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Abstract— The performance of most region-based image
retrieval systems depend critically on the accuracy of ob-
ject segmentation. We propose a region matching approach,
unified feature matching (UFM), which greatly increases the
robustness of the retrieval system against segmentation re-
lated uncertainties. In our retrieval system, an image is
represented by a set of segmented regions each of which
is characterized by a fuzzy feature reflecting color, texture,
and shape properties. The resemblance between two images
is then defined as the overall similarity between two fami-
lies of fuzzy features, and quantified by the UFM measure.
The system has been tested on a database of about 60,000
general-purpose images. Experimental results demonstrate
improved accuracy and robustness.

I. Introduction

In many application fields such as biomedicine, the mil-
itary, education, commerce, entertainment, crime preven-
tion and World Wide Web searching, large volume of data
appear in image form. As a result, it happens quite of-
ten that a customer or operator need to find relevant in-
formation from an image database based on the contents
of the images. This problem has been known as content-
based image retrieval (CBIR) for more than a decade. The
difficulties and complexities in quantifying “meanings” of
images via feature sets and designing efficient matching al-
gorithms make CBIR a very challenging problem. There is
a rich resource of prior work on this subject. The work that
are most related to ours include IBM QBIC [4], MIT Pho-
tobook [12], Virage System [6], Columbia VisualSEEK [13],
Stanford WBIIS [15], UIUC MARS [9], UCSB NeTra sys-
tem [10], Berkeley Blobworld system [1], PicHunter sys-
tem [3], PicToSeek system developed by Gevers et al. [5],
and the work by Vertan and Boujemaa [14].

A central task in CBIR systems is similarity comparison.
In general, the comparison is performed either globally us-
ing techniques such as histogram matching and color layout
indexing, or locally based on decomposed regions (objects)
of the images. A major drawback of the global histogram
search lies in its sensitivity to intensity variations, color dis-
tortions, and cropping. The color layout indexing method
is proposed to alleviate this drawback. The color layout of
an image is essentially a low resolution representation of
the image obtained by partitioning the image into blocks
and taking the average or dominating color of each block.
In general color layout searching is sensitive to shifting,
cropping, scaling, and rotation [16].

Recognizing these deficiencies and the fact that human
beings are capable of this technically complex performance,
researchers try to relate human perception to CBIR sys-
tems. In a human visual system, although color and tex-
ture are fundamental aspects of visual perceptions, human
discernment of certain visual contents could potentially be
associated with interesting classes of objects, or semantic
meanings of objects in the image. Motivated by this intrin-
sic attribute of human visual perception, a region-based
retrieval system applies image segmentation to decompose
an image into regions, which correspond to objects if the
decomposition is ideal. Since the retrieval system has iden-
tified objects in the image, it is relatively easy for the sys-
tem to recognize similar objects at different locations and
with different orientations and sizes.

For general-purpose images such as the images in a photo
library or the images on the World Wide Web, precise ob-
ject segmentation is still an open problem in computer vi-
sion. Li et al. [7] propose an integrated region matching
(IRM) scheme which allows for matching a region of one
image to several regions of another image and thus de-
creases the impact of inaccurate segmentation by smooth-
ing over the imprecision. The scheme is implemented in
the SIMPLIcity system [16]. Nevertheless, the inaccura-
cies are not explicitly expressed in the IRM measure. Se-
mantically precise image segmentation by an algorithm is
very difficult [11][17]. However, a single glance is suffi-
cient for human to identify circles, straight lines, and other
complex objects in a collection of points and to produce a
meaningful assignment between objects and points in the
image. Although those points cannot always be assigned
unambiguously to objects, human recognition performance
is hardly affected. We can often identify the object of in-
terest correctly even when its boundary is blurry. Based
upon these observations, we hypothesize that, by softening
the boundaries between regions, the robustness of a region-
based image retrieval system against segmentation-related
uncertainties can be improved.

II. The UFM Similarity Measure

A. Image Segmentation and Fuzzification

To segment an image, the system partitions the image
into blocks with 4×4 pixels and extracts a feature vector for
each block. We choose this block size to optimize between



texture effectiveness and segmentation coarseness. The k-
means algorithm is used to cluster the feature vectors into
several classes with every class corresponding to one region
in the segmented image. The number of clusters (regions)
is selected adaptively. Because clustering is performed in
the feature space, blocks in each cluster does not have to
be neighboring blocks in the images. This way, we preserve
the natural clustering of objects and allow classification of
textured images [8].

