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Abstract— This paper investigates the connection between
additive fuzzy systems and kernel machines. We prove that,
under quite general conditions, these two seemingly quite
distinct models are essentially equivalent. As a result, algo-
rithms based upon Support Vector (SV) learning are pro-
posed to build fuzzy systems for classification and function
approximation. The performance of the proposed algorithm
is illustrated using extensive experimental results.

Keywords— Fuzzy systems, support vector machines, sup-
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I. INTRODUCTION

Since the publication of L.A. Zadeh’s seminal paper on
fuzzy sets [32], fuzzy set theory and fuzzy logic have evolved
into powerful tools for managing uncertainties inherent
in complex systems. In general, building a fuzzy system
consists of three basic steps [29]: structure identification
(variable selection, partitioning input and output spaces,
and choosing membership functions), parameter estima-
tion, and model validation.

Deciding the number of input variables is referred to the
problem of variable selection, i.e., selecting input variables
that are most predictive of a given outcome. Given a set
of input and output variables, a fuzzy partition associates
fuzzy sets with each variable. There are roughly two ways
of doing it: data independent partition and data dependent
partition. The former approach partitions the input space
in a predetermined fashion. Omne of the commonly used
strategies is to assign fixed number of linguistic labels to
each input variable. The partition of the output space then
follows from supervised learning. Although this scheme is
simple to implement, it has two severe drawbacks:

e The performance of the resulting system may be very
bad if the input space partition is quite distinct from the
distribution of data. Optimizing output space partition
alone is not sufficient.

o It suffers from the curse of dimensionality. If each input
variable is allocated m fuzzy sets, a fuzzy system with n
inputs and one output needs on the order of m™ rules.
Various data dependent partition methods have been pro-
posed to alleviate these drawbacks. They are basically
based on data clustering techniques [6], [20], [25].

Although a fuzzy partition can generate fuzzy rules, re-
sults are usually very coarse with many parameters needing
to be learned and tuned. Various optimization techniques
are proposed to solve this problem. Genetic algorithms [4]

and artificial neural networks [11] are two of the most pop-
ular and effective approaches.

After going through the long journey of structure iden-
tification and parameter estimation, can we infer that we
get a good fuzzy model? Conclusions could not be drawn
without answering the following two questions:

o How capable can a fuzzy model be?

o How well can the model, built on finite amount of data,
capture the concept underlying the data?

The first question could be answered from the perspective
of function approximation. Several types of fuzzy models
are proven to be “universal approximators” [18], [31]. The
second question is about the generalization performance,
which is closely related to several well-known problems in
the statistics and machine learning literature, such as the
structural risk minimization (SRM) [26], the bias variance
dilemma [8], and the overfitting phenomena [1]. Loosely
speaking, a model, build on finite amount of training data,
generalizes the best if the right tradeoff is found between
the training accuracy and the “capacity” of the model set
from which the model is chosen. On one hand, a low “ca-
pacity” model set may not contain any model that fits the
training data well. On the other hand, too much freedom
may eventually generate a model behaving like a refined
look-up-table: perfect for the training data but (maybe)
poor on generalization.

Researchers in the fuzzy systems community attempt to
tackle this problem with roughly two approaches:(1) use
the idea of cross-validation to select a model that has the
best ability to generalize [24]; (2) focus on model reduc-
tion, which is usually achieved by rule base reduction [30],
to simplify the model. In statistical learning literature,
the Vapnik-Chervonenkis (VC) theory [27] provides a gen-
eral measure of model set complexity, and gives associated
bounds on generalization. However, no efforts have been
made to apply the VC theory and the related techniques
to construct fuzzy systems. The work presented here tries
to bridge this gap.

The remainder of the paper is organized as follows. In
Section II, a brief overview of the VC theory and Support
Vector Machines (SVMSs) is presented. Section IIT describes
the equivalence of kernel machines and a class of additive
fuzzy systems. The SV algorithm is then applied to build
fuzzy classifiers and function approximators in Section I'V.
Section V provides the experimental results. And finally,



we conclude in Section VI together with a discussion of
future work.

