12 Designing a Flexible Framework for a Table
Abstraction

H. Conrad Cunninghar Yi Liu 2, Jingyi Wang’

! Department of Computer and Information Sciencdyehsity of Mississippi,
University, MS 38677 USA

2Department of Electrical Engineering and Computgeise, South Dakota State
University, Brookings, SD 57007 USA

3 Acxiom Corporation, 1001 Technology Drive, LitfRock, AR 72223 USA

ABSTRACT

This chapter examines how commonality/variabilitylgsia, software design pat-
terns, and formal design contracts can be used efffyctio design a software
framework for a Table abstraction. The frameworksists of a group of Java in-
terfaces that collaborate to define the structureragld-level interactions among
components of the Table implementations. The keyfeabf the design is the
separation of the Table's key-based record access misoigfrom the physical
storage mechanisms. The systematic application of corality/variability analy-
sis and the Layered Architecture, Interface, Bridgel Proxy design patterns lead
to a design that is sufficiently flexible to supparntvide range of client-defined re-
cords and keys, indexing structures, and storage medianal design contracts
enable the expected behaviors to be expressed pyedise use of the Template
Method, Strategy, Decorator, and Composite pattaists enables variant compo-

2 Error! Notext of specified stylein document.

nents to be easily plugged into the framework. Thelhkvg Frameworks pat-
terns give guidance on how to modify the framewarkrere is learned about the
family of applications.

12.1 INTRODUCTION

In a provocative essay from the mid-1980s, Brooks as#wt “building software
will always be hard” because software systems are entigrcomplex, must con-
form to all sorts of physical, human, and softwarerfatees, must change as the
system requirements evolve, and are inherently irleistities (Brooks 1986).
A decade later Brooks again observes, “The best wasttawk the essence of
building software is not to build it at all.” (BroskL995) That is, software engi-
neers should reuse both software and, more importaofiyyare designs.

The concept of software family (Parnas 1976) is ohthe responses to the
need for software reuse. Parnas (Parnas 1976) defsoftsvare family as “a set
of programs with so many common properties thatwdghwhile to study the set
as a group”. Thus, by developers analyzing and ekpgoihe “common aspects
and predicted variabilities” (Weiss and Lai 1999) amtmg members of a soft-
ware family, the resulting software system can betcoctgd to reuse code for the
common parts and to enable convenient adaptatitimeofariable parts (Cunning-
ham et al. 2006a). Some writers use the térozen spot to denote a common as-
pect of the family andhot spot to denote a variable aspect of the family (Pree
1995; Schmid 1996).

A software framework (Johnson and Foote 1988) is a form of software family
A framework is “a generic application that allowéfetient applications to be cre-
ated from a family of applications” (Schmid 1999). deneral, a framework
represents the skeleton of a system that can benoizsith for a particular purpose.
The frozen spots embody the overall structure of thiméwork (that is, the over-
all design) and are reused by the entire family pliegations. In the context of an
object-oriented language, frozen spots are expressedset of abstract and con-
crete classes that collaborate to embody the solutipsoblems in the applica-
tion domain. The hot spots are represented by theaah classes, which can be
extended to provide customized implementations of/éin&ble aspects of a fam-
ily. A specific set of implementations of the hot spgtelds a member of the
software family.

A framework is a system that is designed with gengralitd reuse in mind.
Software design patterns (Gamma et al. 1995; Buschmann et al. 1996), which are
well-established solutions to program design probleras ¢bmmonly occur in
practice, are intellectual tools for achieving ttesired level of generality and re-
use (Cunningham et al. 2006a). They are the bygjldlocks for reusing designs.
Building a software framework for a family is morestlg than building a single
application, but a well-designed framework can yeddsiderable benefit if many
members of the family eventually need to be conggrlc

12 Designing a Flexible Framework for a Table Afstion 3

In software design it is always important to specifycigely what a software
artifact is to do. This is especially important ofteare frameworks, where the
implementations of the hot spots vary from one apfiinao another and are not
usually developed at the same time nor by the same asahe framework itself.
Framework designers must specify interfaces that dochahge regardless of
which implementation is “plugged in” to a hot spdhe specification should
guide the users of the framework to provide appropriaplementations of the
hot spots. Parnas and his colleagues (Parnas 19T@&nBat al. 1981) call this an
abstract interface because it gives the assumptions that are common tozli-i
mentations. Meyer's Design by Contract (Meyer 19929719Mitchell and
McKim 2002) method providean effective formal technique for specifying the
expected behaviors of abstract interfaces.

