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ABSTRACT
We propose FIRM (Fuzzily Integrated Region Matching),
an efficient and robust similarity measure for region-based
image retrieval. Each image in our retrieval system is rep-
resented by a set of regions that are characterized by fuzzy
sets. The FIRM measure, representing the overall similarity
between two images, is defined as the similarity between two
families of fuzzy sets. Compared with similarity measures
based on individual regions and on all regions with crisp
feature representations, our approach greatly reduces the
influence of inaccurate segmentation. Experimental results
based on a database of about 200,000 general-purpose im-
ages demonstrate improved accuracy, robustness, and high
speed.

1. INTRODUCTION
Similarity comparison is one of the most important is-

sues in content-based image retrieval (CBIR). In general,
the comparison is performed either globally using techniques
such as histogram matching and color layout indexing, or
locally based on decomposed regions (objects) of the im-
ages. A major drawback of the global histogram search lies
in its sensitivity to intensity variations, color distortions,
and cropping. Color layout indexing is proposed to tackle
this problem. However, it is in general sensitive to shifting,
cropping, scaling, and rotation. In a human visual system,
although color and texture are fundamental aspects of visual
perceptions, human discernment of certain visual contents
could potentially be associated with interesting classes of
objects, or semantic meanings of objects in the image. Moti-
vated by this intrinsic attribute of human visual perception,
a region-based retrieval system applies image segmentation
to decompose an image into regions, which correspond to ob-
jects if the decomposition is ideal. Since the retrieval system
has identified objects in the image, it is relatively easy for
the system to recognize similar objects at different locations
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and with different orientations and sizes.
Semantically precise image segmentation by an algorithm

is very difficult. However, a single glance is sufficient for
human to identify circles, straight lines, and other complex
objects in a collection of points and to produce a mean-
ingful assignment between objects and points in the image.
Although those points cannot always be assigned unambigu-
ously to objects, human recognition performance is hardly
affected. We can often identify the object of interest cor-
rectly even when its boundary is very blurry. Based upon
the above observations, we believe that, by softening the
boundaries between regions, the robustness of a region-based
image retrieval system against segmentation-related uncer-
tainties can be improved. In this paper, we present FIRM,
a novel similarity measure for region-based image retrieval.
To describe the indistinct boundaries between segmented re-
gions, we represent each region as a multidimensional fuzzy
set (fuzzy feature) in the feature space. Thus, each image
can be characterized by a class of fuzzy features, and, as a
result, region matching becomes an issue of finding similar-
ities between fuzzy sets. The FIRM measure is defined as
the similarity between two families of fuzzy features.

2. IMAGE SEGMENTATION AND FUZZI-
FICATION

To segment an image, the system partitions the image
into blocks with 4×4 pixels and extracts a feature vector for
each block. The k-means algorithm is used to cluster the
feature vectors into several classes with every class corre-
sponding to one region in the segmented image. The number
of clusters (regions) is selected adaptively. Six features are
used for segmentation, as presented in [2]. Three of them
are the average color components in a 4×4 block. We use
the well-known LUV color space. The other three represent
energy in the high frequency bands of the wavelet trans-
forms, that is, the square root of the second order moment
of wavelet coefficients in high frequency bands. To obtain
them, a Daubechies-4 wavelet transform is applied to the L
component of the image. After a one-level wavelet trans-
form, a 4×4 block is decomposed into four frequency bands:
the LL, LH, HL, and HH bands. Three features are com-
puted from the HL, LH, and HH bands. Moments of wavelet
coefficients in various frequency bands have been shown to
be effective for representing texture [3].

Here are some notations. R and N denote the sets of



real numbers and positive integers, respectively. ~fi ∈ R6 is
the feature vector (used for segmentation) of the ith block

of an image. F = {~fi ∈ R6 : 1 ≤ i ≤ B, i ∈ N} is the
set of all block feature vectors of an image, where B is the
number of blocks in an image in our database. Feature set
Fj ⊂ F contains all feature vectors in the jth cluster, where
1 ≤ j ≤ C, j ∈ N, C ≥ 2 is the number of clusters. We also
define the center of Fj as

~̂f j =

∑
~f :~f∈Fj

~f

Card(Fj)

where Card(Fj) is the cardinality (or size) of Fj . Rj ⊂ N2

is the region (set of pixels) corresponding to feature set Fj .
To describe shape properties, three extra features are cal-

culated for each region. They are normalized inertia of order
1 to 3. For a region Rj ⊂ N2 in the image plane, which is a
finite set, the normalized inertia of order γ is given as

I(Rj ,γ) =

∑
(x,y):(x,y)∈Rj

[(x − x̂)2 + (y − ŷ)2]
γ
2

Card(Rj)
1+ γ

2

,

where (x̂, ŷ) is the centroid of Rj . The normalized inertia is
invariant to scaling and rotation. The minimum normalized
inertia is achieved by spheres. Denote the γth order nor-

malized inertia of spheres as Iγ . We define shape feature ~hj

of region Rj as I(Rj ,γ) normalized by Iγ , i.e.,

~hj =

[
I(Rj ,1)

I1
,
I(Rj ,2)

I2
,
I(Rj ,3)

I3

]T

.