II. VC THEORY AND SUPPORT VECTOR MACHINES

For gentle tutorials, we refer interested readers to
Burges [2] and Smola et al. [22]. More exhaustive treat-
ments can be found in the book by Vapnik [27].

A. VC Theory

Let’s consider a two-class classification problem of as-
signing class label y € {+1,—1} to input feature vec-
tor £ € R™ We are given a set of training samples
{(&1,v1), -, (@, y)} CR™ x {+1,—1} that are drawn in-
dependently from some unknown cumulative probability
distribution P(Z,y). The learning task is formulated as
finding a machine (a function f : R™ — {41, —1}) that
“best” approximates the mapping generating the training
set. In order to make learning feasible, we need to specify
a function space, H, from which a machine is chosen.

An ideal measure of generalization performance for
a selected machine f is expected risk (or the prob-
ability of misclassification) defined as Rpz,)(f) =
fR"x{+1,—1} L p(#)2y} (T, y)dP(Z,y) where 14(z) is an in-
dicator function such that I4(z) = 1 for all z € A, and
Ta(z) = 0 for all z ¢ A. Unfortunately, this is more an
elegant way of writing the error probability than practical
usefulness because P(Z,y) is usually unknown. However,
there is a family of bounds on the expected risk, which
demonstrates fundamental principles of building machines
with good generalization. Here we present one result from
the VC theory due to Vapnik and Chervonenkis [28]: given
a set of [ training samples and function space H, with prob-
ability 1 — n, for any f € H the expected risk is bounded
above by

h(1+1n%l)fln% 1
) 0

RP(f,y) (f) < Remp(f) + \/

for any distribution P(Z,y) on R™ x {+1,—1}. Here
Remp(f) is called the empirical risk (or training error), h
is a non-negative integer called the Vapnik Chervonenkis
(VC) dimension. The VC dimension is a measure of the ca-
pacity of a {41, —1}-valued function space. Given a train-
ing set of size [, (1) demonstrates a strategy to control ex-
pected risk by controlling two quantities: the empirical risk
and the VC dimension. Next we will discuss an application
of this idea: the SVM learning strategy.

B. Support Vector Machines

We give in this section a brief introduction to SV classifi-
cation, regression, and function approximation, start with
SV classifiers. Let {(Z1,y1), -, (&, )} C R™ x {+1,-1}
be a training set. The SV approach tries to find a canoni-

cal hyperplane ! {# € R": (i, %) + b= 0, @ € R", b € R}
that maximally separates two classes of training samples.
Here (-,-) is an inner product in R™. The corresponding
decision function (or classifier) f : R™ — {+1,—1} is then
given by f(Z) = sgn ({(«@,Z) +b). Considering that the
training set may not be linearly separable, the optimal de-
cision function is found by solving the following quadratic
program:

l
. =N S
minimize J(w,€) = 5 (W, W) + 02& (2)
subject to  y; (G, ) +b) >1—&, & >0, i=1,---,1
where E = [¢1,--+,&]T are slack variables introduced to al-

low for the possibility of misclassification of training sam-
ples, C' > 0 is some constant.

How does minimizing (2) relate to our ultimate goal
of optimizing the generalization? To answer this ques-
tion, we need to introduce a theorem about the VC di-
mension of canonical hyperplanes, which is stated as fol-
lows. For a given set of [ training samples, let R be
the radius of the smallest ball containing all [ train-
ing samples, and A C R"™ x R be the set of coeffi-
cients of canonical hyperplanes defined on the training
set. The VC dimension h of the function space H =
{f(&) = sgn (W, Z) +b) : (@W,b) €A, ||0|| < A, F R} is
bounded above by h < min (R2A27 n) +1.

Thus minimizing 3 (&, @) in (2) amounts to minimizing
the VC dimension of the function space H, therefore the
second term of the bound (1). On the other hand, Z§=1 &
is an upper bound on the number of misclassifications on
the training set, thus controls the empirical risk term in
(1). For an adequate positive constant C, minimizing (2)
can indeed decrease the upper bound on the expected risk.

