
TREAT: A Trust-Region-based Error-Aggregated

Training Algorithm for Neural Networks
Yixin Chen and Bogdan M. Wilamowski

Abstract - A Trust-Region-based Error-
Aggregated Training algorithm (TREAT) for
multi-layer feedforward neural networks is proposed.
In the same spirit as that of the Levenberg-
Marquardt (LM) method, the TREAT algorithm
uses a different Hessian matrix approximation, which
is based on the Jacobian matrix derived from aggre-
gated errors. An aggregation scheme is discussed.
It can greatly reduce the size of the matrix to be
inverted in each training iteration and thereby lower
the iterative computational cost. Compared with the
LM method, the TREAT algorithm is computation-
ally less intensive, and requires less memory. This is
especially important for large sized neural networks
where the LM algorithm becomes impractical.

I. Introduction

As one of the earliest and most general methods for
supervised training of multi-layer feedforward neural net-
works, the error backpropagation algorithm (EBP) [26]
provides an efficient way to evaluate the gradient, and up-
dates weights by a steepest descent step. Although EBP
algorithm works fine for very simple models, a training
process can take excessively long time (i.e., the learning
time is large) when the error surface has many flat re-
gions [11]. This is due to the facts that the convergence
rate of the EBP algorithm is at best linear [27], and the
convergence is sensitive to the choice of learning rate that
indicates the relative size of the change in weights dur-
ing each iteration. The learning rate needs to be small
enough to ensure reliable convergence behaviors. But
a small learning rate could significantly slow down the
training process.

An enormous amount of efforts have been made to ac-
celerate the EBP algorithm. For example, many heuris-
tics have been proposed to adapt the learning rate auto-
matically [12], [24] so that the descending step is large
when the search point is far away from a minimum, with
decreasing step size as the search approaches a minimum.

Yixin Chen is with the Department of Computer Science and
Engineering, The Pennsylvania State University, University Park,
PA 16801. E-mail:yixchen@cse.psu.edu

Bogdan M. Wilamowski is with the College of Engineering, Uni-
versity of Idaho, Boise, ID 83712. E-mail:wilam@ieee.org

Adding momentum to the weight changes can acceler-
ate the convergence since some curvature information,
which is extracted by averaging the gradients locally, is
utilized to enlarge the learning rate in flat regions while
maintaining a small learning rate in regions with high
fluctuations [8], [19]. The learning process can also be
sped up by preprocessing the training data [17], [15], us-
ing estimated optimal initial weights [20], [30], artificially
enlarging errors for neurons operating in saturation re-
gions [14], [23], [28], or optimizing modified error func-
tions [22], [21], [1].

Although the aforementioned approaches reduce the
learning time, more efficient algorithms are needed to
solve complex problems such as prediction of time series,
modeling and control of robotic manipulators, and pat-
tern classification, etc. Several layerwise training algo-
rithms have been designed to further improve both the
learning time and the convergence of the training pro-
cess. Layerwise training algorithms usually treat weights
of each layer separately by decomposing the original
optimization problem into several low dimensional sub-
problems. Each sub-problem is then solved using either
linear optimization techniques [7], [29] or a hybrid of lin-
ear and nonlinear optimization methods [18], [25].

More significant improvement is made possible by em-
ploying second order (curvature) information to speed
things up. For example, the second order derivatives are
exploited in the conjugate gradient method [5] during
line search. In [4], [3], the Newton’s methods are utilized
to update weights. Since the exact calculation of the full
Hessian matrix is often prohibitively expensive for large
networks, different Hessian matrix approximations are
proposed. Secant method, such as the Broyden-Fletcher-
Golfarb-Shanno (BFGS) algorithm [6], is also applied to
network training [2]. It requires no evaluation of the
Hessian matrix. Instead, an economical update for the
Hessian matrix is made in each iteration.

All the above techniques fall into the category of
general-purpose unconstrained optimization. However,
the error function (objective function) of a neural net-
work has a special structure, sum of the squares of the
errors, which can be exploited to increase the efficiency
of the training algorithm even further. In other words,
training neural networks is essentially a nonlinear least



squares (NLS) problem, and thus can be solved by a
class of NLS algorithms [6]. Among them the Levenberg-
Marquardt (LM) method (a trust region method with
hyperspherical trust region) [6] works extremely well in
practice, and is considered the most efficient algorithm
for training medium sized neural networks [10]. Never-
theless, the LM algorithm demands large memory space
to store the Jacobian matrix and the approximated Hes-
sian matrix, and invert a matrix of size N × N in each
iteration where N is the number of weights. As a result
the convergence rate is counterbalanced by high compu-
tational cost per iteration when N is large.

