FUZZY IDENTIFICATION AND CONTROL ALGORITHMS
BASED ON AN ETSK MODEL

Chen Yixin  Xiao Deyun

Department of Automation, Tsinghua University
Beijing, 100084, P.R. China
E-Mail: xiaody@mail.tsinghua.edu.cn

Abstract: This paper presents an extended Takagi-Sugeno-Kang Model (ETSK) based on
extension principle. Its analytic expression is derived and an algorithm to identify such a model
is proposed. A Variable Weights TSK Model (VWTSM) which is equivalent to ETSK model is
induced, and an ETSK-model-based fuzzy control algorithm is presented. In this algorithm the
fuzzy control rules are designed according to the rules of the VWTSM model. Simulation shows
that an ETSK model can give out more accurate long-range predictions and the control algorithm
can achieve better control performance than fuzzy PID control method.

Keywords: Fuzzy Model; Fuzzy Control; Identification Algorithm; Fuzzy Logic;
Fuzzy Inputs; Fuzzy Outputs; Rules.

1. INTRODUCTION

Fuzzy logic is widely applied to system modeling
and control to deal with the relationship between
imprecise, qualitative, linguistic assessments of
the system's input and output states. Linguistic models
(LM) (Sugeno, et al., 1993) and Takagi-Sugeno-Kang
model (TSK) (Sugeno, et al., 1993; Takagi, et al.,1985)
are two kinds of fuzzy models most commonly used.

For a Single Input Single Output (SISO) discrete
time system in State-Space description

\[
\begin{aligned}
\mathbf{x}(k+1) &= f(\mathbf{x}(k), u(k)) \\
y(k) &= g(\mathbf{x}(k), u(k))
\end{aligned}
\]

its Linguistic model is composed of rules in form of
state space

\[IF \ x_1(k) \ is \ A_{i1} \ AND \ ... \ AND \ x_p(k) \ is \ A_{ip}\]

\[THEN \ x_1(k+1) \ is \ C_{i1} \ AND \ ... \ AND \ x_p(k+1) \ is \ C_{ip}\]

IF \ y(k-1) \ is \ A_{i1} \ AND \ ... \ AND \ y(k-p) \ is \ A_{ip} \]

AND \ u(k) \ is \ B_{ij} \]

THEN \ y(k) \ is \ D_{j1} \]

where \(\mathbf{x}(k)=[x_1(k), x_2(k), ..., x_p(k)]^T \in \mathbb{R}^p\) is system state variables; \(u(k)\) and \(y(k)\)
are input and output of the system; \(x_j(k), u(k-1), y(k-1) \in \mathbb{R}^1; A_{ij}, B_{ij}, C_{ij} \) and \(D_{ij}\)
are fuzzy subsets of the corresponding universe of
discourse; \(j=1, ..., p; r=0, ..., p; q=0, ..., p\).

In a TSK model, instead of being a linguistic term,
the consequent of the rule is a linear numerical
function. The TSK model of the above system is
composed of rules in the form

\[IF \ y(k-1) \ is \ A_{i1} \ AND \ ... \ AND \ y(k-p) \ is \ A_{ip} \]

AND \(u(k) \ in \ B_{ij} \ AND \ u(k-1) \ is \ B_{ij} \]

AND \(...\,...\ AND \ u(k-q) \ is \ B_{ij}\]

1 Supported by the National Natural Science Foundation of
China and the Science and Technology Foundation of Chinese
Engineering Physics Research Institute.
THEN $y(k) = a_0 y(k-1) + \ldots + a_p y(k-p)$
+ $b_0 u(k) + \ldots + b_q u(k-q)$, $i = 1, \ldots, m$

where $u(k)$ and $y(k)$ are input and output of the system at time $k$; $a_0, b_0, \ldots, a_p, b_q \in \mathbb{R}^+$; $A_i$ and $B_i$ are fuzzy input sets of the corresponding universe of discourse; $i = 1, \ldots, q; r = 0, \ldots, q$.

The fuzzy input sets of a TSK model provide a non-linear scheduling of the linear parameters, and the output is the synthesis of the linear functions, which only have a local influence.