After segmentation, an image can be viewed as a collection
of regions. Equivalently, in the feature space, a segmented
image is characterized by a collection of feature sets. These

feature sets form a partition of F, i.e., ∀ ~f ∈ F, ~f belongs
to exactly one feature set. However, segmentation can not
be perfect. As a result, for many feature vectors, a unique
decision between in and not in the feature set is impossible.
Only a degree (between 0 and 1) of membership that it be-
longs to some feature set should be given, and it could belong
to several feature sets with some possibly different degrees.
Fuzzy set is a good description for this phenomenon.

To fuzzify feature set Fj , we need to define a membership

function MFj : F → [0, 1]. For any ~f ∈ F, the value of

MFj (
~f) is then called the degree of membership of ~f to the

fuzzy set Fj (or, in short, the degree of membership to Fj).
The most commonly used prototype membership functions
are cone, trapezoidal, B-splines, exponential, Cauchy, and
paired sigmoid functions. We have tested these functions
on our system. In general, the performance of the expo-
nential and the Cauchy functions is better than that of the
rest functions. The exponential and Cauchy functions are
comparable in performance. We pick the Cauchy function
because it requires much less computations.

So, we define the membership function for the feature set

Fj , MFj : R6 → [0, 1], as

MFj (
~f) =

1

1 +
(

‖~f− ~̂fj‖

σf

)α
(1)

where

σf =
2

C(C − 1)

C−1∑

i=1

C∑

k=i+1

‖ ~̂f i −
~̂fk‖

is the average distance between cluster centers. Similarly,

the membership function for the shape feature ~hj , M~hj
:

R3 → [0, 1], is

M~hj
(~h) =

1

1 +
(

‖~h−~hj‖

σh

)α (2)

where

σh =
2

C(C − 1)

C−1∑

i=1

C∑

k=i+1

‖~hi − ~hk‖

is the average distance between shape features. The exper-
iments show that the performance changes insignificantly
when α is in the interval [0.7, 1.5], but degrades rapidly out-
side the interval. So we set α = 1 in both (1) and (2) to
simplify the computation.

3. THE FIRM SIMILARITY MEASURE
Let A and B be fuzzy sets defined on Rk with correspond-

ing membership functions MA : Rk → [0, 1] and MB :
Rk → [0, 1], respectively. The intersection of A and B,
denoted by A ∩ B, is a fuzzy set on Rk with membership
function, MA∩B : Rk → [0, 1], defined as

MA∩B(~x) = min[MA(~x),MB(~x)]. (3)

The union of A and B, denoted by A∪B, is a fuzzy set on
Rk with membership function, MA∪B : Rk → [0, 1], defined
as

MA∪B(~x) = max[MA(~x),MB(~x)].

The similarity between A and B, S(A,B), is given by

S(A,B) = sup
~x:~x∈Rk

MA∩B(~x). (4)

For the fuzzy sets defined by Cauchy functions, calculating
similarity according to (4) is relatively simple. This is be-
cause Cauchy function is unimodal, and thus the maximum
of (3) can only occur on the line segments connecting the
center points of two functions. It is not hard to show that for
fuzzy sets A and B on Rk with Cauchy membership func-
tions MA(~x) = 1

1+

(
‖~x−~u‖

σa

)α and MB(~x) = 1

1+

(
‖~x−~v‖

σb

)α ,

the similarity between A and B is

S(A,B) =
(σa + σb)

α

(σa + σb)α + ‖~u − ~v‖α
. (5)

Let Fq = {Fq
j : 1 ≤ j ≤ Cq, j ∈ N} denote the collection

of fuzzy sets for a query image segmented into Cq regions,
and Ft = {Ft

j : 1 ≤ j ≤ Ct, j ∈ N} be the collection of fuzzy
sets for a target image with Ct regions. First, for every
F

q
j ∈ Fq, we define the similarity between it and Ft as

l
(q,t)
j = S(Fq

j ,

Ct⋃

i=1

F
t
i) = max

i=1,··· ,Ct

S(Fq
j ,F

t
i). (6)

Combining l
(q,t)
j ’s together, we get a vector

~l
(q,t) = [l

(q,t)
1 , l

(q,t)
2 , · · · , l

(q,t)
Cq

]T .

