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ABSTRACT
It is estimated that less than ten percent of the world’s
species have been discovered and described. The main rea-
son for the slow pace of new species description is that the
science of taxonomy, as traditionally practiced, can be very
laborious: taxonomists have to manually gather and ana-
lyze data from large numbers of specimens, often from broad
geographic areas, and identify the smallest subset of exter-
nal body characters that uniquely diagnoses the new species
as distinct from all its known relatives. The pace of data
gathering and analysis in taxonomy can be greatly increased
by the development of information technology. The Inter-
net is being used to link taxonomists, taxonomic literature
and specimen databases in different parts of the globe, and
hence enables the development of tools for remote study
of specimens archived as digital images. In this paper, we
propose a content-based image retrieval system for taxo-
nomic research. The system has a learning component that
can identify representative body shape characters of known
species based on digitized landmarks. The system can also
provide statistical clues for assisting taxonomists to identify
new species or subspecies. The experiments on a taxonomic
problem involving species of suckers in the Carpiodes genus
demonstrate promising results.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Content Anal-
ysis and Indexing; I.5 [Pattern Recognition]: Applica-
tions
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1. INTRODUCTION
Approximately 1.4 million species are known to science.

However, estimates based on the rate of new species discov-
ery place the total number of species on earth about 10-
30 times of this number. Most unrecognized species are in
poorly studied groups (e.g., insects) occurring in unexplored
habitats (e.g., remote tropical forests). However, a surpris-
ing number of new species are still being discovered in de-
veloped countries with long histories of taxonomic research.
Human population expansion and habitat destruction are
causing extinctions of both known and yet to be discovered
species. The accelerated pace of species decline has fueled
the current biodiversity crisis [20], in which it is feared that
many of the earth’s species will be lost before they can be
discovered and described.

1.1 The Science of Taxonomy
The job of discovering and describing new species falls on

specialists in an area of biology called taxonomy. The sci-
ence of taxonomy has been suffering from dwindling num-
bers of experts over the past few decades [21]. Moreover,
the pace of taxonomic research, as traditionally practiced, is
very slow. To describe new species of animals, taxonomists
follow precise rules laid out in the International Code of
Zoological Nomenclature [13]. They first have to recognize
the species as distinctive from other know species (alpha
taxonomy). They then demonstrate the distinctiveness of
the species by comparing it to closely related species (beta
taxonomy). Finally, they apply a name to the new species
(gamma taxonomy). In recognizing the species as new, tax-
onomists use a gestalt recognition system that integrates
multiple characters of body shape, external body character-
istics, and pigmentation patterns. They make careful counts
and measurements on large numbers of specimens from mul-
tiple populations across the geographic ranges of both the
new and closely related species. The goal of data analysis is
to identify the smallest subset of external body characters
that uniquely diagnoses the new species as distinct from all
of its known relatives. The process is laborious and can
take years or even decades to complete, depending on the
geographic range of the species.

The pace of data gathering and analysis in taxonomy can



be greatly increased by the development of information tech-
nology. The establishment of the Internet has brought forth
a revolution in information storage, distribution, and pro-
cessing. The World-Wide Web is being used to link tax-
onomists, taxonomic literature and specimen databases in
different parts of the globe, and hence enables the devel-
opment of tools for remote study of specimens archived as
digital images [29].

A family of software tools has been designed in recent
years for gathering and analyzing data on shape variation
from images of specimens [22, 4, 31]. These software tools,
referred to collectively as geometric morphometrics software,
use homologous landmarks (points that are arguably related
by evolutionary descent) along the body and referenced to
(x, y) coordinates. The software allows superposition and
alignment of landmarks from different specimens, adjust-
ment for body size differences among specimens, and multi-
variate statistical analysis of derived shape variables. These
analyses can only help taxonomists recognize overall shape
differences among specimens.

However, none of the current software tools supports effi-
cient searching and navigating through large image databases
of specimens. Development of an effective image retrieval
system would provide taxonomists with a powerful research
tool and would allow them to pursue taxonomic research in a
distributed environment. For example, a fish taxonomist in
California wants to determine whether a recently captured
specimen belongs to a new species by comparing it with
specimens archived in a natural history museum at a distant
location, e.g., the Tulane University Museum of Natural His-
tory (TUMNH) in Belle Chasse, Louisiana. The TUMNH
Fish Collection is the largest collections of post larval fishes
in the world1. It presently contains well over 7 million spec-
imens, some of which have been digitally archived. If the
TUMNH database had an image search engine linked to the
Internet, the fish taxonomist in California could easily ac-
cess the online system and retrieve images of specimens of
interest and the relevant collection event information needed
for the determination.