This paper describes a new training algorithm,
TREAT (Trust Region based Error Aggregated Train-
ing), which bears a concept similar to that of the LM
method. Through using a different Hessian matrix ap-
proximation based on aggregated errors, the TREAT al-
gorithm can cut down the memory requirement and de-
crease the iterative and overall computational load. The
remainder of the paper is organized as follows. Section II
briefly reviews the LM method. Section III derives the
TREAT algorithm and describes its implementation. Ex-
tensive experiments and results are given in Section IV.
We conclude in Section V.

II. Levenberg-Marquardt Method

Consider a general multilayer feedforward neural net-
work with L inputs, K outputs, and P training patterns.
Let ~w = [w1, w2, · · · , wN ]T ∈ RN denote the weight vec-
tor of the network, dkp ∈ R be the desired value of the
kth output for pth pattern, and okp(~w) ∈ R be the actual
value of the kth output for pth pattern. The correspond-
ing error function, f : RN → R, is then defined as

f(~w) =
1

2
~e(~w)T~e(~w) (1)

where ~e(~w) = [e11(~w), · · · , eK1(~w), e12(~w), · · · , eK2(~w),
· · · , e1P (~w), · · · , eKP (~w)]T is the error vector, ekp(~w) =
dkp − okp(~w) is the error related to the kth output for
pth pattern, k = 1, · · · ,K, p = 1, · · · , P .

If we let ~wn represent the network weights at the nth
iteration, then the Newton’s method for minimizing f(~w)
generates the following well-know recurrence formula

~wn+1 = ~wn − [Hf(~wn)]
−1 ∇f(~wn)

where ∇f(~wn) ∈ RN is the gradient of f(~w) evaluated
at ~wn, Hf(~wn) ∈ RN×N is the Hessian matrix of f(~w)
evaluated at ~wn, n ≥ 0. However, direct application of
Newton’s method to the training of medium or large sized
neural networks would not be very successful for two rea-
sons: the cost for computing the exact Hessian matrix is

too expensive and the positive definite requirement for
the Hessian matrix is too restrictive.

The LM method provides a fix to this problem by using
a positive definite Hessian matrix approximation as

Hf(~w) ≈ J(~w)T J(~w) + µI

where

J(~w) =































∂e11(~w)
∂w1

∂e11(~w)
∂w2

· · · ∂e11(~w)
∂wN

...
...

. . .
...

∂eK1(~w)
∂w1

∂eK1(~w)
∂w2

· · · ∂eK1(~w)
∂wN

...
...

. . .
...

∂e1P (~w)
∂w1

∂e1P (~w)
∂w2

· · · ∂e1P (~w)
∂wN

...
...

. . .
...

∂eKP (~w)
∂w1

∂eKP (~w)
∂w2

· · · ∂eKP (~w)
∂wN































is the Jacobian matrix, µ > 0, I is an identity matrix of
size N × N . The weights update rule is given by

~wn+1 = ~wn −
[

J(~wn)T J(~wn) + µnI
]−1

∇f(~wn). (2)

As we can see, the LM algorithm requires the inverse
of J(~wn)T J(~wn) + µnI at each iteration. The size of the
matrix is N×N where N is the number of weights. Even
for medium sized networks, N is a large number. For
large sized networks, the speed gained from the reduced
number of iterations will be lost in the time spent on
matrix inversion during each iteration. Moreover, huge
memory space is needed to store the Jacobian and the
approximated Hessian matrices. In the next section, a
new algorithm is developed, which greatly reduces the
computational complexities.

III. A New Training Algorithm

The new algorithm is conceptually similar to the LM
method. But it uses a different Hessian matrix ap-
proximation based on a new Jacobian matrix derived
from an aggregated error vector. The aggregated error
vector generates exactly the same error function but a
smaller sized Jacobian matrix under a proper aggrega-
tion scheme. Based on this new approximation, the size
of the matrix to be inverted in each iteration is reduced
by the Sherman-Morrison-Woodbury formula [9].