2. ETSK MODEL AND ITS ANALYTIC EXPRESSION

As an extension of TSK model, an ETSK model for a SISO system is composed of rules in the form

IF $y(k-1)$ is $A_i$ AND $\ldots$ AND $y(k-p)$ is $A_p$
AND $u(k)$ is $B_q$ AND $u(k-1)$ is $B_{q-1}$
AND $\ldots$ AND $u(k-q)$ is $B_1$

THEN $Y = a_0 \otimes y(k-1) \otimes \ldots \otimes a_p \otimes y(k-p)$
+ $b_0 u(k) \otimes \ldots \otimes b_q \otimes u(k-q)$

(1)

where $u(k)$ and $y(k-i) \in \mathbb{R}^+$ are the inputs of ETSK model; $Y$ is the fuzzy output of ETSK model; $a_0$ and $b_q$ are L.R (Left and Right Reference) type fuzzy numbers (Dubois, et al. 1980); $A_i$ and $B_i$ are fuzzy input sets of the corresponding universe of discourse, $i = 1, \ldots, m; j = 1, \ldots, q; r = 0, \ldots, q$; $\otimes$ is the extended addition of fuzzy numbers and $\otimes$ is the extended scalar product of fuzzy number.

Comparing with a TSK model, the consequent of the rule in an ETSK model is a fuzzy linear function, which is the combination of addition and scalar product of fuzzy numbers. There now follows a theorem relative to ETSK model.

**Theorem 1** Given a fuzzy system $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ described by Eq. (1), if $a_i$ and $b_i (i = 1, \ldots, m, j = 1, \ldots, q; r = 0, \ldots, q)$ are LR type fuzzy numbers then the system's input-output relation is

$$y(k) = \text{Centroid}([Y]) = \frac{\sum_{r=1}^{n} \alpha_r ([h_i]^T S_i) (h_i^T G_i)}{\sum_{r=1}^{n} \alpha_r ([h_i]^T S_i)}$$

(2)

where $\tau$ denotes the transpose, $y(k)$ is output of the system which is centroid of the fuzzy output $Y$, $
\alpha_r = \prod_{r=1}^{n} \mu_{A_i}(y(k-i)) \prod_{r=1}^{q} \mu_{B_i}(u(k-j))$

indicates the degree the $j$th rule is activated,

$h_i[y(k-1), \ldots, y(k-p), u(k), u(k-1), \ldots, u(k-q)]^T$

is the input vector,

$[h_i]^T[y(k-1), \ldots, y(k-p), u(k), u(k-1), \ldots, u(k-q)]^T$

is defined,

$$s_{a_i} = \int_{a_i} \mu_{A_i}(t) dt, \quad s_{b_i} = \int_{b_i} \mu_{B_i}(t) dt$$

are the area enclosed by the membership function and the axis,

$$g_{a_i} = \frac{\int_{a_i} \mu_{A_i}(t) dt}{s_{a_i}}, \quad g_{b_i} = \frac{\int_{b_i} \mu_{B_i}(t) dt}{s_{b_i}}$$

is the projection of the gravity center on the axis,

$$S_i = [s_{a_1}, \ldots, s_{a_p}, g_{a_1}, \ldots, g_{a_q}]^T$$

is the area coefficient vector, and

$$G_i = [g_{a_1}, \ldots, g_{a_p}, g_{b_1}, \ldots, g_{b_q}]^T$$

is the gravity center coefficient vector.