1.2 Related Work in Image Retrieval
Image retrieval algorithms roughly belong to two cate-

gories, depending on the query format: text-based approaches
and content-based methods. The text-based approaches are
based on the idea of storing a keyword, a set of keywords,
or a textual description of the image content, created and
entered by a human annotator, in addition to a pointer to
the location of the raw image data. Image retrieval is then
shifted to standard database management capabilities com-
bined with information retrieval techniques.

Content-based image retrieval (CBIR) methods search im-
ages based on information automatically extracted from pix-
els. Initially, researchers focused on querying by image ex-
ample, where a query image or sketch is given as input by a
user [10, 19, 25, 8, 12, 17, 18, 7, 11, 28, 5, 6, 16]. Later sys-
tems incorporated feedback from users in an iterative refine-
ment process [27, 32, 9]. From a computational perspective,
a typical CBIR system views the query image and images in
the database (i.e., target images) as a collection of features.
It ranks the relevance between the query and any target im-
age in proportion to a similarity measure calculated from
the features. In this sense, these features, or signatures of
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Figure 1: The structure of the CBIR system.

images, characterize the content of images. And the similar-
ity measure quantifies the resemblance in content features
between a pair of images [23]. Readers are referred to [24]
for a more comprehensive review of CBIR.

1.3 An Overview of Our System
The nature of taxonomic research brings the following re-

quirements to the design of an image retrieval system:

• Text query: Images of specimens from a natural history
museum (i.e., the image database) almost always have
textual annotations, e.g., location and date of capture,
size of specimen, species, etc. Therefore, the image
retrieval system should support text-based searches.

• Query by example: A typical usage scenario of the sys-
tem is to find specimens in the database that are “se-
mantically similar” to the query specimen based on
the query image. This is clearly a query by example
situation. From a taxonomic research point of view,
the image semantics is defined as groupings of related
specimens at different hierarchical levels, which, in the
science of taxonomy, are referred to as taxa of varying
rank, i.e., families, genera, species complexes, species,
and subspecies.

• Learning component: For the query by example pro-
cess, the system needs certain mechanisms to associate
feature similarity with semantic similarity, i.e., bridg-
ing the semantic gap. One possible way is to include a
learning component capable of identifying the feature
characters that unite populations within each semantic
class as well as distinguishing among semantic classes.

In this paper, we focus on the CBIR part of the sys-
tem. Specifically, we propose a computational framework for
categorizing semantic classes of populations based on body
shape features, and retrieving images of specimens accord-
ingly. The proposed framework can benefit the taxonomic
research in the following ways:

• It provides taxonomists a tool of efficient searching,
browsing, and retrieving images of specimens archived
in natural history museums at distant locations.

• It automatically identifies an “optimal” set of body
characters that unites populations within species, as
well as distinguishes among species. Hence it can pro-
vide statistical clues in assisting the discovery of new
species or subspecies.

As shown in Figure 1, the system has three major compo-
nents: feature extraction, semantic classification, and sim-
ilarity matching. In Section 2, we introduce background
information on a taxonomic problem in the fish genus Car-
piodes. Section 3 describes the feature extraction process.



(a) C. carpio

(b) C. cyprinus

(c) C. velifer

Figure 2: Images of specimens from three species of the genus Carpiodes: C. Carpio, C. cyprinus, and C.
velifer.

Section 4 presents a joint feature selection and classification
approach for semantic classification based on 1-norm sup-
port vector machines (SVMs). Section 5 describes a simi-
larity matching scheme based on the distance in the overall
shape space and semantic classification. Section 6 demon-
strates extensive experiments on a data set of Carpiodes and
discusses the results. Conclusions and possible future work
are given in Section 7.