A. Aggregated Error Vector

Let I = {(k, p) : 1 ≤ k ≤ K, 1 ≤ p ≤ P, k ∈ N, p ∈
N} be the index set for training errors in (1) where K

and P are defined in Section II, N denotes the set of
nonnegative integers. If C = {Ii : 1 ≤ i ≤ M, i ∈ N, Ii 6=



∅} is a partition of I, i.e.,
⋃M

i=1 Ii = I, and Ii ∩ Ij = ∅
for all 1 ≤ i, j ≤ M , i 6= j, then under the partition C,
we define an aggregated error vector ~̃e(~w) for the training
errors in (1) as

~̃e(~w) = [ẽ1(~w), ẽ2(~w), · · · , ẽM (~w)]T

where

ẽi(~w) =

√

∑

a∈Ii

ea(~w)
2

is named an aggregated error, 1 ≤ i ≤ M .
Based on this aggregated error vector, a new error

function is defined as

f̃(~w) =
1

2
~̃e(~w)T~̃e(~w). (3)

The corresponding gradient is

∇f̃(~w) = J̃(~w)T~̃e(~w)

where

J̃(~w) =













∂ẽ1(~w)
∂w1

∂ẽ1(~w)
∂w2

· · · ∂ẽ1(~w)
∂wN

∂ẽ2(~w)
∂w1

∂ẽ2(~w)
∂w2

· · · ∂ẽ2(~w)
∂wN

...
...

. . .
...

∂ẽM (~w)
∂w1

∂ẽM (~w)
∂w2

· · · ∂ẽM (~w)
∂wN













(4)

is called the aggregated Jacobian matrix.
There are several interesting relationships between

f̃(~w) and f(~w), which are listed as follows:

• They are essentially identical functions of ~w, i.e., for
any ~w ∈ RN , f̃(~w) = f(~w). Therefore, minimizing
f(~w) is equivalent to minimizing f̃(~w).

• Consequently, they have same gradients and same
Hessian matrices, i.e., ∇f̃(~w) = ∇f(~w) and
Hf̃(~w) = Hf(~w) for any ~w ∈ RN .

• Let J̃i be the ith row of J̃(~w), then J̃i can be equiv-
alently written as

J̃i =
∑

a∈Ii

ea(~w)

ẽi(~w)
Ja (5)

where Ja is the row of J(~w) corresponding to er-
ror ea(~w). In other words, the ith row of J̃(~w) is a
linear combination of rows of J(~w) associated with
the errors that are indexed by Ii. In this sense,
the aggregated Jacobian matrix can be viewed as a
compressed version of the original Jacobian matrix,
and the compression is lossy, though. More impor-
tant, equation (5) gives an efficient way of computing
J̃(~w).

• The size of J̃(~w) is M ×N , while the size of J(~w) is
KP×N where KP is the total number of errors (the
number of elements in I). M is always less than or
equal to KP . If M = KP , then J̃(~w) = J(~w).

Next it comes to the question of how to aggregate the
errors (or equivalently, how to partition I). In this paper,
we use a random aggregation scheme. There is no guaran-
tee that this scheme is optimal, but it is simple and works
very well in practice, which will be demonstrated in Sec-
tion IV. And we believe that more complex schemes
should be motivated by the failure of a simple one. The
random aggregation scheme used in the experiments of
Section IV can be summarized as below:

Step 1. Specify block size b ∈ N, 1 ≤ b ≤ N . Set
i = 1.

Step 2. If there are more than b elements in I, then
randomly take b elements out of I and put them into
Ii, otherwise move all elements of I to Ii.

Step 3. If I = ∅ then terminate the process, otherwise
increase i by 1 and return to Step 2.

Under this scheme, the errors are partitioned into
M groups where M equals the smallest integer that is
greater than or equal to KP

b
. As we will see shortly,

the computational complexities in each iteration can be
reduced if b is chosen to make KP

b
< N . However, an

overly large b may lead to more training iterations and
hence longer learning time. A discussion of selecting a
proper value of b is given in Section III-C.