**Proof:** According to Mandani's implication, the $m$ rules of Eq. (1) can be connected to form the following fuzzy relation

$$R = \bigcup_{i=1}^{m} R_i$$

where $R_i$ indicates the fuzzy output $Y$ of the $i$th rule. Then the fuzzy output set $Y$ induced by the input vector $u$ is given by

$$Y = h \ast R = h \ast \left( \bigcup_{i=1}^{m} R_i \right)$$

For the convenience of analytic handling, substitute addition and product operators for $\land$ and $\lor$ operators (Mizumoto, 1991), and use the center of gravity defuzzification algorithm, the defuzzified output becomes

$$y(k) = \text{Centroid}(Y) = \frac{\int_{Y} y \mu_{Y}(y) dy}{\int_{Y} \mu_{Y}(y) dy}$$

(4)

It follows that

$$\sum_{i=1}^{m} \int_{Y} y \mu_{Y}(y) dy \int_{Y} \mu_{Y}(y) dy$$

$$y(k) = \frac{\sum_{i=1}^{m} \int_{Y} y \mu_{Y}(y) dy \int_{Y} \mu_{Y}(y) dy}{\sum_{i=1}^{m} \int_{Y} \mu_{Y}(y) dy}$$

(5)

according to Eq. (4) and considering the following:

1. The sum of two LR type fuzzy numbers is still an LR type fuzzy number, and the area of the sum equals the sum of the areas, the gravity center of the sum equals the sum of the gravity centers.

2. The scalar product of an LR type fuzzy number and a real number is still an LR type fuzzy number, and the area of the product equals the
product of the area of the fuzzy number and the absolute value of the real number, the gravity center of the product equals the product of the gravity center of the fuzzy number and the real number.

**Corollary 1** If \( s_{ij} = s_i^* = \text{Const} > 0, \quad i = 1, \ldots, m, \)
\( j = 1, \ldots, p, \quad r = 0, \ldots, q \) then
\[
y(k) = \text{Centroid}(Y) = \frac{\sum_{i=1}^{m} \alpha_i (k^i G_i)}{\sum_{i=1}^{m} \alpha_i}
\]

In this case, an ETSK model is equivalent to a TSK model. In other words, TSK model is a special case of ETSK model.

3. FUZZY IDENTIFICATION ALGORITHM BASED ON ETSK MODEL

Research in the identification of fuzzy models has yielded a wide variety of achievements (Kosko, 1991; Pedryce, 1984; Takagi, et al. 1985). In this section, an online fuzzy identification algorithm based on the ETSK model, described by Eq. (2), is proposed.

### 3.1 Identification of gravity center coefficient vector \( G \)

For given input vector \( k \), \( \alpha_i \) can be calculated from Eq. (3). If \( S_i \) is kept fixed, then Eq. (2) becomes
\[
y(k) = \frac{\sum_{i=1}^{m} \alpha_i (k^i G_i)}{\sum_{i=1}^{m} \alpha_i} = H^i G
\]
where
\[
c = \sum_{i=1}^{m} c_i, \quad c_i = a_i k^i S_i^*
\]
\[
H = \begin{bmatrix} c_1 k^1 & c_2 k^2 & \cdots & c_m k^m \end{bmatrix}
\]
\[
G = \begin{bmatrix} G_1^T, G_2^T, \ldots, G_m^T \end{bmatrix}
\]

Eq. (5) is a least square format where \( y(k) \) and \( H \) are measurable, so many identification methods, such as Least Square Method (LSM) or Forgetting Factor Method (FFM), can be applied to identify the parameter vector \( G \).

### 3.2 Identification of area coefficient vector \( S \)

Given input vector \( k \) and \( G \) is kept fixed, then Eq. (2) becomes
\[
y(k) = \frac{\sum_{i=1}^{m} \alpha_i (k^i S_i)}{\sum_{i=1}^{m} \alpha_i} = H^i S
\]
where
\[
d_i = a_i k^i G_i, \quad S = \begin{bmatrix} S_1^T, S_2^T, \ldots, S_m^T \end{bmatrix}
\]
\[
H_1 = \begin{bmatrix} d_1 k^1 & d_2 k^2 & \cdots & d_m k^m \end{bmatrix}
\]
\[
H_2 = \begin{bmatrix} c_1 k^1 & c_2 k^2 & \cdots & c_m k^m \end{bmatrix}
\]

Clearly, \( \alpha(k), H_1, \) and \( H_2 \) in Eq. (6) can be measured, so instantaneous training algorithms, such as Least Mean Square (LMS) or Normalized Least Mean Square (NLMS), can be adopted to identify the parameter vector \( S \) in Eq. (6).