2. BACKGROUND KNOWLEDGE
The image database used in this paper comprises digital

photographs of suckers of genus Carpiodes. However, our
approach can be applied to any fish populations. The genus
Carpiodes, as currently recognized, comprises three widely
distributed species: the river carp-sucker Carpiodes carpio
(C. carpio); the quillback Carpiodes cyprinus (C. cyprinus),
and the highfin carp-sucker Carpiodes velifer (C. velifer).
Figure 2 shows representative images of specimens of the
three species. Most taxonomists regard each of these species

as a complex of multiple biological species in need of revi-
sion [26]. The goal of the taxonomic revision in this case is
to identify and formally describe the unrecognized species.

Over the past decade, geometric morphometric techniques
have been developed for analyzing variation in body shape
using a collection of coordinates of biologically definable,
homologous landmarks along the body outline [1]. Figure 3
shows 15 homologous landmarks digitized on a specimen us-
ing the TpsDIG software tool developed by F. James Rohlf
of SUNY Stony Brook2. The analysis methods accompany-
ing the software focus on the landmark coordinates and ge-
ometric information about their relative positions. Through
the alignment of landmarks and statistical analysis of the
derived shape variables, groups of specimens may be iden-
tified as distinct in overall shape space. Unfortunately, the
current geometric morphometric methods have two major
limitations that hinder successful applications in taxonomic
revision tasks:

2http://life.bio.sunysb.edu/morph/



Figure 3: Digitized 15 homologous landmarks using
TpsDIG Version 1.4 ( 2004 by F. James Rohlf).

• Groups of specimens are distinguished from other pop-
ulations based on a small set of derived variables, which
are usually functions (in their simplest form, linear
combinations) of all shape variables. As such, derived
variables are difficult to interpret in terms of partic-
ular body characters that taxonomists commonly use
in diagnosing new species.

• Shape variation of specimens from closely related species
or subspecies may not be discernible in overall shape
space or through analysis of landmark coordinates.
Therefore, current geometric morphometric methods
may generate misleading results (see the example to
be presented next).

Over the years since [26] was published, one of us (HLB)
has examined shape and DNA sequence variation in all Car-
piodes populations. Figure 4 shows the results of an anal-
ysis of overall body shape based on a geometric morpho-
metric technique using canonical variate analysis (CVA).
CVA grouped specimens from the Rio Grande (squares),
upper Colorado River (stars), and other western Gulf Slope
rivers with C. carpio specimens (circles) from the Mississippi
River Basin. However, a surprising finding from the DNA
sequence analysis was that the forms in Rio Grande and up-
per Colorado River system of Texas do not agree at all with
C. carpio. Rather, they are closely related to C. cyprinus,
which was not known to occur on the western Gulf Slope.
Careful inspection of Carpiodes specimens in the Rio Grande
and upper Colorado River system reveals that they lack the
protuberance (“nipple”) on the lower lip, which is diagnostic
of C. carpio and C. velifer. They also have a relatively large
head and a long snout, characters seen only in C. cypri-
nus. However, specimens from these populations also have
an elongate and slender body, and it is these characters that
cause them to be erroneously classified as C. carpio based
on overall body shape analysis.

It took HLB three years of careful study of over 1000 Car-
piodes specimens to determine that Rio Grande and upper
Colorado River populations were misdiagnosed as C. carpio,
and instead represented a new species related to C. cypri-
nus. The question we address next is: Can CBIR based on
shape features be applied in a way that diagnoses taxonomic
groups in genus Carpiodes more quickly and accurately?

3. FEATURE EXTRACTION
We focus on the digitized images of specimens with land-

marks specified as in Figure 3. Let LMj ∈ �2 , j = 1, · · · , 15,
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Figure 4: Plot of 650 Carpiodes specimens repre-
senting three distinct morphotypes on the first two
canonical variate axes based on derived shape vari-
ables from geometric morphometric analysis of land-
mark data.

be the coordinates of landmarks on a specimen. We used
the technique of Generalized Procrustes Analysis [14] to re-
move non-shape related variation in landmark coordinates.
Specifically, the centroid of each configuration (based on the
15 landmarks associated with each specimen) was translated
to the origin, and configurations was scaled to a common
unit size.

We computed 12 features, x1, · · · , x12, for each specimen
using the 15 landmarks. These features correspond to dif-
ferent shape characters that taxonomists use to describe
species. The description of each feature is given in Table 1.
These features are divided into two groups:

• x1–x7: They describe shape characters that can be
easily identified visually, for example, the size of head,
the length of body, the distance between the tip of the
snout and the nostril, the size of head in proportion of
body size, etc.