This chapter shows how commonality and variabilityl\sig, software de-
sign patterns, and Meyer-like formal design consraetn be applied in the design
of a small Java software framework for building impletagions of the Table Ab-
stract Data Type (ADT). A previous paper (Cunningtend Wang 2001) presents
an earlier version of the framework design developed careful, but ad hoc
manner. This chapter expands on that work by revisitie design from the per-
spective of commonality and variability analysis, nmpng the formal specifica-
tions, specifying additional framework features, amdngining how the frame-
work can evolve.

The Table ADT represents a collection of records ¢hatbe accessed by the
unique keys of the records. The framework desigoukl encompass a wide
range of possible implementations of the Table ADTmpde array-based data
structures in memory, B-tree file structures on dshaps even structures dis-
tributed across a network. By approaching this asrélyffathe goal is to be able to
assemble a Table implementation by selecting the catibimof record access
structures and storage structures to meet a spedffiicagion need.

The design process first analyzes the Table ADT asndyfand then takes
advantage of several well-known software desigitepag to structure the frame-
work. The commonality/variability analysis (in paciar, the desire to decouple
the record access mechanism from the storage mechanigggsts a hierarchical
structure based on the Layered Architecture (Buschretual. 1996; Shaw 1996)
and Interface (Grand 1998) design patterns. Givenlahered architecture, the
Bridge and Proxy patterns (Gamma et al. 1995; Gr&98)1then suggest how to
organize the interactions among the various lay@&tse Iterator pattern (Gamma
et al. 1995; Grand 1998) is also helpful; it progide systematic mechanism for
accessing groups of records. The Template Methodte§yraDecorator, and
Composite patterns (Gamma et al. 1995; Grand 1998)dwe standard structures
for plugging variable components into the framewoRurthermore, as the frame-
work evolves, it follows the general development gidbumented by the Evolv-
ing Frameworks system of patterns (Roberts and John$€&).19

The rest of the chapter is organized as follows. Se@ibriefly describes the
requirements of the Table ADT and applies commonalitg variability analysis
to recognize the frozen spots and hot spots of théeeTEDT framework. Section
3 briefly introduces the technique of using formekign contracts, which is ap-

4 Error! Notext of specified stylein document.

plied in the specification of the interface desigrhie sections that follow. Section
4 applies Layered Architecture design pattern todothié top-level framework ar-

chitecture. Sections 5, 6 and 7 apply several patterthe design of interfaces
among the different layers. Section 8 describes ayutiiodule needed by the

lower levels of the architecture. Section 9 appifes Iterator pattern to enhance
the framework design. Section 10 illustrates théepas of evolving frameworks

that can be adopted into the Table framework deSgution 11 discusses the re-
lated work and Section 12 gives a conclusion.

12.2 ANALYSIS OF THE TABLE ADT

The Table ADT is an abstraction of a widely used setatd and file structures. It
represents a collection of records, each of whialsists of a finite sequence of
data fields. The value of one (or a composite of sdyvef these fields uniquely
identifies a record within the collection; this figkl called thekey. For the pur-
poses here, the values of the keys are assumed terbengs of a totally ordered
set. The operations provided by the Table ADT allowaord to be stored and re-
trieved using its key to identify it within the dettion.

In (Cunningham and Wang 2001), Cunningham and Wangider the de-
sign of the Table framework to have the followingugements:

1. It must provide the functionality of the Table ADTrfa large domain of
client-defined records and keys.

2. It must support many possible representations of thé&e DT, includ-
ing both in-memory and on-disk structures and a tyarié indexing
mechanisms.

3. It must separate the key-based record access mechamsmstte
mechanisms for storing records physically.

4. All interactions among its components should only tbeugh well-
defined interfaces that represent coherent abstractio

5. Its design should use appropriate software designrpatte increase re-
liability, understandability, and consistency.

In building a framework, it is important to separtite concerns. The design-
ers must separate the frozen spots, the aspects comrimndntire family mem-
bers, from the hot spots, the aspects specific to ondyfammber. Furthermore,
they must separate the various common and variabletaspam each other and
consider them somewhat independently (Cunninghaah 2006a). Commonality
and variability analysis (Coplien et al. 1998; Weisd &ai 1999) is a means of
identifying the frozen spots and hot spots. The armlygiduces commonalities,
a list of assumptions that are true to all the membetiseofamily, and variabili-
ties, a list of assumptions that are true for only somelees of the family.
Thus, frozen spots and hot spots are chosen on the dfasisnmonalities and

12 Designing a Flexible Framework for a Table Afstion 5

variabilities, respectively. In this chapter, the comalities and variabilities of
the Table ADT are examined based on the requireméthe dable ADT and the
prototype implementations (Wang 2000).