B. The TREAT Algorithm

From (3), the Hessian matrix of f̃(~w) (or equivalently
f(~w)) can be expressed as

Hf̃(~w) = J̃(~w)T J̃(~w) + G̃(~w) (6)

where G̃(~w) =
∑M

i=1 ẽi(~w) [Hẽi(~w)], Hẽi(~w) ∈ RN×N is
the Hessian matrix of ẽi(~w). To simplify computation,
(6) is approximated as

Hf̃(~w) ≈ J̃(~w)T J̃(~w) + µI

where µ > 0, I is an N × N identity matrix. Base
upon this approximation, the weights update rule of the
TREAT algorithm becomes

~wn+1 = ~wn − λn

[

J̃(~wn)T J̃(~wn) + µnI
]−1

∇f(~wn) (7)

where λn > 0, µn > 0. In contrast to the weights update
rule of the LM method given by (2), (7) introduces an
extra parameter λn for line search and uses a different
Hessian matrix approximation. Because J̃(~wn)T J̃(~wn) +



µnI is always positive definite, (~wn+1− ~wn)T∇f(~wn) < 0.
Thus at each iteration, we can decrease the value of f by
choosing proper values for λn and µn [6].

Up to now, we have not seen any computational im-
provement compared with the LM method. Although
the size of J̃(~wn) is smaller that that of J(~wn), the size
of J̃(~wn)T J̃(~wn) is still N ×N . We still have to invert an
N × N matrix in each iteration. However, as shown be-
low, we convert the original N ×N matrix inversion into
an M×M matrix inversion using the Sherman-Morrison-
Woodbury formula [9]. The computational cost for each
iteration is reduced if the aggregated error vector has a
dimension lower than N .

The Sherman-Morrison-Woodbury formula states that
if a matrix A satisfies A = B−1 + CD−1CT , then the
inverse of A can be written as

A−1 = B − BC(D + CT BC)−1CT B.

If we let A = J̃(~wn)T J̃(~wn) + µnI, B = 1
µn

I, C =

J̃(~wn)T , and D = I, then

[

J̃(~wn)T J̃(~wn) + µnI
]−1

=
1

µn

I−

1

µ2
n

J̃(~wn)T

[

I +
1

µn

J̃(~wn)J̃(~wn)T

]−1

J̃(~wn). (8)

Substituting (8) into (7) gives

~wn+1 = ~wn − λn
~δn (9)

with

~δn =
1

µn

∇f(~wn) −
1

µ2
n

J̃(~wn)T

[

I +
1

µn

J̃(~wn)J̃(~wn)T

]−1

J̃(~wn)∇f(~wn). (10)

Noticing that J̃(~wn)J̃(~wn)T is an M ×M matrix, instead
of inverting an N × N matrix in each iteration, we are
now inverting an M × M matrix. Computation inten-
sity can be lowered when the block size b of the random
aggregation scheme is set to make M < N .

The TREAT algorithm can be outlined as follows.

Step 1. Set n = 0. Initialize network weights ~wn.
Specify positive parameters b, ε, λn, Sλ, λmax, λmin,
µn, Sµ, µmax, µmin, and nmax where

• b indicates the block size for random aggregation;
• ε states the stop criterion of the algorithm;
• Sλ, λmax, and λmin are the scale factor, maximum

and minimum values for λn, respectively;
• Sµ, µmax, and µmin are the scale factor, maximum

and minimum values for µn, respectively;

• nmax is the maximumly allowed number of itera-
tions.

Step 2. Partition errors according to the random ag-
gregation scheme in Section III-A.

Step 3. Compute network outputs and evaluate error
function f(~wn) (or equivalently f̃(~wn)).

Step 4. Set µn+1 = µn. Evaluate the aggregated Ja-
cobian matrix J̃(~wn) according to (4). Calculate the
gradient ∇f(~wn) (or equivalently ∇f̃(~wn)). Com-

pute ~δn according to (10).
Step 5. Update weights according to (9).
Step 6. Compute network outputs and evaluate er-

ror function f(~wn+1) (or equivalently f̃(~wn+1). If
f(~wn+1) ≥ f(~wn) (or equivalently f̃(~wn+1) ≥
f̃(~wn)) then:

• Set λn = λn

Sλ
, µn+1 = µn+1Sµ.

• If λn < λmin or µn+1 > µmax then stop training
else go back to Step 5.

Otherwise:
• If f(~wn+1) < ε

2 then stop training.
• Set λn+1 = λnSλ, µn+1 = µn+1

Sµ
. If λn+1 > λmax

then λn+1 = λmax. If µn+1 < µmin then µn+1 =
µmin.

• Set n = n + 1. If n > nmax then stop training,
otherwise go back to Step 4.