Applying the Karush-Kuhn-Tucker complementarity
conditions, one can show that a @, which minimizes (2),
can be written as W = Zizl y;; Z;. This is called the dual
representation of w. An &; with nonzero «; is called a
support vector. Let S be the index set of support vectors,
then the optimal decision function becomes

i€S
where the coefficients a; can be found by solving the dual
problem of (2):

l l

w(a) = Zai — % Z ;oYY (T, T5)(4)

i=1

maximize
ij=1

l
subject to C>a;>0,i=1,---,1, and Zaz‘yz':o.
i=1
LA hyperplane {# € R™ : (&, %) +b=0, @ € R", b € R} is called
canonical for a given training set if and only if @ and b satisfy
min;—q...; (@, &) + b| = 1.



The decision boundary given by (3) is a hyperplane in
R™. More complex decision surfaces can be generated by
employing a nonlinear mapping ¢ : R™ — F to map the
data into a new feature space F (usually has dimension
higher than n), and solving the same optimization problem
in F, i.e., find the maximal separating hyperplane in F.
Note that in (4) &; never appears isolated but always in
the form of inner product (Z;,Z;). This implies that there
is no need to evaluate the nonlinear mapping ® as long
as we know the inner product in F for any given Z,7 €
R™. So for computational purposes, instead of defining
® : R" — F explicitly, a function K : R” x R” — R is
introduced to directly define an inner product in F, i.e.,
K(z,Z) = (®(Z), ®(2))p where (-,-)p is an inner product
in F, and @ is a nonlinear mapping induced by K. Such a
function K is also called the Mercer kernel [5]. Substituting
K(&,;,%;) for (Z;,Z;) in (4) produces a new optimization
problem

l
maximize W(&) = Z

=1

-3 Z ;oYY K

i,j=1

(@i, 75) (5)

1
, 1, and Zaiyi =0.

i=1

subjectto C > a; >0, 1 =1,---

Solving it for & gives a decision function of the form

= sgn (Z yi;, K (%, %; —i—b) , (6)

whose decision boundary is a hyperplane in F, and trans-
lates to nonlinear boundaries in the original space.

The SV approach can also be applied to regression
and function approximation problems by replacing 22:1 &
term in (2) with a new loss term Zi:l Le(%;,yi, f) and ad-
justing the constraints accordingly. L¢(Z,y, f) is a linear
e-insensitive loss function ? defined as

L@y, [) = (ly = f(@)| =€) Ljy—r@) 20 @y, s

i.e., only errors falling outside the interval [—e, €] counts.
It was shown [5] that the function minimizing (2) with the
new loss term has a form

zaz

To find the coefficients «; one has to solve the following
quadratic program

Z Yity; —

%) +b . (7)

-
max W (& Z;, ;)

(8)

l
1
5 Z OLZ‘Ole(

ij=1

1
€D _loil -
i=1

?Different loss functions can also be used [22].

subjectto C > a; > -C,i=1,--

l
-,1, and Zai =0.
i=1

A detailed discussion on generalization performance of SV
regression and function approximation can be found in [22],
[5]. Several techniques of solving quadratic programming
problems arising in SV algorithms are described in [13],

[12], [17].
ITII. AppiTIVE FUzzZY SYSTEMS AND KERNEL
MACHINES
A. Additive Fuzzy Systems
This paper considers additive fuzzy systems (AFS) with
constant THEN-parts. Given m+ 1 fuzzy rules of the form

Rule 0 :
Rule j :

IF Aj AND A2 --.
IF A AND A ..

AND A7 THEN by (9)
AND A" THEN b(10)

where by, b € R, j =1,---,;m, k =1,---,n, Ak and
Af are fuzzy sets with membership functions af(zy) = 1
and a? : R — [0, 1], respectively, if we choose product as
the fuzzy conjunction operator, addition for fuzzy rule ag-
gregation, and first order moment (FOM) defuzzification 3,
then the input-output mapping, F' : R™ — R, of the system
becomes

(11)

where ¥ = [11,---,2,]T € R" is the input. In general, an
AFS can have multiple outputs. Here we focus on single-
output models. The results derived herein still apply to the
multiple-output models by combining several single-output
models provided that no coupling exists among outputs.