The requirements stated above mix concerns in theefrank design—
commonalities, variabilities, and non-functional aspedft the design and code.
These need to be more cleanly separated than is dd¢@aimningham and Wang
2001). Requirements 1 and 2 describe functional reognts of the family,
which are our primary concerns here. Requirementsd34 express desired char-
acteristics of the framework. Requirement 5 suggasasacteristics of the design
process. By analyzing the functional requirementsjdeetify one primary com-
monality, i.e., frozen spot, as follows:

1. All clients of the framework use the Table ADT’'s Kessed access
methods to the collections of records stored in t§Requirement #1)

We also identify five variabilities, i.e., hot spaas, follows:

1. Variability in the keys. Clients of the Table framework can define the
keys using many different data structures. (Require#hEn

2. Variabilityintherecords. Clients of the Table framework can define the
records using many different data structures. (Requite#ie

3. Variability in the external representation of the record state. For tables
stored on external devices, it must be possible to sherstate of a re-
cord accurately on the external device and restote memory when
needed. This process may vary somewhat depending bpamature of
the record and the external device. (Requiremengn#2)

4. Variability in the indexing mechanisms. Different customizations of the
Table framework can use different algorithms for kidg the records.
(Requirement #2)

5. Variability in the storage mechanisms. Different customizations of the
framework can use different mechanisms for storingrédoerds. (Re-
quirement #2)

The hot spots #1 and #2 are not completely indeperafeeach other. However,
to separate the concerns, we choose to separate thbilitars of keys and re-
cords into two different hot spots. Hot spot #3 is ashlitle, but the need for this
variability should be clear as we proceed with thsigh.

Following the design method outlined above, thenrevork should allow the
five variabilities to be realized independently fremch other, which has an im-
plication for the architecture of the Table framekvdBefore we proceed further,
let's look a bit more at the use of formal design ats for specifying software
behaviors.

6 Error! Notext of specified stylein document.

12.3 FORMAL DESIGN CONTRACTS

Design by Contract is a design approach developed by Meyer (Meyer 1992,
1997). It is motivated by an analogy with a contiadbusiness. In the business
setting a contract defines an agreement betweengdiesupnd a client:

1. The supplier must satisfy certain obligations, suipraviding the prod-
uct the client ordered, and expects certain bensfitsh as the client pay-
ing the established price for the product.

2. The client must satisfy certain obligations, such gsngethe supplier the
established price for the product, and expects thefilgnsuch as getting
the product.

3. Both the supplier and the client must satisfy certdiigations that apply
to all contracts, such as laws and regulations.

Meyer (Meyer 1992, 1997) adopts the concepts akn€l, “supplier” and
“contract” into object-oriented design. Buildinggan earlier work on program
verification (Hoare 1969), information hiding (Pasnd972), data abstraction
(Hoare 1972), and abstract data types (Guttag 18¥&yer introduces logical as-
sertions to describe the contract between the cl{ests's) of an abstract data type
(ADT) and the suppliers (i.e., developers) of the ADIF. Meyer's approach to
object-oriented design and programming, an ADT is mdisnrepresented by a
class. The key assertions are of three types: precomslifpostconditions, and-
variants.

Preconditions and postconditions are assertions attdoreach operation of
an ADT. A precondition expresses requirements that any call of the operation
must satisfy if it is to be correct. gostcondition expresses properties that are en-
sured in return by the execution of the call. ¥ firecondition is not satisfied, the
operation is not guaranteed to return a correctevaluto even return at all. For
example, an operation to delete a record from kect@n might have a precondi-
tion requiring that a record with that key exists angostcondition requiring that
it no longer be an element of the collection.

An invariant is a constraint attached to an ADT that must hold foneach
instance of the ADT whenever an operation is not dgarformed on that in-
stance. In object-oriented design, this type of i is often called alass in-
variant. For example, in the Table ADT, an invariant migkdte that the table
mustnot have more than one record with a particular kéye hvariant gives a
condition that must be satisfied to maintain thegritg of the table.