C. Computational Complexities

Computational loads in terms of flops 1 can be estimated
based on (9) and (2), in which the Cholesky factoriza-
tion [9] is used to realize the matrix inversion. The

TREAT algorithm demands approximately M3

3 flops to
evaluate (9) where M is the number of rows of the aggre-
gated Jacobian matrix J̃(~wn). Similarly, the LM method

needs about N3

3 flops to calculate ~wn+1. The major mem-
ory requirement comes from the storage of the Jacobian
matrix (or aggregated Jacobian matrix), the approxi-
mated Hessian matrix (only its upper triangular part is
stored due to symmetry), and a triangular matrix from
the Cholesky factorization. This gives an approximate
memory requirement of MN + M2 for the TREAT al-
gorithm and KPN + N2 for the LM method. From
this rough analysis, we can safely claim that, for large
N (medium sized or lager sized neural networks), the
TREAT algorithm uses less memory and smaller number
of flops in each iteration than the LM method does if
we make M < min(KP,N) by choosing a proper b. In
our experiments b is chosen from the integers that are
greater than 1 and make N

2 ≤ M < N . We set b = 2
if no such integers exist. Clearly, this will always make

1A flop is a floating addition, subtraction, multiplication, or di-
vision.



M < min(KP,N). As demonstrated in Section IV, this
simple choice of b leads to a slightly increase of the num-
ber of iterations yet a large decrease in the total training
flops compared with the LM method.

IV. Experimental Results

The TREAT algorithm has been tested on a large num-
ber of problems. Due to space limitation, we only present
experimental results for two problems. Comparisons with
the EBP with momentum (EBPM) and the LM method
in terms of success rates, the number of training itera-
tions, the number of flops, and, in some cases, general-
ization errors are provided.

The EBPM weights update rule is given as

~wn+1 = ~wn − ρ∇f(~wn) + α(~wn − ~wn−1)

where ρ is the learning rate and α is the momentum rate.
Parameters corresponding to the LM method are selected
as S = 10, µ0 = 0.01, µmin = 10−50, and µmax = 1050.
For the TREAT algorithm, parameters common for all
experiments are chosen as λ0 = λmax = 1, µ0 = 0.01,
Sλ = Sµ = 10, λmin = µmin = 10−50, and µmax = 1050.
Feedforward neural networks with one hidden layer are
used. We call them I-H-O networks where I is the num-
ber of network inputs, H is the number of hidden neu-
rons, and O is the number of outputs. Hidden neurons
have tangent sigmoid activation functions. The output
layer is linear. All weights are randomly initialized to
[−1, 1].

A. Approximation of h(x) = sin(2πx) cos(4πx), x ∈ [0, 1]

A 1-7-1 network (22 weights) is used here. The train-
ing set consists of 50 input-output pairs where the in-
put values are uniformly scattered in the interval [0, 1].
To examine the generalization ability of the network, 50
new samples are randomly picked and tested after each
successful training. The learning rate and momentum
rate for the EBPM algorithm are 0.01 and 0.9, respec-
tively. For the TREAT algorithm, b is chosen to be 3.
Table I summarizes the experimental results. ε is the
error goal. A training process is considered successful
if the error function (1) is less than ε

2 , i.e., the sum-
mation of the squared errors for all training samples is
less than ε. nmax is the maximumly allowed number of
training iterations before declaring a failure of conver-
gence. ntrial is the number of independent runs of train-
ing algorithms. The percentile of successful runs (success
rate) is denoted by rsuccess. MEANiterations represents
the mean of the number of training iterations for all suc-
cessful runs. STDViterations represents the standard devi-
ation of the number of training iterations for all successful

runs. MEANflops shows the mean of the number of flops
for all successful runs. STDVflops shows the standard
deviation of the number of flops for all successful runs.
MEANerrors indicates the mean of generalization error,
which is defined as the sum of squared output errors for
all testing samples, for all successful runs. STDVerrors

indicates the standard deviation of generalization error
for all successful runs.

TABLE I

Experimental results for approximation of

h(x) = sin(2πx) cos(4πx), x ∈ [0, 1].