The membership functions above could be any func-
tion from R — [0,1]. However, too much flexibility on
the model could make effective learning unfeasible. So we
narrow our interests to the class of membership functions
that are generated from location transformation of refer-
ence functions [7].

Definition III.1: (Reference Function, [7]) A function
w: R — [0,1] is a reference function if and only if: 1)
w(x) = p(—2x); 2) n(0) = 1; and, 3) p is non-increasing on
[0, 00).

Now we can state the relationship between AFS and ker-
nel machines as the following theorem.

Theorem III.2: (AFS and Kernel Machine) Consider
an AFS with m + 1 fuzzy rules of the form (9) and (10).
Assume that for the kth input, k € {1,...,n}, the member-
ship functions a R —[0,1], j =1, ---,m are generated

3Here we use the FOM instead of center of area (COA) defuzzifi-
cation because the FOM provides a way to handle classification and
function approximation in a uniform framework.



from a reference function a® through location transforma-
tion, i.e. ak(xk) ak(xy, — z; k) for some location parame-
ter zj € R Then the input- output mapping of the AFS is
equivalent to that of a kernel machine

m
E)=bo+» biK(Z (12)

j=1
where T = [I1,$27'~',IH]T € Rn7 Z] = [2}72,]2""72.?}T €
R™ contains the location parameters for a?, i=1,---,n,

K : R" x R* — [0,1] is a translation invariant kernel *
function defined as

K@) (13)

H a”(zy — z
Proof: Using the deﬁmtlon of location transformation,
(11) can be equivalently written as (12) with (13) following
accordingly. O

B. Positive Definite Fuzzy Systems

Theorem III.2 presents a novel kernel perspective on AF-
Ses. Omne particular kind of kernel, Mercer kernel, has re-
ceived considerable attention in the machine learning liter-
ature [5], [9], [27] because it is an efficient way of extending
linear learning machines to nonlinear ones. Is the kernel
defined by (13) a Mercer kernel? A kernel satisfying the
Mercer conditions [5] is named a Mercer kernel. An equiv-
alent form of the Mercer condition, which proves most use-
ful in constructing Mercer kernels, is given by the following
lemma [5].

Lemma III.3: (Positivity Condition for Mercer Ker-
nels [5]) A kernel K : R” x R®™ — R is a Mercer kernel
if and only if the matriz [K(Z;,Z;)] € R" ™ is positive
semi-definite for all choices of points {Z1,---,%,} C X (X
is a compact subset of R™) and alln =1,2,--+---

For most nontrivial kernels, directly checkmg the posi-
tivity condition in Lemma III.3 is not an easy task. Nev-
ertheless, for the class of translation invariant kernels, to
which the kernels defined by (13) belong, there is an equiv-
alent yet practically more powerful criterion based on the
spectral property of the kernel [23].

Lemma III.4: (Positivity Condition for Translation
Invariant Kernels [23]) A translation invariant kernel
K(Z,2) = K(¥ — 2) is a Mercer kernel if and only if the
Fourier transform

G 1)ﬂ K(®)e @D qz
)2 R”

FIK)(@) =

is nonnegative.
Kernels defined by (13) do not, in general, have nonneg-
ative Fourier transforms. However, if we assume that the

4A kernel K(&,%) is translation invariant if K(Z,2) = K(Z — %),
i.e., it depends only on ¥ — Z, but not on Z and Z themselves.

reference functions are positive definite functions, which
are defined by the following definition, then we do get a
Mercer kernel (given in Theorem IIL.7).

Definition ITI.5: (Positive Definite Function [10]) A
function f : R — R is said to be a positive definite func-
tion if the matriz [f(xz; — x;)] € R™ ™ is positive semi-
definite for all choices of points {x1, -, z,} C R and all
n=1,2,

Corollary III.6: A function f: R — R is positive def-
inite if and only if the Fourier transform

Hﬂ@%=éﬁ/mf@ki”w

is nonnegative.
Proof: Given any function f : R — R, we can define a
translation invariant kernel K : R xR — R as

= fla—2) .