• x8–x12: They can be easily evaluated from the land-
mark coordinates, but may not have a straightforward
visual interpretation. These are the features that a do-
main expert may not identify easily, but are candidates
of good indicators.

All 12 features were normalized across the specimens via
translation and scaling.

4. SEMANTIC CLASSIFICATION
Semantic classification in our CBIR system targets the

following taxonomic problem: given a collection of labeled
specimens (xi’s) represented in a feature space, identify fea-
tures and construct classifiers based on the selected features
to distinguish among the known categories (or species). This
problem is closely related to taxonomic revision: if the clas-
sifiers indeed capture the shape properties describing the
known species, the classifiers will be helpful in discovering
new species whenever there is shape variation between the
new species and all the known species. Next, we describe
a scenario for new species detection. Given a collection of



Table 1: Features describing shape characters. Non-shape related variation has been removed from LMi, the
landmark coordinates.

x1 The distance between the tip of the snout and the naris, computed as the distance between LM1 and LM2.
x2 The slope of the line connecting the tip of the snout and the naris, computed as the angle between the vertical

axis and the line connecting LM1 and LM2.
x3 The distance between the naris and the back of the mouth, computed as the distance between LM2 and LM14.
x4 The slope of the line connecting the naris and the back of the mouth, computed as the angle between the vertical

axis and the line connecting LM2 and LM14.
x5 The size of head in proportion of the size of the body, computed as the area of the head polygon (vertices defined

in sequence by LM1, LM2, LM3, LM13, LM12, and LM14) divided by the area of the body polygon (vertices
defined in sequence by LM3, LM4, LM5, LM6, LM7, LM8, LM9, LM10, LM11, LM12, and LM13)

x6 The length of the head in proportion of the length of the body, computed as the distance between LM1 and
LM13 divided by the distance between LM13 and LM7.

x7 The distance between LM7 and LM8.

x8 The sum of the distance between LM3 and LM13, the distance between LM12 and LM13, and the distance
between LM1 and LM13 divided by the distance between LM13 and LM7.

x9 The distance between the naris and the tip of the snout in proportion to the distance between the naris and the
eye, computed as the distance between LM1 and LM2 divided by the distance between LM2 and LM15

x10 The distance between LM4 and LM11 divided by the distance between LM13 and LM7.
x11 The distance between LM3 and LM4 divided by the distance between LM13 and LM7.
x12 The angle between the vertical axis and the line connecting LM10 and LM5.

specimens (not just a single specimen) from the same, but
unknown, population, if the classifier assigns the specimens
to several species without any preference on any one of the
species, it is likely that the specimens are from a new species
in need of description. If the classifier assigns the major-
ity of the specimens to a single species, it is likely that the
specimens belong to that known species. The underlying as-
sumption is that specimens of a new species would confuse
the classifier built upon all known species.

The classification of xi is clearly a multi-class problem.
We propose to use a tree structure to organize binary clas-
sifiers into a multi-class classifier. For example, Figure 5
shows a hierarchical classifier consisting of two binary clas-
sifiers for the identification of all three known species in
Carpiodes genus. Finding an “optimal” structure is an in-
teresting research topic for its own sake, but is beyond the
scope of this paper. Here we assume the structure is de-
termined beforehand. It is worth mentioning the difference
between the classification tree in Figure 5 and the taxonomic
tree describing the grouping of populations. For example,
all specimens studied in the paper belong to the Carpiodes
genus, which as currently recognized, has three species com-
plexes, C. carpio, C. cyprinus, and C. velifer. If we view the
Carpiodes genus as the parent node, it has three leaf nodes
(at the same level) corresponding to C. carpio, C. cyprinus,
and C. velifer, respectively. This is the taxonomic tree for
Carpiodes, which is known in biology. The classification tree
in Figure 5 is a binary tree because all classifiers are binary.
From an input-output point of view, the binary classifica-
tion tree implements the taxonomic tree for Carpiodes. The
structure of the classification tree is a design issue indepen-
dent to the taxonomic tree.