In the client-supplier context,

» a client must satisfy the obligation (the preconditiof an operation to
expect to receive the benefit (the postconditionjetfing a correct result
from the operation,

12 Designing a Flexible Framework for a Table Afstion 7

» a supplier must satisfy the obligation to make the puosiition of the
operation hold upon return whenever the precondibiothe operations is
satisfied by the call,

* both the client and the supplier must maintain @erpeoperties, the
invariants.

In specifying the design of the interfaces of the &dbthmework, we not only
need to give the method signatures (i.e., paramatetseturn type) but also to
express their semantics (i.e. behaviors), using pretonsliand postconditions for
each method and invariants for the ADT as a wholenfhgham and Wang
2001).

The simple application of Design by Contract is ngtitself sufficient for
formal proofs of correctness of the desired propemieframework applications.
The concrete classes that implement hot spots imraefivork must, of course,
preserve the general expectations of the frameworkifggion, that is, they
should be behavioral subtypes (Liskov and Wing }@84he abstract classes they
extend. However, the concrete implementations exfiidier behaviors than the
minimum required by the framework specification. Thkutended techniques are
needed to handle these richer behaviors (SoundaemdnFridella 2000; Hall-
strom and Soundarajan 2002). Nevertheless, simggegml contract techniques
are still quite useful in helping designers explord egfine the requirements and
framework designs.

12.4 LAYERED ARCHITECTURE

The overall architecture of the Table framework $tti@mbody the frozen spot
and, as much as possible, separate the concerns tel@ach hot spot into an in-
dependent component. That is, it should hide ti@amentation of each hot spot
within a separate component, behind a well-defimeriace. To use the termi-
nology from Parnas’ information-hiding approach todular software design, the
implementation details for a hot spot should be ar&t® of the component that is
hidden behind an appropriate “abstract interfacedrifRs 1972; Britton et al.
1981; Cunningham et al. 2004).

Clearly, there is a mix of high- and low-level issuwsmong the hot spots. Cli-
ents can define their own key (hot spot #1) andree¢hot spot #2) structures and
then call the table (frozen spot) to store the rexordhe table implementation
may use some key-based record access mechanism (hédypaired with some
storage structure (hot spot #5).

This mix of high- and low-level issues suggests a hibieal architecture
based on théayered Architecture pattern (Buschmann et al. 1996; Shaw 1996).
When there are several distinct groups of servicedsctrabe arranged hierarchi-
cally, this pattern assigns each group to a layem Eaer can then be developed
independently. A layer is implemented using the sesvifethe layer below and,
in turn, provides services to the layer above. Indingplest version of this pat-

8 Error! Notext of specified stylein document.

tern, services in a layer cannot directly call upervises defined more than one
layer down. It cannot directly call services defiried layer above except using
specificcall-backs that it is supplied in calls from the higher level.

As shown in Fig. 12.1, we can define three layerfiinTiable framework de-
sign. From the top to the bottom these include:

Client Layer

v 1

Access Layer

v]

Storage Layer

Fig. 12.1. Applyingthe Layered Architecture pattern

Client Layer. This layer consists of the client-level programattuse the table
implementation in the layer below to store and eg&irecords. Clients of the
Table framework implement the user-defined data typekeys and records,
which are the variabilities expressed by hot spotawl#2.

Access Layer. This layer must provide client programs key-basedsxto the re-
cords in the table. It uses the layer below to stoeerécords physically. Im-
plementations of this layer provide the data strustamed algorithms for in-
dexing the records, which is hot spot #4. The interf@ this layer represents
the frozen spot.

Sorage Layer. This layer must provide facilities to store aettieve the records
from the chosen physical storage medium. Implementatbthis layer pro-
vide the data structures and algorithms for storirggrecords, for example, a
structure in the computer's main memory or a randooess file on disk.
The layer expresses hot spot #5.

For example, suppose we want a simple indexed filetsti® with an in-
memory index that uses an array-like relative filstre the records on disk (Folk
et al. 1998). The implementation of the index wdokdpart of the Access Layer;
the implementation of the relative file would betlie Storage Layer. A program
that uses the simple indexed file structure woulihlibe Client Layer.