Six features are used for segmentation, as presented
in [7]. Three of them are the average color components
in a 4×4 block. We use the well-known LUV color space,
where L encodes luminance, and U and V encode color
information (chrominance). The other three represent en-
ergy in the high frequency bands of the wavelet transforms,
that is, the square root of the second order moment of
wavelet coefficients in high frequency bands obtained from
a Daubechies-4 wavelet transform on the L component of
the image block.

Here are some notations that will be used in the paper.
R and N denote the sets of real numbers and positive inte-
gers, respectively. Rk represents a k dimensional Euclidean
space. ~fi ∈ R6 is the feature vector (used for segmenta-

tion) of the ith block of an image. F = {~fi ∈ R6 : 1 ≤ i ≤
B, i ∈ N} is the set of all block feature vectors of an image,
where B is the number of blocks in an image. Feature set
Fj ⊂ F contains all feature vectors in the jth cluster, where
1 ≤ j ≤ C, j ∈ N, C ≥ 2 is the number of clusters. We also

define the center of Fj (or jth cluster) as ~̂f j =

∑
~f:~f∈Fj

~f

V(Fj)

where V(Fj) is the volume of Fj . In general, ~̂f j may not

be an element of Fj . Rj ⊂ N2 is the region (set of pixels)
corresponding to feature set Fj .

To describe shape properties, three extra features are
calculated for each region. They are normalized inertia
of order 1 to 3. For a region Rj ⊂ N2 in the image
plane, which is a finite set, the normalized inertia of or-

der γ is given as I(Rj ,γ) =

∑
(x,y):(x,y)∈Rj

[(x−x̂)2+(y−ŷ)2]
γ
2

V(Rj)
1+

γ
2

,

where (x̂, ŷ) is the centroid of Rj . The normalized inertia
is invariant to scaling and rotation. The minimum nor-
malized inertia is achieved by spheres. Denote the γth
order normalized inertia of spheres as Iγ . We define shape

feature ~hj of region Rj as I(Rj ,γ) normalized by Iγ , i.e.,

~hj =
[

I(Rj ,1)

I1
,

I(Rj ,2)

I2
,

I(Rj ,3)

I3

]T

.

B. Fuzzy Feature Sets

After segmentation, an image can be viewed as a col-
lection of regions. Equivalently, in the feature space, a
segmented image is characterized by a collection of feature
sets. These feature sets form a partition of F, i.e., for any
feature vector in F, it belongs to exactly one feature set.
However, segmentation can not be perfect. As a result, for

many feature vectors, a unique decision between in and not
in the feature set is impossible. Only a degree (between 0
and 1) of membership that it belongs to some feature set
should be given, and it could belong to several feature sets
with some possibly different degrees. Fuzzy set is a good
description for this phenomenon.

Some commonly used prototype membership functions
are cone, trapezoidal, B-splines, exponential, Cauchy, and
paired sigmoid functions. We have tested the cone, trape-
zoidal, exponential, and Cauchy functions on our system.
In general, the performance of the exponential and the
Cauchy functions is better than that of the cone and trape-
zoidal functions. The exponential and Cauchy functions
are comparable in performance. Considering the computa-
tional complexity, we pick the Cauchy function because it
requires much less computations.

Thus we define the membership function for the feature

set Fj , MFj
: R6 → [0, 1], as

MFj
(~f) =

1

1 +
(

‖~f− ~̂fj‖

σf

)α
(1)

where σf = 2
C(C−1)

∑C−1
i=1

∑C
k=i+1 ‖

~̂f i −
~̂fk‖ is the average

distance between cluster centers. Similarly, the member-

ship function for the shape feature ~hj , M~hj
: R3 → [0, 1],

is

M~hj
(~h) =

1

1 +
(

‖~h−~hj‖
σh

)α (2)

where σh = 2
C(C−1)

∑C−1
i=1

∑C
k=i+1 ‖

~hi − ~hk‖ is the average

distance between shape features. The experiments show
that the performance changes insignificantly when α is in
the interval [0.7, 1.5], but degrades rapidly outside the in-
terval. So we set α = 1 in both (1) and (2) to simplify the
computation.

C. Unified Feature Matching

A direct consequence of fuzzy feature representation is
the region-level similarity measure. Instead of using the
Euclidean distance between two feature vectors, a fuzzy
similarity measure is used to describe the resemblance of
two regions. It is essentially the similarity between two
fuzzy sets. Here we adopt the following definition.