For a given collection of samples xi with the correspond-
ing labels yi ∈ {−1, 1}, designing a binary classifier can be
solved by any conventional supervised learning algorithm.
However, we argue that feature selection is indispensable
in our system for the following reasons. From a taxonomic
viewpoint, it is desirable to use a small number of body
shape characters to uniquely diagnose a species as distinct

C. cyprinus

 C. velifer

 Classifier 1

 Classifier 2

 C. carpio

Figure 5: A hierarchical classifier for Carpiodes
genus.

from its known relatives. The feature selection procedure
can identify those “most” diagnostic features (in this case,
body shape characters). From a machine learning viewpoint,
constraining the number of selected features is an effective
way to avoid overfitting. The experimental results in Sec-
tion 6.4 also demonstrate the efficacy of feature selection in
avoiding potential overfitting.

Feature subset selection is a well-researched topic in the
areas of statistics, machine learning, and pattern recogni-
tion [15, 30]. Existing selection approaches generally fall
into two categories: filter and wrapper [15, 30]. Some filter
methods such as ranking through correlation coefficients or
through Fisher scores tend to select inter-correlated features
and does not guarantee an acquisition of a good classifier.
On the contrary, wrappers include the desired classifier as a
part of their performance evaluation, which is a joint feature
selection and classification approach. They tend to produce
better generalization but may require expensive computa-
tional cost.

The proposed approach is a wrapper model based on 1-
norm SVM. Consider the problem of finding a linear classi-
fier

y = sign
�
wT x + b

�



where w and b are model parameters. The SVM approach
constructs classifiers based on hyperplanes by minimizing a
regularized training error λR[·]+ error where R[·] is a regu-
larization operator, λ is called the regularization parameter,
and error is commonly defined through a hinge loss function

ξ = max{1 − y(wT x + b), 0} .

When an optimal solution w is obtained, the magnitude of
its component wk indicates the significance of the effect of
the k-th feature on the classifier. Those features correspond-
ing to a non-zero wk are selected and used in the classifier.

The regularization operator in standard SVMs is the 2-
norm of the weight vector w, which formulates SVMs as
quadratic programs (QP). Solving QPs is typically com-
putationally more expensive than solving linear programs
(LPs). SVMs can be transformed into LPs as in [33]. This
is achieved by regularizing with a sparse-favoring norm, i.e.,
the 1-norm of w, ‖w‖1 =

�
k |wk|. Thus 1-norm SVM is also

referred to as sparse SVM and has been similarly applied to
other practical problems such as drug discovery in [3].

Many practical problems in image classification relate to
imbalances in samples, i.e., the number of negative samples
is much larger than the number of positive samples. To
tackle this imbalanced issue and make classifiers biased to-
wards the minority class, we penalize differently on errors
produced respectively by positive samples and by negative
ones. Rewrite wk = uk − vk where uk, vk ≥ 0. If either uk

or vk has to equal to 0, then |wk| = uk + vk. The LP is
formulated in variables � = {u,v, b, �,�} as

min� λ

d�
k=1

(uk + vk) +
µ

�+

�+�
i=1

ξi +
1 − µ

�−

�−�
j=1

ηj

s.t.
�
(u − v)T x+

i + b
�
+ ξi ≥ 1, i = 1, · · · , �+,

− �(u − v)T x−
j + b

�
+ ηj ≥ 1, j = 1, · · · , �−,

uk, vk ≥ 0, k = 1, · · · , d,
ξi, ηj ≥ 0, i = 1, · · · , �+, j = 1, · · · , �−.

where x+
i and x−

j denote a positive sample and a negative
sample, respectively, � and � are hinge losses, 0 < µ < 1
is a constant penalizing the errors from positive and nega-
tive samples, �+ (�−) is the number of positive (negative)
samples.

5. SIMILARITY MATCHING
The image similarity measure consists of two parts. The

first part corresponds to the semantic similarity, which is
determined by semantic classifier in Section 4. If two spec-
imens belong to the same semantic class, their similarity is
the maximum, otherwise the similarity is zero. Specifically,
the semantic similarity between two specimens xi and xj is
defined as

s1 (xi,xj) =

�
1 xi and xj are in the same class
0 otherwise

The second part reflects the overall shape similarity, and is
defined as

s2 (xi,xj) = e
− ‖xi−xj‖2

σ2

where σ2 is chosen to be the sample variance of the overall
shape distance. Note that ‖xi − xj‖ is the distance in the
shape space, hence describes the overall shape difference be-
tween two specimens. The similarity measure is then defined

as a convex combination of semantic similarity and overall
shape similarity:

s (xi,xj) = α s1 (xi,xj) + (1 − α) s2 (xi,xj) (1)

where α ∈ [0, 1] is a parameter specified by a user.
Note that labels are included for all images in the database.