3.3 Identification algorithm

The online identification algorithm of an ETSK Model is described as follows:

I. Choose the original values of \( h, G, S \) and cycle index \( N \);

II. For step \( k \)

   1. Keep \( S \) fixed and utilize Recursive Forgetting Factor (RFF) method to identify the gravity center coefficient vector \( G \);
   2. Keep \( G \) fixed and utilize Normalized Least Mean Square (NLMS) algorithm to identify the area coefficient vector \( S \);

III. \( k = k + 1 \); If \( k < N \), then go back to II, else end identification.

4. VARIABLE WEIGHTS TSK MODEL

The LR type fuzzy numbers and extended operations in the consequent of the rules increase the interpreting ability of ETSK model, but they also increase the difficulty in the fuzzy controller design in which extended real operations, especially extended division, are inevitable. In this section, a kind of Variable Weights TSK (VWTSK) model that is equivalent to ETSK model is induced. So that fuzzy numbers and extended operations in the consequent of the rules of an ETSK model are converted to real numbers and ordinary operations.

A type of VWTSK model is composed of rules in the form

**IF** \( y(k-1) = A_1 \) **AND** \( y(k-2) = A_2 \) **AND** \( \ldots \) **AND** \( y(k-p) = A_p \)

**AND** \( u(k) = B_1 \) **AND** \( u(k-1) = B_2 \) **AND** \( \ldots \) **AND** \( u(k-q) = B_q \)

**THEN** \( y(k) = g_{a_0} y(k-1) + \ldots + g_{a_q} u(k-q), \text{WITH} \quad a_0(k) \) (7)

where \( a(k) \) and \( y(k) \) are input and output of the model.
at k time; \( y(kj), u(k-j), g_{ik}, g_j \in \mathbb{R}^1 \); \( A_j \) and \( B_n \) are fuzzy input sets of the corresponding universe of discourse; \( \omega_i(h) \) is the weight of the \( i \)th rule, \( h \) is the input vector denoted in Theorem 1; \( i=1, \ldots, m, j=1, \ldots, p_i, t=0, \ldots, q_i \).

**Theorem 2** Given a fuzzy system \( F: \mathbb{R}^{n-x-t} \rightarrow \mathbb{R}^t \) described by Eq. (7), if

\[
\omega_i(h) = \frac{\sum_{j=1}^{m} |h_j^T S_j|}{\sum_{j=1}^{m} |h_i^T S_j|}
\]

(8)

then it is equivalent to the fuzzy system described by Eq. (1) that is they have the same input-output relation

\[
y(k) = \frac{\sum_i c_i(g_i h G))}{\sum_i c_i(g_i h G)}.
\]

**Proof:** For the VWTSK model described by Eq. (7) it follows from Eq. (8) that

\[
y(k) = \frac{\sum \int_{-\infty}^{\infty} \sum_{i=1}^{m} [\alpha_i(g_i h G) \delta(y-y(k))] dy}{\int_{-\infty}^{\infty} \sum_{i=1}^{m} [\alpha_i(g_i h G) \delta(y-y(k))] dy}
\]

\[
= \frac{\sum_{i=1}^{m} \int_{-\infty}^{\infty} [\alpha_i(g_i h G) \delta(y-y(k))] dy}{\sum_{i=1}^{m} \int_{-\infty}^{\infty} [\alpha_i(g_i h G) \delta(y-y(k))] dy}
\]

\[
= \frac{\sum_{i=1}^{m} \alpha_i(g_i h G))}{\sum_{i=1}^{m} \alpha_i(g_i h G))}
\]

Thus, Theorem 2 has been proved. □

Theorem 2 provides a direct relationship between the gravity center coefficient vector \( G_n \), the area coefficient vector \( S_n \), the input vector \( h \) and weights. ETSK model is equivalent to a kind of VWTSK model in which the weights of the rules are determined by system inputs and area coefficient vectors, and the linear parameters of the consequent are gravity center coefficient vectors.

