Discrete and Continuous Random Variables

- Probability mass function
 - Example
 - Bernoulli, Binomial distributions
- Probability density function
 - Example
 - Normal distribution

A Big Picture of Learning

- Supervised Learning
 - Classification, regression
 - Generalization
- Unsupervised learning
 - Clustering
 - Retrieval
- In between

Bayesian Classifiers

- General framework
 - Each data object is characterized by
 - Nature of the object \(\omega \)
 - Feature vector \(x \)
- Binary classification
 - Two possible states of nature \(\{\omega_1, \omega_2\} \)
 - Class prior probability \(P(\omega_1), P(\omega_2) \)
 - Class conditional probability \(p(x | \omega_1), p(x | \omega_2) \)
Problem Formulation

• Given prior probabilities and class conditional p.d.f
\[p(x|\omega_1), p(\omega_1) \]
\[p(x|\omega_2), p(\omega_2) \]
design a decision rule such that
\[P(\text{error}) \]
is minimized

The Probability of Error

• Observe \(x \), the probability of error is
\[P(\text{error} | x) = \begin{cases} P(\omega_1 | x) & \text{if we decide } \omega_1 \\ P(\omega_2 | x) & \text{if we decide } \omega_2 \end{cases} \]
• The average probability
\[P(\text{error}) = \int P(\text{error} | x) p(x) dx = \int P(\text{error} | x) p(x) dx \]

Bayes Decision Rule

• A fact
\[P(\text{error}) \geq \int \min\{P(\omega_1 | x), P(\omega_2 | x)\} p(x) dx \]
• Bayes decision rule
 Decide \(\omega_1 \) if \(P(\omega_1 | x) > P(\omega_2 | x) \);
 otherwise decide \(\omega_2 \)
Bayes Decision Rule

- Posterior class probability
 \[
 P(\omega_j | x) = \frac{p(x | \omega_j)P(\omega_j)}{p(x)}
 \]
 \[
 p(x) = p(x | \omega_1) + p(x | \omega_2)
 \]
 \[
 = p(x | \omega_1)P(\omega_1) + p(x | \omega_2)P(\omega_2)
 \]

Class-Conditional p.d.f.

Example
- Posterior (\(P(\omega_1) = 2/3, P(\omega_2) = 1/3 \))
Bayes Decision Rule

• An equivalent decision rule
 Decide ω_1 if $p(x | \omega_1)P(\omega_1) > p(x | \omega_2)P(\omega_2)$
 otherwise decide ω_2

A Generalized Formulation

• Allowing more than one feature
• Allowing more than two states of nature
• Allowing more than two decisions
• Introducing a loss function more general than the probability of error

Problem Formulation

• Feature vector \bar{x}
• d-dimensional feature space \mathbb{R}^d
• Assume complete statistical information
 – Finite set of c states $\omega \in \{\omega_1, ..., \omega_c\}$
 – Class prior probability $P(\omega_j)$
 – Class conditional probability $p(\bar{x} | \omega_j)$
Problem Formulation

• Action set \(A = \{\alpha_1, \ldots, \alpha_c\} \)
• Loss function \(\ell(\alpha_i | \omega_j) \)
• Expected risk
\[
R(\alpha_i | x) = \sum_{j=1}^{c} A(\alpha_i | \omega_j) P(\omega_j | x)
\]
• Overall risk for a general decision rule \(\alpha(x) \)
\[
R(\alpha) = \int R(\alpha(x) | x) p(x) dx
\]

Bayes Risk

• A fact
\[
R(\alpha) = \int R(\alpha(x) | x) p(x) dx
\]
\[
\geq \int \min_{i \neq j} R(\alpha_i | x) p(x) dx
\]
\[
= \text{Bayes risk}
\]
• Bayes decision rule
Decide \(\alpha_i \) if \(R(\alpha_i | x) < R(\alpha_j | x), j \neq i \)

Compute Conditional Risk

\[
R(\alpha_i | x) = \sum_{j=1}^{c} A(\alpha_i | \omega_j) P(\omega_j | x)
\]
• Posterior probability
\[
P(\omega_j | x) = \frac{p(x | \omega_j) P(\omega_j)}{p(x)}
\]
\[
p(x) = \sum_{j=1}^{c} p(x | \omega_j) P(\omega_j)
\]