This is in contrast to a typical CBIR system where the la-
bels (or semantic annotations) for the images in the database
are usually not available. A small distance in overall shape
does not necessarily imply semantic similarity because the
semantic classification is based on a small number of se-
lected shape characters rather than the overall shape. The
above similarity measure gives users flexibility in retrieval:
one can retrieve specimens based on the overall shape simi-
larity (α = 0), predicted species label (α = 1), or a convex
combination of the two (0 < α < 1).

Although the ranking of images are based on the land-
marks (label of the query is computed from the landmark
coordinates), we argue that the images are indispensable be-
cause: (1) It is much easier to visualize the specimens using
images than using landmarks alone; (2) The system might
misdiagnose the query. It is easier for taxonomists to iden-
tify the errors based on the retrieved images than on the
coordinates of the landmarks.

6. EXPERIMENTAL RESULTS
We test the proposed CBIR system on the specimens from

the three Carpiodes morphotypes: C. carpio, C. cyprinus,
and C. velifer. The current database contains only 600 im-
ages of Carpiodes specimens. However, the proposed compu-
tational framework can be applied to any number of images
at any level of fish taxonomy. We are working to expand
the database by including images of specimens of a related
group of suckers in the genus Ictiobus. Our experiments
consists of two steps:

• Demonstrating the efficacy of semantic classification
by identifying features (or body characters) for distin-
guishing among the three Carpiodes morphotypes;

• Applying the system to a taxonomic revision problem
involving populations from Colorado River in Texas
and Rio Grande and comparing the results with those
based on the DNA analysis.

6.1 System Interface
The system has a simple CGI-based query interface. Users

can either enter the ID of an image as the query or submit
any image (along with a file containing the landmarks) via
the Internet. Figure 6 shows the 25 thumbnails returned by
the system where the query image (C. Cyprinus) is on the
top left. The parameter α in (1) was chosen to be 0.8. Below
each thumbnail are image ID and the name of its taxonomic
category. Users can start a new query search by submitting
a new image ID or image files.

6.2 Semantic Classification
We apply the 1-norm SVM to select features and build

classifiers simultaneously. The binary classifiers are orga-
nized as in Figure 5. Two parameters, λ and µ, need to be
specified for 1-norm SVM. We set µ to be the percentage
of negative training samples to balance the training errors
on positive and negative samples. The regularization pa-
rameter λ is selected such that at most three features are



Figure 6: The interface of the CBIR system.

Table 2: Semantic classification of Carpiodes into
three morphotypes: C. carpio, C. cyprinus, and C.
velifer. The hierarchical classifier first separates C.
velifer from the rest species. It then distinguishes
C. carpio and C. cyprinus.

Classification Selected Training Test
Problem Features Error Error

C. velifer/the rest x10, x11 10% 11.7%
C. carpio/C. cyprinus x4, x7 12.9% 13.9%

selected. This is based upon the fact that taxonomists rarely
use more than three body shape characters to describe the
difference among closely related species or subspecies.

The images within each class are randomly divided into
a training set and a test set of equal size. The classifica-
tion results are summarized in Table 2. The hierarchical
classifier first separates C. velifer-like specimens from spec-
imens of other species. It then distinguishes C. carpio from
C. cyprinus. In all the experiments, we observe that the
performance based on three selected features is similar to
that based on two selected features. The selected features
in both classification problems are also shown in Table 2.

6.3 Species Prediction
The experiment is based on 53 specimens from upper Col-

orado River in Texas and the Rio Grande. They were tra-
ditionally recognized as C. carpio, yet recent DNA evidence
suggests that both populations are more closely related to
C. cyprinus. So we view these 53 specimens as “suspicious”
populations. Each “suspicious” specimen is submitted to

the system as a query image. The predicted class label of
the query is determined by the majority class among the
top k retrieved images (specimens). We observed that the
results are robust for k varying from 10 to 60. So we pick
k = 20.