5. **Fuzzy Control Algorithm Based on an ETSK Model**

Theorem 2 offers us a method to construct a fuzzy control algorithm from an ETSK model. It can be expressed as:

1. Transform the ETSK model to the VWTSK model by using Theorem 2;
2. Design the corresponding control algorithm \( u(k+1) = R_c(x^c) \) in accordance with the consequent of the \( i \)th rule of the VWTSK Model

\[
y(k) = g_{q_i} y(k-1), \ldots, g_{q_j} y(k-1)
\]

for example, \( R_c(x^c) \) can be Deadbeat controller (DB) or Minimum Variance controller (MV);
3. Keep the antecedent of the \( i \)th rule of the VWTSK Model fixed, and substitute \( R_c(x^c) \) for its consequent;
4. \( w_i(h) \), the weight of the \( i \)th rule of the fuzzy control algorithm, equals to \( \omega_i(h) \), that is

\[
w_i(h) = \frac{|h_i^T S_i|}{\sum_{j=1}^{m} |h_j^T S_j|}
\]

From the step above (1 to IV), the fuzzy control algorithm based on an ETSK model is composed of rules in the form

IF \( y(k-1) = A_1 \) AND \( y(k-2) = A_2 \) AND \( \ldots \) AND \( y(k-p) = A_p \) AND \( u(k-1) = B_1 \) AND \( \ldots \) AND \( u(k-q) = B_q \) THEN \( u(k+1) = R_c(x^c)(x_i) \), WITH \( w_i(h) \)

where \( x(k) = r(k)-y(k) \); \( r(k) \) is the command input; \( y(k-1), u(k-1) \); \( e(k), r(k) \in \mathbb{R}^1 \); \( A_j \) and \( B_q \) are fuzzy input sets of the corresponding universe of discourse; \( h \) is the input vector; \( w_i(h) \) is the weight of the \( i \)th rule; \( j=1, \ldots, p_i, t=0, \ldots, q_i \).

6. **Simulation**

6.1 Identification of ETSK model

Consider a nonlinear system

\[
y(k) = 0.3y(k-1)u(k-2) - 0.7y(k-2) + 0.4u(k-1) + \cos(0.7y(k-1)) + 0.3u^2(k-1) + 0.3y^2(k-1)
\]

where \( x(k) \) is a uniformly distributed random signal on \([-1, 1] \); \( y(0) = y(1) = u(0) = u(1) = 0 \).

The fuzzy partition of \( y(k-1), y(k-2), u(k-1) \) and \( u(k-2) \) are shown in Fig. 1.
Fig. 1 Fuzzy partition of $y(k-1), y(k-2), u(k-1)$ and $u(k-2)$

Using the method proposed by Takagi (Takagi, et al. 1985), a linguistic model comprised of 36 rules is obtained after 300 iterations:

1. IF $y(k-1)$ is Negative AND $y(k-2)$ is Negative AND $u(k-1)$ is Negative AND $u(k-2)$ is Negative THEN $y(\theta) = 0.5107$ ALSO
2. IF $y(k-1)$ is Negative AND $y(k-2)$ is Negative AND $u(k-1)$ is Negative AND $u(k-2)$ is Positive THEN $y(\theta) = -0.8717$ ALSO
3. IF $y(k-1)$ is Positive AND $y(k-2)$ is Positive AND $u(k-1)$ is Positive AND $u(k-2)$ is Positive THEN $y(\theta) = 0.1102$.

Using the same method and iterations, a TSK model comprised of 3 rules is obtained:

1. IF $y(k-1)$ is Negative THEN $y(\theta) = 0.2413y(k-1)-0.6724y(k-2)+0.5107u(k-1)-0.2376u(k-2)$ ALSO
2. IF $y(k-1)$ is Zero THEN $y(\theta) = -0.1279y(k-1)+0.7159y(k-2)+0.6112u(k-1)-0.0940u(k-2)$ ALSO
3. IF $y(k-1)$ is Positive THEN $y(\theta) = 0.3263y(k-1)-0.6679y(k-2)+0.4439u(k-1)+0.3145u(k-2)$.