K(z,2)

From Lemma II1.4, K is a Mercer kernel if and only if
the Fourier transform of f is nonnegative. Thus from
Lemma III.3 and Definition III.5, we conclude that f is
a positive definite function if and only if its Fourier trans-
form is nonnegative. O

Theorem III.7: (Positive Definite Fuzzy Systems,
PDFS) The translation invariant kernel (13) is a Mer-
cer kernel if the reference functions, a* : R — [0,1], k =
1,---,n, are positive definite functions. The corresponding
AFS given in Theorem I11.2 is named a PDFS.
Proof: From Lemma III.4, it suffices to show that the
translation invariant kernel defined by (13) has nonnegative
Fourier transform. Rewrite (13) as

which is nonnegative since a*, k = 1,---,
definite functions. O

It might seem that the positive definite assumption on
reference functions is quite restrictive. In fact, many com-
monly used reference functions are indeed positive definite.
An incomplete list includes: 1) p(z) = max(1 — d|z|,0)
(symmetric triangle); 2) p(z) = e=do? (Gaussian); 3)
wlx) = (Cauchy); 4) u(z) = e~ 4l (Laplace); 5)

() and, 6) u(z) =

n, are positive

1+dz
(hyperbolic secant),

edz_i_efda:



sin?(dx)

.z (squared sinc) where d > 0 (note that the Gaus-
sian reference function corresponds to the commonly used
Gaussian kernel). More generally, the weighted summation
(with positive weights) and the product of positive defi-
nite functions are still positive definite (a direct conclusion
from the linearity and product/convolution properties of
the Fourier transform). So we can get a class of positive
definite reference functions from those listed above. It is
worthwhile noting that the asymmetric triangle and the
trapezoid reference functions are not positive definite.

Remark ITI.8: A Mercer kernel implicitly defines a
nonlinear mapping, ® : X — F, such that the kernel com-
putes the inner product in F, i.e., K(&,2) = (®(Z), ®(2))p
where X is the input space, (-, -)p is an inner product in the
new feature space F (its dimension can be infinite). This
implies that the input-output mapping (12) of a PDFS can
be alternatively viewed as a linear function in the kernel
induced feature space.

IV. SUPPORT VECTOR LEARNING FOR PDFS

A PDFS with n inputs is parameterized by n, possi-
bly different, positive definite reference functions (a*
R — [0,1], ¥ = 1,..n), a set of location parameters
({z1, -+, Zm} C X) for the membership functions of the IF-
part fuzzy rules, and a set of real numbers ({bg,- -, bm} C
R) for the constants in the THEN-part fuzzy rules where m
is unknown. Which reference functions to choose is an in-
teresting research topic by itself [15]. Here we assume that
the reference functions a® : R — [0,1], i = 1,---,n are pre-
determined. Thus the problem is how to extract a set of
fuzzy rules ({Z1, -+, Zn} and {bg,---,by}) from training
samples so that the PDFS has good generalization ability.

In the previous section, we demonstrate the equivalence
(in terms of input-output mapping) between PDFSes and
kernel machines. So any learning algorithm for kernel ma-
chines can potentially be applied to construct PDFSes. As
a universal learning machine for pattern recognition prob-
lems, the SV learning method is known to have good gener-
alization ability because it tries to decrease an upper bound
on the expected risk by reducing the empirical risk and, at
the same time, controlling the VC dimension of the model
set [5], [27]. Here we propose using SV learning to build
fuzzy classifiers and function approximators.

As shown in Section III, a PDFS is essentially a mapping
from the input space to some real numbers. For classifi-
cation purpose, it is desirable to have class labels as the
output. A simple way to extend a PDFS to a binary classi-
fier is to cascade a thresholding stage to the output of the
PDFS. The resulting decision function, f: X — {+1, -1},
then becomes

f(Z) = sgn (F(T)) (14)

where F'(Z) is the output of the PDFS given by (12). Sub-
stituting (12) into (14) gives us an equation very similar
to the decision function of an SVM defined in (6). This

suggests a connection between support vectors and fuzzy
rules. In fact, a PDFS classifier can be constructed by the
following algorithm.

