JTpJ

+
Cp)]

T f. (22)

The virtual work principle becomes:

τT θ̇ = (T τ̄ + (
L
J̃CpJCa)T τη)T T ( ˙̄θa) = τ̄T ˙̄θa = fT V.

In the two parts of τ , the first part is the torque that must be exerted on the active joints to balance the
force f exerted on the payload. Only this part of the torque does work. The second part will be balanced by
the redundant internal force instead of generating spatial force. Typically, we choose τη = 0 to save energy.
However, in some applications where the internal force is important, such as multifinger grasp, the second part
can be nonzero to generate certain internal forces.
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2.3. Over-constrained velocity and force ellipsoid

In general, systems without redundant constraints can be considered as a special case of over-constrained systems
with 0 redundant constraints. So the differential kinematics models of the two cases can be combined together.
Then we get

V = J̄ ˙̄θa (23)

and
τ̄ = J̄T f, (24)

where J̄ = JT , θ̇a = T ˙̄θa and τ = T τ̄ + (LT̃ )T τη. T is defined as

T =

{
R( ˜LJ̃CpJCa), LJ̃CpJCa 6= 0

I, LJ̃CpJCa = 0
. (25)

The DOF of the system is defined to be the maximum rank of J̄ at all configurations.8 If J̄ loses rank at some
configurations, then we say the system is at an unmanipulable singularity.

The velocity manipulability ellipsoid is an indication of the relative movement capability in task space. Due
to the constrained active joints, it is reasonable to define the ellipsoid as the set of task velocities generated by

a unit ball in ˙̄θa space. Notice that ‖θ̇a‖ = ‖ ˙̄θa‖. So the velocity ellipsoid can be defined as

εV =
{

V : V = J̄ ˙̄θa, ‖ ˙̄θa‖ = 1
}

(26)

Similarly, we can define the force ellipsoid as the set of spatial forces that can be applied by the mechanism
with active torques constrained on the unit ball of τ̄ space. Since τη does not contribute to f , it can be ignored
in the ellipsoid calculation. Note that when τη = 0, ‖τ‖ = ‖τ̄‖. The force ellipsoid is defined as

εF = {f : τ̄ = J̄T f, ‖τ̄‖ = 1} (27)

2.4. Relationships between the forward Jacobian and the inverse Jacobian for
over-constrained Stewart platforms

The Gough-Stewart platform(figure 1) is one of the most popular parallel mechanisms. It is easy to calculate
the inverse Jacobian for a Stewart platform9:

θ̇ = MV, (28)

M =




[(B
P R P p1×)Bû1]

T Bû
T

1

...
...[

(B
P R P pn×)Bûn

]T
Bû

T

n


 , (29)

where M is the inverse Jacobian matrix relating the spatial velocity V and the active joint velocity θ̇a. ui is the
unit vector along strut i, B

P R is the rotation matrix from the payload coordinate system to the base coordinate
system, pi is the payload connection point of strut i, and the prescription denotes the coordinate system of
reference. This section finds the relation between the inverse Jacobian, M, and the forward Jacobian, J̄ .

Note that for a stable steward platform, if the spatial velocity V = 0, then all the joints are locked (both θ̇a

and θ̇p equal 0). Since T is full column rank, ˙̄θa also equals zero. This implies that N (J̄) = {0} or J̄ is always
full column rank. Next, let’s consider the row rank of J̄ .

Case 1. J̄ is full row rank.

In this case J̄ is square and full rank. This means that the system has 6 DOF’s at the current configuration.
From (23), we can solve for θ̇a

˙̄θa = J̄−1V.
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Figure 1. 6-legged Stewart Platform(Hexapod). {P} is a Cartesian coordinate frame located at, and rigidly attached
to, the payload’s center of mass. {B} is the frame attached to the (possibly moving) base, and {U} is a Universal inertial
frame of reference.

Consequently, we can get
θ̇a = T J̄−1V.

Since V is a free vector, (28) yields
M = T J̄−1. (30)

If the Stewart platform is not over-constrained, then T = I, and M = J̄−1.

Case 2. J̄ is not full row rank.

In this case, the system has less than 6 DOF’s and the spatial velocity must belong to the range space of J̄ .

This occurs, for instance, when a joint gets stuck in one position. Substituting V = J̄ ˙̄θa into (28), we get

θ̇a = MJ̄ ˙̄θa. (31)

Recall that θ̇a = T ˙̄θa, and ˙̄θa is a free vector, so we can derive that

MJ̄ = T. (32)

If T = I, then MJ̄ = I.

3. SOFT FAILURES AND HARD FAILURES

Most failures can be characterized as either soft failures or hard failures depending on whether the failed struts
are present or not. This paper extends the work of Ref. 6 by including hard failures.

Soft failure is caused by an abnormal but present strut. It is soft in nature. There are two types of soft
failures: position failures and torque failures.