Let A and B be fuzzy sets defined on Rk with corre-
sponding membership functions MA : Rk → [0, 1] and
MB : Rk → [0, 1], respectively. The intersection of A and
B, denoted by A∩B, is a fuzzy set on Rk with membership
function, MA∩B : Rk → [0, 1], defined as

MA∩B(~x) = min[MA(~x),MB(~x)]. (3)

The union A and B, denoted by A∪B, is a fuzzy set on Rk

with membership function, MA∪B : Rk → [0, 1], defined
as

MA∪B(~x) = max[MA(~x),MB(~x)]. (4)



The similarity between A and B, S(A,B) ∈ [0, 1], is given
by

S(A,B) = sup
~x:~x∈Rk

MA∩B(~x). (5)

For the fuzzy sets defined by Cauchy functions, calculat-
ing similarity according to (5) is relatively simple. This is
because Cauchy function is symmetric and unimodal, and
thus the maximum of (3) can only occur on the line seg-
ments connecting the center points of two functions. It is
not hard to show that for fuzzy sets A and B on Rk with
Cauchy membership functions MA(~x) = 1

1+

(
‖~x−~u‖

σa

)α and

MB(~x) = 1

1+

(
‖~x−~v‖

σb

)α , the similarity between A and B is

S(A,B) =
(σa + σb)

α

(σa + σb)α + ‖~u − ~v‖α
. (6)

The similarity between a region and an image can be
computed from the region-level similarities. Let Fq = {Fq

j :
1 ≤ j ≤ Cq, j ∈ N} denote the collection of fuzzy sets for
a query image segmented into Cq regions, and Ft = {Ft

j :
1 ≤ j ≤ Ct, j ∈ N} denote the collection of fuzzy sets for
a target image segmented into Ct regions. First, for every
F

q
j ∈ Fq, we define the similarity between it and Ft as

l
(q,t)
j = S(Fq

j ,

Ct⋃

i=1

Ft
i). (7)

Combining l
(q,t)
j ’s together, we get a vector ~l(q,t) =

[l
(q,t)
1 , l

(q,t)
2 , · · · , l

(q,t)
Cq

]T . Similarly, the similarity between

any Ft
j ∈ Ft and Fq is

l
(t,q)
j = S(Ft

j ,

Cq⋃

i=1

F
q
i ), (8)

and ~l(t,q) = [l
(t,q)
1 , l

(t,q)
2 , · · · , l

(t,q)
Ct

]T . Finally, we define the

similarity vector between Fq and Ft, denoted by ~L(Fq,Ft),
as

~L(Fq,Ft) =

[
~l(q,t)

~l(t,q)

]
,

which is a Cq + Ct dimensional vector with values of all
entries within the real interval [0, 1].

It can be shown that if two images are the same, ~L(Fq,Ft)

contains all 1’s. If a fuzzy feature of one image is very
different from all the fuzzy features of the other image,
in the sense that the distances between their centers are
large, the corresponding entry in ~L(Fq,Ft) would be close
to 0. Equations (7) and (8) can be equivalently computed
by

l
(q,t)
j = max

i=1,···,Ct

S(Fq
j ,F

t
i), l

(t,q)
j = max

i=1,···,Cq

S(Ft
j ,F

q
i ). (9)

From (9), it is clear that the matching is in a Winner Takes

All fashion. F
q
j (Ft

j) is matched with all Ft
i’s (Fq

i ’s), and the
winner is the one with the maximum degree of membership.

Although ~L(Fq,Ft) describes the similarity between the
query and target images, it is certainly not handy for im-
age retrieval. So we define the UFM similarity measure
as the summation of all the weighted entries of ~L(Fq,Ft)

because each entry of ~L(Fq,Ft) quantifies the similarity be-
tween a fuzzy feature of the query (target) image and all
fuzzy features of the target (query) image.

There are many ways of choosing weights. If we as-
sume every region being equally important, then all weights
equal to 1

Cq+Ct
(the image with more regions is favored).

If only the regions within the same image are equally im-
portant, then the weights for ~l(q,t) and ~l(t,q) are 1

2Cq
and

1
2Ct

, respectively (the image with less regions is favored).
We can also take the location of the regions into consid-
eration, and assign higher weights to regions closer to the
center of the image (center favored scheme, assuming the
most important objects are always near the image center)
or conversely to regions adjacent to the image boundary
(border favored scheme, assuming images with similar se-
mantics have similar backgrounds). Another choice is area
percentage scheme. It uses the percentage of the image
covered by a region as the weight for that region. In our
current system, both area percentage and border favored
schemes are used.