We first set the parameter α in the similarity measure (1)
0.1. This corresponds to retrieving specimens that are sim-
ilar to the query based on the overall shape. It turns out
that 52 out of the 53 suspicious specimens are recognized as
C. carpio, and only 1 specimen is identified as C. cyprinus.
In other words, the overall shape suggests that the “suspi-
cious” specimens should be classified as C. carpio. Next, we
increase α to 0.9, i.e., the decision is based mainly on the
semantic classifiers designed in Section 6.2. In this case, 23
“suspicious” specimens are classified as C. carpio, while the
remaining 30 specimens are classified as C. cyprinus. We
get identical results for α = 1.0.

Although the hierarchical classifier in Section 6.2 can dis-
tinguish the three species with reasonable accuracy using
only four body shape characters, it has difficulty catego-
rizing the specimens from Colorado River in Texas and Rio
Grande as either C. carpio or C. cyprinus; 43.4% of the “sus-
picious” specimens are assigned to C. carpio, and 56.6% to
C. cyprinus. At the same time, the retrieved images based
on overall shape identify 52 out of 53 specimens as C. carpio.
These contradictory results can be viewed as an indication
that the suspicious specimens represent a new species. It
is very interesting that overall shape analysis and the DNA
analysis give similar results: the suspicious specimens are
more similar to C. carpio than to C. cyprinus in terms of
the overall shape, yet they are genetically closer to C. cypri-
nus. Note that our CBIR system can easily obtain a similar



Table 3: Semantic classification of Carpiodes using
all 12 features. The hierarchical classifier first sep-
arates C. velifer from the rest species. It then dis-
tinguishes C. carpio and C. cyprinus.

Classification Classifier Training Test
Problem Error Error

C. velifer versus SVM (linear) 9.1% 9.5%
the rest SVM (Gaussian) 8.9% 9.8%
C. carpio versus SVM (linear) 16.9% 17.5%
C. cyprinus SVM (Gaussian) 16.5% 17.3%

conclusion by adjusting the value of the parameter α.

6.4 Discussions
We did experiments to see whether feature selection is

indispensable in semantic classification. The semantic clas-
sification results using all 12 features are shown in Table 3.
We tested two classifiers, namely, linear SVM and SVM with
Gaussian kernel. All the classifiers were constructed using
half of the 600 specimens and tested over the remaining
300 specimens. As Table 3 indicates, the new classification
results are similar to those in Table 2, i.e., with feature se-
lection. However, the new classifiers generate significantly
different predictions on the 53 “suspicious” specimens. Both
classifiers assign the majority of the 53 specimens to C. car-
pio, which contradicts the results generated by 1-norm SVM.

An interesting question arises: which results should we
trust, those based on the selected features or those using all
the features? We argue that feature selection is indispens-
able for the following reasons:

• From a taxonomic viewpoint, it is desirable to use a
small number of body shape characters to describe a
species as distinct from its known relatives. The fea-
ture selection procedure can identify those “most” di-
agnostic features (or body shape characters).

• From a machine learning viewpoint, constraining the
number of selected features is an effective way to avoid
overfitting. One may reason that the above conflicting
result for Colorado River and Rio Grande specimens
is due to overfitting, i.e., the models trained on all 21
features overfit the data.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a content-based image retrieval

approach for taxonomic research. The system has a learning
component that automatically identifies the semantic class
of a query based on digitized landmarks. We applied the sys-
tem to a taxonomic problem in genus Carpiodes. The results
are promising: the proposed framework not only learned
classifiers that well separated the three known species in
Carpiodes using only a few body shape features, but also
recognized “suspicious” specimens that could not be identi-
fied previously without the aid of DNA analysis. Therefore,
our framework provides a powerful tool for assisting the di-
agnosis of new species and increasing the pace of taxonomic
research.

As continuations of this work, several directions may be
pursued. Our system can be linked to the Internet so that
taxonomists around the globe can not only retrieve speci-
mens from the system, but can contribute images to expand

the database. The learning component in the system can
potentially be extended to any taxonomic problem involv-
ing a large data set and a significant percentage of unknown
specimens in a semi-supervised learning framework. An im-
portant future direction of this research is to automatically
build a classification tree of recognized taxa (species). Clas-
sification using shape contexts, as in the approach proposed
by Belongie et al. [2], is another interesting direction to in-
vestigate.
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