Quiz 2 (Close book, no cheat sheet, 45 minutes)

Student ID_________________________Name (Print)__________________________

Your paper will not be graded unless you endorse the following statement:
I have neither given nor received inappropriate assistance on this quiz.

Signature___________________________

Fortran keywords that might be useful in this quiz:
program, end, implicit none, integer, real, character, parameter, ::, !, &, =, +, -, *, /, **,
>, >=, <, <=, ==, /=, .and., .or., .eqv., .neqv., if, then, else, else if, end if, select, case,
default, :, end select, stop,
function, subroutine, call, intent, in, out,
do, end do, do while, cycle

Part I Multiple Choice (40 points, 4 points each)

Each problem has one correct answer. Clearly write the letter corresponding to the correct
answer in the boxes on the right.

<table>
<thead>
<tr>
<th>1. Which statement can get user input from keyboard?</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. write(,) “Enter an input value”</td>
<td></td>
</tr>
<tr>
<td>B. read(,) value</td>
<td></td>
</tr>
<tr>
<td>C. value = 10</td>
<td></td>
</tr>
<tr>
<td>D. input = 'value'</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Can you terminate a program in between two executable statements?</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>If yes, which statement can do the job?</td>
<td></td>
</tr>
<tr>
<td>A. no</td>
<td></td>
</tr>
<tr>
<td>B. yes, exit</td>
<td></td>
</tr>
<tr>
<td>C. yes, stop</td>
<td></td>
</tr>
<tr>
<td>D. yes, quit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. yes</td>
<td></td>
</tr>
<tr>
<td>B. no</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Which Fortran procedure can be used in a relational logical expression?</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. subroutine</td>
<td></td>
</tr>
<tr>
<td>B. function</td>
<td></td>
</tr>
<tr>
<td>C. program</td>
<td></td>
</tr>
<tr>
<td>D. class</td>
<td></td>
</tr>
</tbody>
</table>
5. Which of the following does NOT need to be declared before being used in an executable statement in Fortran 95/2003?
 A. local variables
 B. function
 C. subroutine arguments
 D. subroutine
 D

6. In a while loop, where inside the loop can you place a block if construct to prevent the loop from infinite iterations?
 A. begin
 B. middle
 C. end
 D. all of the above
 D

7. Which of the following statements can be used to declare an input argument, inside a subroutine named zebra, in Fortran 95/2003?
 A. integer::dog = 0
 B. real,intent(out)::cat = 0
 C. logical::zebra
 D. character, intent(in)::monkey
 D

8. Which statement can be used to round a real typed variable val to its closest integer?
 A. if (val < 1.0) then
 B. if (val < int(val)+0.5) then
 C. if (val == “f”) then
 D. if (abs(val – 1.0) > 1e-10) then
 B

9. Assume the variable index is in integer type, according to the following counting loop statements:

   ```fortran
   do index = 5, 10, 2
     call doSomething( index )
   end do
   ```
 How many times will the subroutine doSomething be executed at the end of this loop?
 A. 3
 B. 4
 C. 5
 D. 6
 A

10. Select the proper control construct that can translate the following formula into a Fortran 95/2003 program without calling any subroutine or function:

 $$f(m,n) = \begin{cases}
 1 & \text{if } n = 0 \text{ and } m = 0 \\
 \frac{n!}{m!(n-m)!} & \text{if } n > m \geq 0
 \end{cases}$$
 A. sequential
 B. branching
 C. loop
 D. loops nested inside branching
 D
Part II Interpreting programs (20 points, 10 points each)

11. Read the following partial Fortran code:
 integer::i=0, foo=0
 do while (i <= 6)
 if (i < 3) then
 foo = foo + i * 2
 i = i + 1
 else
 foo = foo + i
 i = i + 2
 end if
 end do

1) What is the value of the variable i at the end of the first iteration?

 1

2) What is the value of the variable foo after the end of the last iteration?

 14
12. Read the following flowchart:

Predict the output of the program given the following input:

<table>
<thead>
<tr>
<th>Input of Val</th>
<th>Monitor Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>Invalid input</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>
Part III. Writing a Fortran 95/2003 procedure (40 points, no comments are required).

13. The Riemann integral of a function \(f(x) \) with \(x \) in the interval \([a, b]\) is defined by taking the limit of a Riemann sum as follows:

\[
\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f\left(\frac{x_{i+1} + x_i}{2}\right) \left(x_{i+1} - x_i\right)
\]

where \(a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b \), and \(n \) is the number of subintervals. The \(i \)th subinterval is defined by \([x_{i-1}, x_i]\). Suppose a function \(f(x) \) has been implemented into a Fortran 95/2003 function \(\text{foo} \) with the following function statement and argument declaration:

```fortran
real function foo( x )
  implicit none
  real, intent(in)::x

end function
```

Please write a Fortran 95/2003 function to calculate the Riemann sum (the highlighted part in the equation) of the above function \(\text{foo} \). Your Riemann sum function should have three input arguments including the interval boundaries \(a \) and \(b \) in real type, and the number of subintervals \(n \) in integer type. You can generate subintervals with identical length. The function should return a real type result of the Riemann sum.

```fortran
real function riemannSum( a, b, n )
  implicit none
  real,intent(in)::a,b
  integer,intent(in)::n

  real::dx=0,x=0
  real::foo

  dx = (b-a)/n
  x = a + dx/2
  riemannSum = 0
  do while ( x < b )
    riemannSum = riemannSum+foo(x)*dx
    x = x + dx
  end do
end function
```
Part IV. Optional problem (20 points)

13. Continuing the previous problem, please write a program that automatically generate the number of subintervals \(n \) and calculate the Riemann integral given the user input of the interval boundary \(a \) and \(b \). You can build your program using the function you wrote for the previous problem. You can set a convergence tolerance as a named constant. You can also set a maximum iteration number to prevent from dead loop.

```fortran
program riemannIntegral
  implicit none
  real::a=0,b=0
  real,parameter::Delta=1e-6
  real,parameter::MaxIteration=1e6
  real::currR=0,prevR=0,diffR=1e10
  integer::n=10, step=10
  real::riemannSum

  write(*,*) “enter the boundaries a and b:”
  read(*,*) a,b
  currR = riemannSum(a,b,n)
  do while( diffR > Delta .and. n < MaxIteration )
    prevR = currR
    n = n + step
    currR = riemannSum(a,b,n)
    diffR = abs( currR - prevR )
  end do
  write(*,*) “The integration result is:”, currR
  write(*,*) “The difference between the results from ”, n, “ vs. ”, n-step, “ intervals is:”, diffR
end
```

```fortran
real::riemannSum
```