What about hot spot #3? This hot spot involves thityabd represent a “re-
cord” in an external form suitable for storage on sgrhysical storage medium
(e.g., rendering it as a sequence of bytes). Sohermsurface, it would seem that
this would be a structure defined by the Client érathat is passed through the
Access Layer to the Storage Layer, where a call-batike implementation of the

12 Designing a Flexible Framework for a Table Afstion 9

structure in the client may take place. Howevec)aser examination reveals a
more complicated situation. The client’'s keyed-reaoay itself consist of a hier-
archy of structures, each of which needs to be ctewéo the external form inde-
pendently. For some implementations of the AccessrlLayghysical record to be
stored by the Storage Layer might consist of a grdugient keyed-records (e.g.,
a B-tree node or a hash-table bucket) or it migimsist of auxiliary information
about the access structure that needs to be made perds#eause hot spot #3
does not fit cleanly into any of the layers, we plédoe needed abstraction in a
utility module called the Externalization Module.

The various layers and modules need to be kept indep¢ from one an-
other. Thus, following the fundamentaterface design pattern (Grand 1998), we
define each layer in terms of a set of related Jaesfates and require that inter-
actions among the layers use only the providedfades. Next, let us examine
the design of the each layer and its interfaces.

12.5 CLIENT LAYER

The design of the&Client Layer must enable the Access Layer to access client-
defined keys and records and should avoid requinmgecessary programming to
use common data types.

12.5.1 Abstract Predicates for Keys and Records

As much as possible, clients (i.e., users) of theeta@hplementations should be
able to define their own key (hot spot #1) and réaructures (hot spot #2). The
internal details of the different types of recordd &erys, which are implemented
in the Client Layer, must be hidden from the Accegs$ @torage Layers. How-
ever, the specification of the Access Layer depends wgertain assumptions
about the nature of the records and keys. In spagifyie operations for the inter-
faces in this and other layers, we express key featdiré®e keys and records as
abstract predicates (Meyer 1997) to make these assunmpnore explicit. These
are calledabstract because they are used for specification only; theyadaepre-
sent functions that are to be built as executable.c®tie precise definition of
these predicates depends upon the particular impltiens used in this layer.
The abstract predicates associated with the Clieygriare

* boolean isValidKey(Object key) that is true if and only if
key is an element of the set of meaningful keys suppdayetie client’s
key class.

* boolean isValidRec(Object rec) that is true if and only if

rec is an element of the set of meaningful records supgdy the cli-
ent’s keyed record class.

10 Error! Notext of specified stylein document.

12.5.2 Keys and the Comparable Interface

As stated earlier, clients of the table implementetishould be able to define their
own record and key structures. However, any impleatem of the Table ADT
must be able to extract the keys from the recordscamtpare them witleach
other. Thus we restrict the records to objects from kwhkigys can be extracted
and compared using some client-defined total orderin

The built-in Java interfacEomparable is sufficient to define the function-
ality of the keys. Any class that implements this inmgfanust provide a public
methodcompareTo , which is defined to have the signature and senmidie-
sign contract) as defined below.

To state logical and mathematical expressions in spatifns, this chapter
uses a Java-influenced notation. The sym&®&l denotes logical conjunction
(“and”), || denotes the logical disjunction (inclusive “or’)lenotes negatioss
denotes logical implication (“if-then”), ang= denotes equality. The symbdl
denotes universal quantification (“for all”) afitHenotes existential quantification
(“there exists”). For mathematical sets, we usedsfi@and} to list the elements
explicitly , O to denote union,— to denote set subtractiodl, to denote member-
ship, andd to denote the empty set. In appropriate contexiss p&parentheses
(and) denote tuple formation. In postconditions, the alaléresult refers to
the value returned by a function method call andptiedix # attached to a variable
denotes the value at the time the method was calieiéss a new value is explic-
itly assigned to a variable in the postconditionvitue must not be changed by
the method call.

The description and design contract (pre- and pasiiions) for thecom-
pareTo method are as follows:

e int compareTo(Object key) that compares the associated ob-
ject his) with argumenkey and returns -1 ikey is greater, O if
they are equal, and 1 Key is less.

Pre: isValidKey(this) && isValidKey(key)
Post:result == (if this < key then -1
else if this == key then 0
else 1)

Clients can use any existit@pmparable class for their keys or implement their
own.

12.5.3 Records and the Keyed Interface
To enable keys to be extracted from records, we dote the Java interface

Keyed to represent the type of objects that can be maatgailby a table (hot
spot #2). We model thiéeyed abstraction as having an abstract attritke .