The whole UFM scheme used in our system is summa-
rized as follows.

1. Image segmentation, fuzzification, and classification.
The query image is represented as Fq and Hq. The tar-
get image is represented as Ft and Ht. Fq and Ft are
the classes of fuzzy sets which are defined according to
(1). Hq and Ht are collections of fuzzy sets (containing
shape properties) whose membership functions are consis-
tent with (2)1. The query image is classified as either a
textured or a non-textured image [8].
2. Fuzzy Region Matching.
~L(Fq,Ft) is calculated using equations (1,6,9).
3. Fuzzy Shape Matching.
~L(Hq,Ht) is calculated using equations (2,6,9). This step
is needed only if the query image is classified as a non-
textured image.
4. Similarity Measure calculation.
If the query image is textured, the similarity measure for
two images, m(q,t), is

m(q,t) =
1

2
~LT

(Fq,Ft)
[(1 − λ)~w + λ~µ].

1In our system, all images in the database have been segmented
offline. A query image needs to go through this step only if it is not
in the database.



Otherwise,

m(q,t) =
1 − δ

2
~LT

(Fq,Ft)
[(1 − λ)~w + λ~µ] +

δ

2
~LT

(Hq,Ht)
~w.

Here ~w is a vector containing the area percentages of the
query and target images, ~µ contains normalized weights
which favor regions near the image boundary. The sum-
mation of all entries of ~w or ~µ equals 2.

In this matching scheme, for non-textured query im-
age, the overall measure reflects three types of similarities.
~LT

(Fq,Ft)
~w favors the matching of regions with larger areas.

~LT
(Fq,Ft)

~µ characterizes the similarity of the backgrounds

of two images. And ~LT
(Hq,Ht)

~w describes the similarity of

the shape of the objects in both images. All of them are
weighted by λ and δ which are in the real interval [0, 1].
For texture images, the matching according to shape in-
formation is skipped since region shape is not perceptually
important for such images. In our system, both λ and δ

are chosen to be 0.1. When they are within [0.05, 0.3], no
major system performance deterioration is observed in our
experiments. m(q,t) is always in the real interval [0, 1], and
equals 1 if only if two images are same. In general, there
is little resemblance between images if m(q,t) ≤ 0.5. So the
UFM measure is very intuitive for query users.

III. Experimental Results

The system is implemented on a Pentium III 700 MHz
PC running Linux operating system with a general-purpose
image database including about 60,000 images. These im-
ages are stored in JPEG format with size 256 × 384 or
384 × 256. Each image is associated with a keyword de-
scribing the main subject of the image. About 20 re-
search groups around the world have downloaded our image
database 2 and use as a testbed for benchmarking purposes.
In our current system all 60,000 images in the database
are automatically classified into two semantic types: tex-
tured photograph, and non-textured photograph [8]. Fea-
ture extraction and image segmentation for all images in
the database are performed off-line, which takes about 18
hours. On average, it takes about one second to segment
and compute the fuzzy features for an image, and another
0.7 seconds to calculate and sort the UFM measures.

Compared with other region-based retrieval systems,
such as [1], the query interface, which is shown in Figure 1,
for our system is very simple. It provides a CGI-based
Web access interface and a CGI-based outside query inter-
face. The Web access interface is designed for query images
which are in the database. The system provides a Random

option that will give a user a random set of images from
the database to start with. Users can also enter the ID of
an image as the query. If the user moves the mouse on top
of a thumbnail shown in the window, the thumbnail will

2Available at URL: http://wang.ist.psu.edu/IMAGE

Fig. 1. The query interface.

be automatically switch to its region segmentation with
each region painted with corresponding color. This fea-
ture is important for partial region matching since the user
may choose a subset of the regions of an image to form a
query rather than using the entire query image. The out-
side query interface allows the user to submit any image on
the Internet as a query image to the system by entering the
URL of the image. Our system is capable of handling any
image format from anywhere on the Internet and reachable
by our server via the HTTP protocol. The image is down-
loaded and processed by out system in real-time. The high
efficiency of our image segmentation and matching algo-
rithm made this feature possible.