Algorithm IV.1: Learning PDFS Classifier
Inputs: Positive definite reference functions a*(xy,), k =
1,---,n, associated with n input variables, and a set of
training samples {(Z1,y1), -, (T, y)} C X x {+1,-1}
where y; is the class label associated with T;.

Outputs: A set of fuzzy rules parameterized by Z;, b;, and
m. Z; (j =1,---,m) contains the location parameters of
the IF-part membership functions of the jth fuzzy rule, b;
(G =0,---,m) is the THEN-part constant of the jth fuzzy
rule, and m + 1 is the number of fuzzy rules.
Steps:
1 Construct a Mercer kernel, K, from the given positive
definite reference functions according to (13).
2 Construct an SVM to get a decision rule of the form
y = sign (22:1 yioi K (%, %) + b)
where c; > 0,1 =1,---.1, are obtained by solving the
quadratic program (5).
3 Extract fuzzy rules from the above SVM decision rule:
bo «—b
J—1
FOR i=1TO!
IF o; >0
Zj — T
bj — yic;
J—Jj+1
END IF
END FOR
m«—j—1

The above algorithm can be modified to construct func-
tion approximators. Instead of (5), the quadratic program
(8) is solved. Using the SV approach to build PDFSes has
several advantages:

e The VC theory guarantees that the resulting classifiers
and function approximators can have good generalization.
o The number of fuzzy rules is irrelevant to the dimension
of the input space. It is always less than or equal to the
number of training samples. In this sense, the “curse of
dimensionality” is avoided. In addition, due to the sparsity
of support vectors, the number of fuzzy rule is usually much
less than the number of training samples.

o The global solution for the optimization problem can al-
ways be found efficiently because of the convexity of the
objective function and of the feasible region. Techniques
designed specifically for SV algorithms make large-scale
training (for example 200,000 samples with 40,000 input
variables) practical [13], [12], [17].

V. EXPERIMENTAL RESULTS

This section provides two examples to demonstrate the
performance of PDFSes.



TABLE 1
USPS DATA SET. MEAN CLASSIFICATION RATE 7 £ STANDARD
DEVIATION AND MEAN NUMBER OF FUZZY RULES m (FOR ONE PDFS)
USING DIFFERENT REFERENCE FUNCTIONS.

Reference Function | r£STD m

Gaussian 95.2% +£0.3% | 573
Cauchy 95.2% +0.3% | 567
Laplace 94.7% + 0.4% | 685
Symmetric Triangle | 95.0% + 0.3% | 652
Hyperbolic Secant | 95.0% + 0.3% | 468
Squared Sinc 95.2% +0.2% | 391

A. Classification

The USPS data ° set contains 9298 grayscale images of
handwritten digits. The images are size normalized to fit
in a 16 x 16 pixel box while preserving their aspect ratio.
The data set is divided into a training set of 7291 samples
and a testing set of 2007 samples. For each sample, the
input feature vector consists of 256 grayscale values.

In this experiment, we test the performance of PDFS
classifiers for different choices of reference functions namely
the Gaussian, Cauchy, Laplace, hyperbolic secant, and
squared sinc. For different input variables, the reference
functions are chosen to be identical. Ten PDFS classi-
fiers are designed, each of which separates one digit from
the rest nine digits. The final predicted class label is de-
cided by the PDFS with the maximum output. Based on
the training set, we use 5-fold cross-validation to deter-
mine the d parameter of reference functions and the C pa-
rameter in SV learning (for each PDFS) where C takes
values from {100,1000,10000}, and d takes values from
{5 :n=2,---,10}. For each pair of d and C, the average
cross-validation error is computed. The optimal d and C'
are the values that gives the minimal mean cross-validation
error. Based on the selected parameter, the PDFS classi-
fiers are constructed and evaluated on the testing set. The
whole process is repeated 5 times. The mean classifica-
tion rate (and the standard deviation) on the testing set
and the mean number of fuzzy rules (for one PDFS) are
listed in Table I. For comparison purpose, we also cite the
results from [16]: linear SVM (classification rate 91.3%),
k-nearest neighbor (classification rate 94.3%), and virtual
SVM (classification rate 97.0%).