12 Designing a Flexible Framework for a Table Afstion 11

Any class that implements this interface must implenteatmethodgetKey ,
which has the following description and design caritra

e Comparable getKey() that extracts the key from the associated re-
cord this).
Pre: isValidRec(this)
P ost: (result == this.key) && isValidKey(result)

An alternative design for handling the keys and msanight be to allow the
client to use any Java objects and then to supplsopppte objects that encapsu-
late the key-extraction and key-comparison operatiedeveloped in accordance
with the Srategy design pattern (Gamma et al. 1995; Grand 1998)s altérna-
tive might enable changes to these operations tmbe thore dynamically but at
the loss of some type safety and of the ability to heeclasses in the API that im-
plement theComparable interface. With the approach taken in this sectidip,
ents can, if needed, construct wrapper classes thé&rnmept theComparable
andKeyed interfaces and encapsulate the actual key andd@tgects. This use
the Adapter design pattern (Gamma et al. 1995; Grand 1998)lenatients to
utilize a wide range of pre-defined objects as keygoords as needed.

12.5.4 Interactions among the Layers

The Client Layer thus consists of t®mparable andKeyed interfaces and
the abstract predicatésv/alidKkey andisValidRec (all of which are part of
the framework) and the concrete classes that implemerihtérfaces (which are
part of the customization of the framework for some igeapplication). The en-
capsulation of the key and record implementationshanGomparable - and
Keyed -implementing classes, respectively, thus enable thessctayer to use
the client-defined keys and records without knowing $pecifics of their imple-
mentation. A table implementation in the Access kayen use thgyetKey
method of th&keyed interface to extract keys from the client-defimedords and
can then use theompareTo method of theComparable interface to compare
the client-defined keys.

12.6 ACCESS LAYER

The design of the Access Layer must provide the Clieytet programs key-
based access to a collection of records (frozen spadhle diverse implementa-
tions of the indexing structures (hot spot #4), angpsut diverse storage struc-
tures in the Storage Layer. The primary abstraatiothe Access Layer is the
Table ADT.

12 Error! Notext of specified stylein document.

12.6.1 Abstract Predicates for Tables

In the specifications in this section, we use thioWang abstract predicates to
capture assumptions the Table ADT makes about theommvent:

» isValidKey(Object key) and isValidRec(Object rec)
which are defined in the Client Layer to identifglid keys and records.

e isStorable(Object rec) which is defined in the Storage Layer to
identify records that can be stored.

The specifications of other interfaces may also dépgron assumptions about
the integrity of a Table ADT instance. We thus idtroe the abstract predicate:

* boolean isValidTable(Table t) that is true if and only if is
a valid instance ofable (i.e., satisfies all the design contracts below).

12.6.2 Table Interface

We model the collection of records by the variatalble , which is a partial
function from the set of keys defined by the typemparable to the set of re-
cords defined by the typ€eyed . For convenience, we use the varidghlele to
denote either the function or the corresponding Blkeey-record pairs.

Now, we can define the Table ADT as a Java interflaaeincludes the follow-
ing ADT invariant and public methods. In Englidmeinvariant can be stated:

All stored keysand recordsinthet abl e arevalid and capable of being
stored on the chosen external device, and the records can be accessed by
their keys.

Stated more formally, the invariant is:

(Ok,r: r == table(k) : isValidRec(r)
&& isStorable(r) && k == r.getKey())

The Table ADT has mutator (i.e., command or settenatipas with the follow-
ing descriptions and design contracts:

» void insert(Keyed r) inserts th&keyed objectr into the table.
Pre: isValidRec(r) && isStorable(r) &&
IcontainsKey(r.getKey()) && lisFull()
Post: table == #table O {(r.getkey(),nN}

« void delete(Comparable key) deletes th&eyed object with
the giverkey from the table.
Pre: isValidKey(key) && containsKey(key)
Post: table == #table — {(key,#table(key))}

12 Designing a Flexible Framework for a Table Abstion 13

* void update(Keyed r) updates the table by replacing the existing
entry having the same key as argumenwith the argument object.
Pre: isValidRec(r) && isStorable(r) &&
containsKey(r.getKey())
Post: table == (#table —
{(r.getKey(),#table(r.getkey()))})
0 {(r.getKey().n})

TheTable ADT has accessor (i.e., query or getter) operatiagttstive following
descriptions and design contracts:

» Keyed retrieve(Comparable key) searches the table for the
argumenkey and returns th&eyed object that contains this key.
Pre: isValidKey(key) && containsKey(key)
Post:result == #table(r.getKey())