Similarly, the similarity between any Ft
j ∈ Ft and Fq is

l
(t,q)
j = S(Ft

j ,

Cq⋃

i=1

F
q
i ) = max

i=1,··· ,Cq

S(Ft
j ,F

q
i ), (7)



and

~l
(t,q) = [l

(t,q)
1 , l

(t,q)
2 , · · · , l

(t,q)
Ct

]T .

Finally, we define the similarity vector between Fq and Ft,

denoted by ~L(Fq,Ft), as

~L(Fq ,Ft) =

[
~l(q,t)

~l(t,q)

]
.

The query image is represented as Fq and Hq. The target
image is represented as Ft and Ht. Fq and Ft are the classes
of fuzzy sets which are defined according to (1). Hq and
Ht are collections of fuzzy sets whose membership functions
are consistent with (2). The query image is classified as
either a textured or a non-textured image [1]. The similarity
measure for two images, m(q,t), is

m(q,t) =
1 − δ

2
~L

T
(Fq ,Ft)[(1 − λ)~w + λ~µ] +

δ

2
~L

T
(Hq,Ht) ~w.

Here ~w is a vector containing the area percentages of the
query and target images, ~µ contains normalized weights
which favor regions near the image boundary. The summa-
tion of all entries of ~w or ~µ equals 2. In our system, λ = 0.1,
if the query image is textured then δ = 0, otherwise δ = 0.1.

4. EXPERIMENTS
The FIRM approach is tested on a general-purpose image

database (from COREL) including about 200,000 pictures.
For each image, the features, locations, and areas of all its
regions are stored. To provide objective comparisons based
on numerical results, the system performance is evaluated
based on a subset of the COREL database, formed by 10
image categories, each containing 100 pictures. Within this
database, it is known whether any two images are of the
same category. In particular, a retrieved image is considered
a match if and only if it is in the same category as the query.
This assumption is reasonable since the 10 categories were
chosen so that each depicts a distinct semantic topic.

Every image in the sub-database was tested as a query,
and the retrieval ranks of all the rest images were recorded.
Three statistics were computed for each query: the preci-
sion within the first 100 retrieval images, the mean rank of
all the matched images, and the standard deviation of the
ranks of matched images. We use entropy to characterize
the segmentation-related uncertainties in an image. For an
image with C segmented regions, its entropy is defined as

E{R1,··· ,RC} = −

C∑

j=1

P (Rj) log[P (Rj)],

where P (Rj) is the percentage of the image covered by
region Rj . The larger the value of entropy, the higher
the uncertainty level. We compare the performance of the
FIRM and IRM [2] approaches with respect to the coarse-
ness of segmentation. The entropy is used to measure the
segmentation-related uncertainty levels. For different av-
erage number of regions, C, the performance in terms of
average precision p, average mean rank r, and average stan-
dard deviation σ are evaluated for both approaches. The
results are given in Figure 1. As we can see, the average en-
tropy E increases when images are, on average, segmented
into more regions. In other words, the uncertainty level
increases when segmentation becomes finer. At all uncer-
tainty levels, the FIRM scheme performs better than the
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Figure 1: Comparing FIRM and IRM methods on

the robustness to image segmentation.

IRM method in all three statistics. In addition, there is a
significant increase in p and a decrease in r for the FIRM
scheme as C increases. While for the IRM method, p and
r almost remain unchanged for all values of C. This can
be explained as follows. When segmentation becomes finer,
although the uncertainty level increases, more details (or
information) about the original image are also preserved.
Compared with the IRM method, the FIRM scheme is more
robust to segmentation-related uncertainties and thus ben-
efits more from the increasing of the average amount of in-
formation per image.

5. CONCLUSIONS
We have developed FIRM for region-based image retrieval.

To reduce the adverse impact of imprecise image segmen-
tation, the FIRM uses fuzzy features to represent regions
in an image. This naturally depicts the gradual transition
of region boundaries, incorporates more information about
regions than conventional region representation does, and
describes the uncertainties inherent to imprecise image seg-
mentation. The similarity measure of two images is defined
as the overall similarity between two classes of fuzzy fea-
tures. Experiments show that FIRM is more robust than
IRM to segmentation-related uncertainties.

6. REFERENCES
[1] J. Li, J. Z. Wang, and G. Wiederhold. Classification of

textured and non-textured images using region
segmentation. In Proc. 7th Int. Conf. on Image

Processing, pages 754–757. Vancouver, BC, Canada,
September 2000.

[2] J. Li, J. Z. Wang, and G. Wiederhold. IRM: Integrated
region matching for image retrieval. In Proc. 8th ACM

Int. Conf. on Multimedia, pages 147–156. Los Angeles,
California, USA, October 2000.

[3] M. Unser. Texture classification and Chansegmentation
using wavelet frames. IEEE Trans. Image Processing,
4(11):1549–1560, November 1995.