To qualitatively illustrate the accuracy of the system
over the 60,000-image COREL database, we randomly pick
5 query images with different semantics, namely natural
out-door scene, horses, vehicle, cards, and people. For
each query example, we manually exam the precision of
the query results depending on the relevance of the image
semantics. Due to space limitation, only top 11 matches
to each query are shown in Figure 2. We also provide the
number of relevant images among top 31 matches. For each
block of images, the query image is on the upper-left cor-
ner. There are three numbers below each image. From
left to right they are: the ID of the image in the database,
the value of the UFM measure between the query and the
matched images, and the number of regions in the image.

The robustness of system is also tested with respect
to image alterations such as intensity variation, sharpness
variation, color distortion, shifting, and cropping. Figure 3
shows some query results using the 60,000-image COREL
database. The query image is the left image for each group
of images. In this example, the first retrieved image is ex-
actly the unaltered version of the query image for all tested
image alterations.

To provide more objective comparisons, the system per-
formance is evaluated based on a subset of the COREL
database, formed by 10 image categories, each containing
100 pictures. The categories are Africa, Beach, Build-
ings, Dinosaurs, Elephants, Flowers, Horses, Mountains,
and Food. Within this database, it is known whether



(a) Out-door scene; 9 matches out of 11; 21 matches out of 31

(b) Horses; 11 matches out of 11; 28 matches out of 31

(c) Vehicle; 10 matches out of 11; 24 matches out of 31

(d) Cards; 11 matches out of 11; 25 matches out of 31

(e) People; 10 matches out of 11; 23 matches out of 31

Fig. 2. The accuracy of the UFM measure.

any two images are of the same category. In particular,
a retrieved image is considered a match if and only if it
is in the same category as the query. This assumption
is reasonable since the 10 categories were chosen so that
each depicts a distinct semantic topic. Every image in
the sub-database was tested as a query, and the retrieval
ranks of all the rest images were recorded. Three statis-
tics were computed for each query: the precision within
the first 100 retrieval images, the mean rank of all the
matched images, and the standard deviation of the ranks
of matched images. We use entropy to characterize the
segmentation-related uncertainties in an image. For an

(a) Brighten 33%

(b) Darken 25%

(c) 10% more saturated

(d) 9% less saturated

(e) Blur with a 20 × 20, σ = 16 Gaussian filter

(f) Sharpen with 5 × 5 filter

(g) Random spread 6 pixels

(h) 67% cropping

Fig. 3. The robustness of the UFM measure to image alterations.
The query image is the first image in each example.

image with C segmented regions, its entropy is defined as
E{R1,···,RC} = −

∑C
j=1 P (Rj) log[P (Rj)] where P (Rj) is

the percentage of the image covered by region Rj . The
larger the value of entropy, the higher the uncertainty level.

To give a fair comparison between UFM and IRM at dif-
ferent uncertainty levels, we perform the same experiments
for different average values of C. The performance in terms
of overall average precision p, overall average mean rank r,
and overall average standard deviation σ are evaluated for
both approaches. The results are given in Figure 4. As
we can see, the overall average entropy E increases when
images are, on average, segmented into more regions. In
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Fig. 4. Comparing the UFM scheme with the IRM method on the
robustness to image segmentation: overall average entropy E, overall
average precision p, overall average mean rank r, and overall average
standard deviation σ.

other words, the uncertainty level increases when segmen-
tation becomes finer. At all uncertainty levels, the UFM
scheme performs better than the IRM method in all three
statistics, namely p, r, and σ. In addition, there is a sig-
nificant increase in p and a decrease in r for the UFM
scheme as the average number of regions increases. While
for the IRM method, p and r almost remain unchanged for
all values of C. This can be explained as follows. When
segmentation becomes finer, although the uncertainty level
increases, more details (or information) about the original
image are also preserved. Compared with the IRM method,
the UFM scheme is more robust to segmentation-related
uncertainties and thus benefits more from the increasing of
the average amount of information per image.

IV. Conclusions

We have developed UFM, a image similarity measure for
region-based image retrieval using fuzzified region repre-
sentations. The UFM measure has two major advantages:
• Compared with retrieval methods based on individual re-
gions, the UFM approach reduces the adverse effect of in-
accurate segmentation, and make the retrieval system more
robust to image alterations.
• Compared with overall similarity approaches, such as
that proposed in [7], the UFM is better in extracting useful
information under the same uncertain conditions.
Experiments have shown the accuracy of the scheme and
the robustness to image segmentation and image alter-
ations.
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