Note that the Gaussian reference function corresponds to
the Gaussian RBF kernel used in the SVM literature. For
the USPS data, all six reference functions achieve similar
classification rates. The number of fuzzy rules varies signif-
icantly. The number of fuzzy rules needed by the squared
sinc reference function is only 68.2% of that needed by
the Gaussian reference function. Compared with the lin-

5The USPS data set is
http://wuw.kernel-machines.org/data.

available at

TABLE II
FUNCTION APPROXIMATION. AVERAGE MSE & STANDARD DEVIATION
AND THE MEAN NUMBER OF FUZZY RULES m USING DIFFERENT
REFERENCE FUNCTIONS.

Reference Function | MSE£STD m

Gaussian 0.0432 + 0.0057 | 123
Cauchy 0.0442 + 0.0057 | 122
Laplace 0.0413 £ 0.0044 | 130
Symmetric Triangle | 0.0413 £ 0.0043 | 130
Hyperbolic Secant 0.0426 £ 0.0055 | 117
Squared Sinc 0.0422 + 0.0056 | 113

ear SVM and k-nearest neighbor approach [16], the PDF-
Ses achieve a better classification rate. SVMs can be im-
proved by using prior knowledge. For instance the virtual
SVM [16] performs better than current PDFSes. How-
ever, same approach can be applied to build PDFSes, i.e.,
PDFCs can also benefit from the same prior knowledge.

B. Function Approzimation
Consider the function defined by the following equation

(5 - I2)2
3(5 — x1)2 + (5 — x2)2

g(x1,22) =

with 21, 2 € [0,10]. PDFSes are constructed to approxi-
mate the above function using different reference functions.
The training set contains 200 input-output pairs where the
inputs are randomly sampled from [0, 10] x [0, 10] according
to the uniform distribution. A different set of 200 samples
is chosen for testing. For the e-insensitive loss function,
we let ¢ = 0.1. Based on the training set, we use 5-fold
cross-validation to determine the d parameter of the refer-
ence functions and the C' parameter in SV learning where
C takes values from {10,100}, and d takes values from
{2% :n=1,---,9}. For each pair of d and C, the average
cross-validation mean squared error (MSE) is computed.
The optimal d and C' are the values that gives the minimal
mean cross-validation MSE. The whole process is repeated
10 times. The average MSE (and the standard deviation
of MSEs) on the test set and the mean number of fuzzy
rules are given in Table II. As we can see, different refer-
ence functions produce similar approximation errors. The
Laplace and symmetric triangle reference functions give
slightly better (not statistically significant) performance for
this experiment.

VI. CONCLUSIONS AND FUTURE WORK

This paper shows that two seemingly unrelated research
areas, fuzzy systems and kernel machines, are closely re-
lated. A class of additive fuzzy systems (PDFS) are in
essence kernel machines with kernels defined by positive
definite reference functions (as a by-product we get a class



of Mercer kernels). The SVM learning approach can be
utilized to build PDFSes. This not only avoids the “curse
of dimensionality” that occurs in the ordinary fuzzy mod-
eling approach, but also leads to good generalization. The
results also imply that a class of kernel machines, such as
those using Gaussian kernels, can be interpreted by a set of
fuzzy IF-THEN rules. This opens interesting connections
between fuzzy rule base reduction techniques [21] and the
computational complexity issues in kernel PCA [19] and
SVMs [3].

The requirement that all membership functions associ-
ated with an input variable are generated from the same
reference function maybe somewhat restrictive. It looks
like that this constraint can be relaxed. The positivity re-
quirement on reference functions can also be relaxed. In
that case, the kernel in general will not be a Mercer kernel.
But the fuzzy system can still be related to the generalized
support vector machines [14].
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