Update Rules TREAT LM EBPM

ε 0.1 0.1 0.5
nmax 500 500 10000
ntrial 100 100 100
rsuccess 99.0% 100% 62.0%
MEANiterations 97.72 86.00 3173.4
STDViterations 32.85 29.69 1939.4
MEANflops 4.24 × 106 7.36 × 106 6.48 × 107

STDVflops 1.44 × 106 2.57 × 106 3.96 × 107

MEANerrors 0.0868 0.0776 0.4705
STDVerrors 0.0133 0.0195 0.0976

B. Parity 5 Problem

The parity problem is considered a hard classification
problem, despite the fact that it does not give any in-
formation on the generalization ability of the network.
A 5-6-1 network (43 weights) is trained to classify all
32 patterns, defined on {−1, 1}5, into two classes with
corresponding class labels 1 and −1. The learning and
momentum rates for the EBPM algorithm are 0.01 and
0.9, respectively. The TREAT algorithm uses block size
2. As shown in Table II, the highest success rate is given
by the LM method, followed by the TREAT and EBPM
algorithms. The disparities are very small (2%) though.
As expected, the LM method requires the least number of
training iterations on the average, but the smallest num-
ber of flops is given by the TREAT algorithm (the size of
the matrix to be inverted in each iteration is 16 × 16 for
the TREAT algorithm and 43× 43 for the LM method).

TABLE II

Experimental results for parity 5 problem.

Update Rules TREAT LM EBPM

ε 0.1 0.1 0.1
nmax 200 200 1000
ntrial 100 100 100
rsuccess 91.0% 93.0% 89.0%
MEANiterations 41.18 23.24 156.94
STDViterations 25.94 28.26 162.91
MEANflops 2.80 × 106 5.20 × 106 5.71 × 106

STDVflops 1.82 × 106 6.67 × 106 5.96 × 106



V. Conclusions

The TREAT algorithm developed in this article car-
ries an idea similar to the LM method but uses a differ-
ent Hessian matrix approximation based on the Jacobian
matrix derived from aggregated errors. The proposed
aggregation scheme can reduce the size of the matrix to
be inverted in each training iteration and therefore lower
the iterative computational cost. Compared with the LM
method, the TREAT algorithm requires less memory and
smaller number of flops if the block size of aggregated er-
rors is chosen judiciously. The TREAT algorithm is ex-
perimentally verified on extensive examples. Simulation
results demonstrate its superiority.

References

[1] S. Abid, F. Fnaiech, and M. Najim, “A Fast Feedforward Train-
ing Algorithm Using a Modified Form of the Standard Back-
propagation Algorithm”, IEEE Trans. on Neural Networks, vol
12, no. 2, pp. 424-430, 2001.

[2] R. Battiti and F. Masulli, “BFGS Optimization for Faster Au-
tomated Supervised Learning”, in Int. Neural-Network Conf.,
vol. 2, pp. 757-760, 1990.

[3] R. Battiti, “First- and Second-Order Methods for Learning: Be-
tween Steepest Descent and Newton’s Method”, Neural Com-

putation, vol. 4, no. 2, pp. 141-166, 1992.

[4] S. Becker and Y. Le Cun, “Improving the Convergence of Back-
propagation Learning with Second Order Methods”, in Proc.

of the 1988 Connectionist Models Summer School, pp. 29-37,
1989.

[5] C. Charalambous, “Conjugate Gradient Algorithm for Efficient
Training of Artificial Neural Networks”, IEE Proceedings Part

G, vol. 139, no. 3, pp. 301-310, 1992.

[6] J. E. Dennis and R. B. Schnabel, Numerical Methods for Un-

constrained Optimization and Nonlinear Equations, Prentice-
Hall, Englewood Cliffs, NJ, 1983.

[7] S. Ergezinger and E. Thomsen, “An Accelerated Learning Al-
gorithm for Multilayer Perceptrons: Optimization Layer by
Layer”, IEEE Trans. on Neural Networks, vol 6, no. 1, pp.
31-42, 1995.

[8] S. E. Fahlman, “Fast Learning Variations on Back-Propagation:
An Empirical Study”, in Proc. of the 1988 Connectionist Mod-

els Summer School, pp. 38-51, 1989.

[9] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd
ed., Johns Hopkins University Press, Baltimore, MD, 1996.

[10] M. T. Hagan, M. B. Menhaj, “Training Feedforward Networks
with the Marquardt Algorithm”, IEEE Trans. on Neural Net-

works, vol. 5, no. 6, pp. 989-993, 1994.

[11] D. R. Hush, J. M. Salas, and B. Horne, “Error Surfaces for
Multi-Layer Perceptrons”, in Proc. of Int. Joint Conf. on Neu-

ral Networks, Seattle, WA USA, vol 1, pp. 759-764, 1991.

[12] R. A. Jacobs, “Increased Rates of Convergence Through
Learning Rate Adaptation”, Neural Networks, vol. 1, no.4, pp.
295-308, 1988.

