Fundamentals and basic coding environment: Chapman 2

1. a) You are assigned to develop a circuit analysis package for high school students to get familiar with calculating voltage and current at any point in a virtual circuit network.

In the lecture, we had a program plan for the sub-task of calculating equivalent resistance given 3 resistors connected in series, with their mean resistance values, and their Gaussian noise variances.

Your assignment is to make a program plan for the sub-task of calculating equivalent resistance given 3 resistors connected in parallel, with their mean resistance values and their Gaussian noise variances.

b) Please implement what you had planned into a .f95 fortran code. Please compile and test your code, and submit your code by email to ytian@olemiss.edu by Fri 9/12/08 5pm. Please note that your code needs to follow the coding style including required comment lines, correct naming of program, variable and constance, without syntax errors or run-time errors for full credits.

Hint: You need to inject the following statements into your program for random number generation

\begin{verbatim}
! Declare randomNumber
real :: randomNumber
! Initialize the pseudorandom number generator
call random_seed()
! Obtain next random number
call random_number(randomNumber)
\end{verbatim}
Solution 1.a) Program planning for resistorsInParallel.f95

- Problem statement
Calculate the equivalent resistance R_{eq} of three resistors R_1, R_2, and R_3 connected in parallel. Use Gaussian noise for each resistor.

- Input data
 Resistance for R_1, noise variance σ_1
 Resistance for R_2, noise variance σ_2
 Resistance for R_3, noise variance σ_3

- Output data
 The equivalent resistance R_{eq}

- Algorithm
 - Prompt the user for R_1, σ_1
 - Prompt the user for R_2, σ_2
 - Prompt the user for R_3, σ_3
 - Select a random number to simulate resistance noise Δ
 - Calculate R_{eq} as follows:
 \[
 R_{1\text{ noisy}} = R_1 + \exp\left(-\frac{\Delta^2}{\sigma_1^2}\right)
 \]
 \[
 R_{2\text{ noisy}} = R_2 + \exp\left(-\frac{\Delta^2}{\sigma_2^2}\right)
 \]
 \[
 R_{3\text{ noisy}} = R_3 + \exp\left(-\frac{\Delta^2}{\sigma_3^2}\right)
 \]
 \[
 R_{eq} = \frac{1}{\frac{1}{R_{1\text{ noisy}}} + \frac{1}{R_{2\text{ noisy}}} + \frac{1}{R_{3\text{ noisy}}}}
 \]
 - Print out user input data and the result

- Testing plan
 R_1 σ_1 R_2 σ_2 R_3 σ_3 Δ
 10. 1. 10. 1. 10. 1. 1.

$R_{eq} = 3.455960$
Calculate equivalent resistance for resistors in parallel
Each resistance is simulated with additive Gaussian noise
User input of the resistance values and the Gaussian variance values

program resistorsInParallel
 real, parameter :: E = 2.718281828

 real :: randomNoise
 real :: resistance1, resistance2, resistance3
 real :: sigma1, sigma2, sigma3
 real :: r1n, r2n, r3n
 real :: equivalentResistance

 ! prompt and receive user input
 write (*,*) "Please enter parameters for resistor #1 (resistance, noise variance)"
 read (*,*) resistance1, sigma1
 write (*,*) "Please enter parameters for resistor #2 (resistance, noise variance)"
 read (*,*) resistance2, sigma2
 write (*,*) "Please enter parameters for resistor #3 (resistance, noise variance)"
 read (*,*) resistance3, sigma3

 ! generate a random number to simulate noise
 call random_seed()
 call random_number(randomNoise)
 write (*,*) randomNoise

 ! generate noisy resistance values
 r1n = resistance1 + E ** (-randomNoise**2 / sigma1**2)
 r2n = resistance2 + E ** (-randomNoise**2 / sigma2**2)
 r3n = resistance3 + E ** (-randomNoise**2 / sigma3**2)

 equivalentResistance = r1n + r2n + r3n

 write (*,*) "The equivalent resistance for resistors"
 write (*,*) "#1: ", r1n, ", #2: ", r2n, ", #3: ", r3n
 write (*,*) " connected in parallel is ", equivalentResistance
end