3.1. Position failure

Position failure occurs when some joints are stuck. The result is that the failed joints cannot move (the velocities
of the failed joints are zeros). It is equivalent to removing the failed joints from the mechanism. If the stuck
joint is an active joint, then the torque exerted on the failed joint should be zero, since it can only generate
internal force. The model can be re-derived simply by adding constraints, which restrict the velocities of the
failed joints to be zeros, to the constraint equation (2). The nature of the position failure is an increase of the
number of the constraints. Thus the system will have more constrained active joints and lose degrees of freedom.
Position failures won’t cause unactuated task motion. But the desired DOF’s may be lost. So redundant DOF’s
of nominal system provide the potential to tolerate position failures. A position failure can be tolerated only if
the resulting system still has the desired DOF’s.
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3.2. Torque failure

Torque failure happens when some actuators cannot produce torques (the torques exerted by the failed actuators
are zeros) due to failures in motors, electronics, etc. Note that this does not mean the corresponding active
joints cannot move. Instead, they can move freely and passively. Thus the effect of the torque failure is that
the corresponding active joints become passive joints.

Since some active joints become passive joints, we repartition (1) and (2) according to the new active joints
and passive joints, then the new models can be easily derived. Due to the increase of passive joints, the system
may not have enough constraints to keep its kinematic stability. Therefore, the number of redundant constraints
of the nominal system should be at least as many as the number of failed joints. Specifically, if they are equal,
then the remaining active joints are not constrained anymore.

3.3. Hard failure

Hard failure is caused by mechanical fatigue or blown-off struts. In either case, the system acts as if the failed
struts are totally lost. One way of obtaining the models is to re-derive the models from the beginning for the
mechanism without the lost struts.

However, we can view hard failures in another way. Let’s consider the case of torque failures, in which all the
active joints on a strut become passive joints. If the tip of the strut has 6 DOF’s or has dependent constraints,
then it forms a passive connection to the mechanism and won’t enforce any independent constraint. In other
words, the strut won’t affect the motion of the whole system, because it moves passively with the other parts of
the system. This is exactly the same situation as hard failure. In this case, the hard failure is kinematically the
same as the torque failure in nature. Note that these two failures are dynamically different because in torque
failure, the failed strut still plays a role in the dynamics of the whole system.

So an easy way to consider hard failures is to check DOF’s of the lost strut first. If the tip of the strut does
not have 6 DOF’s, find out the constraints that restrict the motion of the tip, and remove these constraints
from constraint (2). Then let all the active joints on the lost strut become passive joints. Repartition (1) and
(2) according to the new active joints and passive joints, and the new models can be derived.

Hard failures result in an increase of passive joints and possibly a decrease of the number of constraints. This
may make the system kinematically unstable. Suppose the lost struts have m1 active joints and m2 independent
constraints that restrict the motion of the struts, and the nominal system has n redundant constraints. If
m1 + m2 ≥ n, then that hard failure will not cause kinematic instability. A good way of designing a system to
tolerate hard failures is adding redundant struts.

4. EXAMPLES

In order to experimentally verify these theories, they are implemented on the University of Wyoming’s (UW)
mutually orthogonal hexapod for pointing control. The mechanical parts of the hexapod are all custom ma-
chined, based on a NASA Jet Propulsion Laboratory design. Each strut has a maximum stroke of ±0.025 inches.
The geometry of the hexapod is well designed so that the system can be decoupled by the Jacobian matrix.10

The nominal system has 6 DOF’s. But, only rotations around x and y axes are required for the precision
pointing. So there is redundancy in the Cartesain space, and this redundancy provides the potential to tolerate
up to 4 position failures. If the passive joint at the top of strut 4 stucks, then it enforce 2 redundant constraints,
and the system becomes an over-constrained system. From the rederived Jacobian matrix, the system now
has only 4 DOF’s, and 4 independent prismatic joints. However, the rotations around x and y axes are still
available, so this position failure can be tolerated. Figure 2 shows the velocity ellipsoid of θ̇x and θ̇y for the
nominal system and the system with failed joints. From the figure, we can see that the manipulability ellipsoid
for the system with position failure is not isotropic anymore, and it has smaller manipulability for both rotations
compared with the nominal system.

The UW hexapod was used to track a large spiral under 3 cases: (1) nominal case with no failures; (2) the
position failure case without correction; (3) the position failure case controlled using the corrected Jacobian
matrix. Figure 3 shows the result for these 3 cases. It is clear that the uncorrected system displays a degradation
in performance, and the performance of the corrected system is similar to the case with no failures.
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Figure 2. Manipulability ellipsoids for the nominal system (left) and the system with passive spherical joint at the top
of the strut 4 stuck (right).
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Figure 3: Tracking spirals with and without correction.

5. CONCLUSION

Over-constrained systems are especially useful for fault tolerance. Based on Ref. 8, this paper extends the
kinematics and static force model of a general multibody system to over-constrained cases. The result shows
that the extra constraints result in constrained active joints and redundant internal force. The ideas of how to
generate θ̇a and τ that honors redundant constraints are introduced. Specifically for a Stewart platform, the
relation between its forward Jacobian and its inverse Jacobian is found as MJ̄ = T . General ideas of handling
soft failures and hard failures are discussed.
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