Using the identification algorithm in section 3 and after 300 iterations, an ETSK model comprised of 9 rules is obtained:

1. IF $y(k-1)$ is Negative THEN $y(\theta) = \{1.2156,0.2505\}y(k-1)+\{1.0968,-0.6707\}y(k-2)+\{0.9246,-0.5060\}u(k-1)$
2. $\{0.9246,0.5060\}u(k-1)$
3. $\{1.1780,-0.2545\}u(k-2)$ ALSO
4. IF $y(k-1)$ is Zero THEN $y(\theta) = \{1.3220,-0.1061\}y(k-1)+\{1.1091,-0.7145\}y(k-2)+\{1.2341,0.6076\}u(k-1)$
5. $\{1.1091,-0.7145\}y(k-2)+\{1.2341,0.6076\}u(k-1)$
6. $\{1.6682,0.3018\}u(k-1)$ ALSO
7. IF $y(k-1)$ is Positive THEN $y(\theta) = \{0.7047,0.3221\}y(k-1)+\{1.0465,-0.6701\}y(k-2)+\{1.0841,0.4359\}u(k-1)$
8. $\{1.0465,-0.6701\}y(k-2)+\{1.0841,0.4359\}u(k-1)$
9. $\{1.0743,0.3240\}u(k-1)$ ALSO

where (***) denotes an LR type fuzzy number's area and gravity center.

Fig. 2 shows the five-step prediction error of the LM model (10), the TSK model (11) and the ETSK model (12). It can be seen that the prediction error of the ETSK model has the least mean $E(e(\theta))$ and variance $\text{Var}(e(\theta))$. The other experiments also show that for different prediction steps, the ETSK model always outperforms the LM model and the TSK model under the same conditions.

Fig. 2. Five step prediction error of LM (10), TSK model (11) and ETSK model (12).

6.2 Example of control algorithm based on ETSK model

Consider the nonlinear system (9), a fuzzy PID control algorithm and a control algorithm based on the ETSK model are designed to trace square wave signal $r(k)$.

The fuzzy PID control algorithm comprised of 18 rules is designed as follows:

1. IF $e(k)$ is Negative AND $\Sigma e(k)$ is Negative AND $\Delta e(k)$ is Negative THEN $u(k) = -0.9$ ALSO
2. IF $e(k)$ is Negative AND $\Sigma e(k)$ is Zero AND $\Delta e(k)$ is Negative THEN $u(k) = -0.3$ ALSO
3. IF $e(k)$ is Negative AND $\Sigma e(k)$ is Positive AND $\Delta e(k)$ is Negative THEN $u(k) = 0.0$ ALSO
4. IF $e(k)$ is Positive AND $\Sigma e(k)$ is Positive AND $\Delta e(k)$ is Positive THEN $u(k) = 0.9$.

The control algorithm based on the ETSK model is designed as follows:

1. IF $y(k-1)$ is Negative THEN $u(k)=0.0304u(k-1)-0.5906e(k)$
2. -$0.3896\dot{e}(k)+1.7087\ddot{e}(k)$
3. WITH $\psi=[1.2156y(k-1)+1.0968y(k-2)$
4. $+0.9246u(k-1)+1.1780u(k-2)]/s(\theta)$ ALSO
5. IF $y(k-1)$ is Zero THEN $u(k)=0.0304u(k-1)+0.4062e(k)$
6. -$1.2518\dot{e}(k)+2.4418\ddot{e}(k)$
7. WITH $\psi=[1.3220y(k-1)+1.1091y(k-2)$
8. $+1.2341u(k-1)+1.1132u(k-2)]/s(\theta)$ ALSO
9. IF $y(k-1)$ is Positive THEN $u(k)=0.0120u(k-1)+0.3004e(k)$
10. -$0.5572\dot{e}(k)+1.2286\ddot{e}(k)$. 

fuzzy PID control, this control algorithm can achieve better control performance.

Finally, the combination of an ETSK model, identification algorithm and control algorithm will produce a new strategy of fuzzy adaptive control.

REFERENCES