[13] N. B. Karayiannis, “Accelerating the Training of Feedforward
Neural Networks Using Generalized Hebbian Rules for Initial-
izing the Internal Representations”, IEEE Trans. on Neural

Networks, vol. 7, no. 2, pp. 419-426, 1996.

[14] A. Krogh, G. I. Thorbergsson, J. A. Hertz, “A Cost Function
for Internal Representations”, in Advances in Neural Informa-

tion Processing Systems II, San Mateo, CA USA, pp. 733-740,
1989.

[15] T. M. Kwon and H. Cheng, “Contrast Enhancement for Back-
propagation”, IEEE Trans. on Neural Networks, vol 7, no. 2,
pp. 515-524, 1996.

[16] K. J. Lang and M. J. Witbrock, “Learning to Tell Two Spirals
apart”, in Proc. of the 1988 Connectionist Models Summer

School, pp. 52-59, 1989.

[17] H. A. Malki and A. Moghaddamjoo, “Using the Karhunen-
Loe’vd Transformation in the Back-Propagation Training Al-
gorithm”, IEEE Trans. on Neural Networks, vol 2, no. 1, pp.
162-165, 1991.

[18] S. McLoone, M. D. Brown, G. Irwin, and G. Lightbody, “A
Hybrid Linear/Nonlinear Training Algorithm for Feedforward
Neural Networks”, IEEE Trans. on Neural Networks, vol 9, no.
4, pp. 669-684, 1998.

[19] A. A. Miniani, R. D. Williams, “Acceleration of Back-
Propagation Through Learning Rate and Momentum Adap-
tation”, in Proc. of Int. Joint Conf. on Neural Networks, San
Diego, CA USA, vol 1, pp. 676-679, 1990.

[20] D. Nguyen, and B. Widrow, “Improving the Learning Speed
of 2-layer Neural Networks by Choosing Initial Values of the
Adaptive Weights”, in Proc. Int. Joint Conf. Neural Networks,
San Diego, CA USA, vol. 3, pp. 21-26, 1990.

[21] S. Oh, “Improving the Error Backpropagation Algorithm with
a Modified Error Function”, IEEE Trans. on Neural Networks,
vol 8, no. 3, pp. 799-803, 1997.

[22] A. Van Ooyen and B. Nienhuis, “Improving the Convergence
of the Backpropagation Algorithm”, Neural Networks, vol 5,
pp. 465-471, 1992.

[23] R. Parekh, K. Balakrishnan, V. Honavar, “An Empirical
Comparison of Flat-Spot Elimination Techniques in Back-
Propagation Networks”, in Proceedings of Third Workshop on

Neural Networks - WNN92, pp. 55-60, 1992.

[24] A. G. Parlos, B. Fernandez, A. F. Atiya, J. Muthusami, and
W. K. Tsai, “An Accelerated Learning Algorithm for Multilayer
Perceptron Networks”, IEEE Trans. on Neural Networks, vol
5, no. 3, pp. 493-497, 1994.

[25] N. S. Rubanov, “The Layer-Wise Method and the Backprop-
agation Hybrid Approach to Learning a Feedforward Neural
Network”, IEEE Trans. on Neural Networks, vol 11, no. 2, pp.
295-305, 2000.

[26] D. E. Rumelhart, G. E. Hinton and R. J. Wiliams, “Learning
Internal Representations by Back-Propagating Errors”, Nature,
vol. 323, pp. 533-536, 1986

[27] D. E. Rumelhart, G. E. Hinton, R. J. Williams, “Learning
Internal Representations by Error Propagation”, Parallel Dis-

tributed Processing, vol 1, pp. 318-362. MIT Press, Cambridge,
MA, 1986.

[28] L. Torvik, B. M. Wilamowski, “Modification of the Backprop-
agation Algorithm for Faster Convergence”, in Proc. of Fourth

Workshop on Neural Networks - WNN93, pp. 191-194, 1993

[29] G. J. Wang and C. C. Chen, “A Fast Multilayer Neural-
Network Training Algorithm Based on the Layer-By-Layer Op-
timizing Procedures”, IEEE Trans. on Neural Networks, vol 7,
no. 3, pp. 768-775, 1996.

[30] J. Y.F. Yam and T. W.S. Chow, “Feedforward Networks
Training Speed Enhancement by Optimal Initialization of the
Synaptic Coefficients”, IEEE Trans. on Neural Networks, vol
12, no. 2, pp. 430-434, 2001.