* boolean containsKkey(Comparable key) searches the table
for the argumenkey .
Pre: isValidKey(key)
Post: result == defined(#table(key))

* boolean isEmpty() checks whether the table is empty.
Pre: true
Post: result == (#table ==)
* boolean isFull() checks whether the table is full.
Pre : true
Post: result == (#table implementation has no free space to
store a new reigo
e int getSize() returns the size of the table.
Pre: true

Post: result == cardinality(#table)

Note that there are several tacit assumptions being.méthvinggetSize
return an integer means that the size of the table beuBnite, but it is not neces-
sarily bounded. Of course, for unbounded taidBsll would always need to
return the valudalse . The contracts for the methods other tigatSize do
not preclude the definition of an infinite size l@le.g., with some ranges of key
values having records that are generated by a ames needed). However, the
behavior ofgetSize would need to be defined for infinite tables. Asalass
that implements an infinite table would need to pilevé constructor or additional
methods for setting up techniques for calculated rectivat are not explicitly in-
serted into the table.

14 Error! Notext of specified stylein document.

12.6.3 Interactions among the Layers

The Access Layer thus consists of Treble interface and thisValidTable
abstract predicate (which form part of the framéwiself) and the concrete
classes that implemeiiable (which are part of a customization of the frame-
work to create a specific member of the family). €ete classes that implement
theComparable andKeyed interfaces are part of the Client Layer. The intera
tions between the Client Layer and the Access Layeuraes follows:

* The Client Layer calls the Access Layer usingThble interface.

e The Access Layer calls back to the Client classes thadeingmt the
Keyed andComparable interfaces to do part of its work.

In the design of the Access Layer, the only constialexted upon the storage
mechanism is that the records inserted into the tableapable of being stored
and retrieved reliably (i.e., satisfyStorable). Thus the design of the Access
Layer enables client-defined keys and records,rsiiveecord access mechanisms,
and diverse storage mechanisms. Next, let us examin&torage Layer and its
interface.

12.7 STORAGE LAYER

The Sorage Layer provides facilities to store records to and retrim@rds from

a physical storage medium. It encapsulates hot spah&5hence, must enable a
diverse range of physical media. Of course, thisrlayest also support client-

defined records in the Client Layer and diverse néé@@cess mechanisms in the
Access Layer. It should also enable the access stradtutiee Access Layer to be
stored on the physical media and decouple the implextiens in the layers above
from the physical media as much as possible.

12.7.1 Abstract Predicate for Storable Records

The specifications of the Access Layer and the Seotayer interfaces depend
upon certain assumptions about the nature of recoedscttn be stored on the
physical storage media. In specifying the operatiome express key features of
the media in terms of an abstract predicate to nlagee assumptions more ex-
plicit. The predicate defined by the Storage Lager

* boolean isStorable(Keyed rec) that is true if and only ifec
can be stored on the storage medium being usedhetimplementation
of thetable

12 Designing a Flexible Framework for a Table Abstion 15

12.7.2 Bridge Pattern

To define the interfaces between the Access anddstdagers, we adopt a struc-
ture motivated by the Bridge and Proxy design pastgGamma et al. 1995;
Grand 1998) to achieve the desired degree of déiogugnd collaboration. We
also take into account both the expected charadtsrist the storage media and
the expected needs of the implementations oT#i#e 's indexing mechanisms.
The Bridge design pattern is useful when we wish to decoupléititerface”
of an abstraction from its “implementation” so ttte¢ two can vary independently
(Gamma et al. 1995; Grand 1998). In this desigrsfasvn in Fig. 12.2), the “in-
terface” is theTable abstraction in the Access Layer, which provides kaseb
access to a collection of records; the “implementatiothe RecordStore ab-
straction in the Storage Layer, which provides gsptal storage mechanism for
records. These two hierarchies of abstractions cakébdo provide the table
functionality. At the time a table is created, amncreteTable -implementing
class can be combined with any conciRRéeordStore -implementing class.

uses

Table ——mMmM8M—> RecordStore

/N N

Simple Hash Slotted Vector
Index File File
Store

Fig. 12.2. Applying the Bridge pattern

We assume that a storage medium abstracted intBaberdStore ADT
consists of a set of physical “slots”. Each slot hasiquen‘address”, the exact na-
ture of which is dependent upon the medium. A mogmay allocate slots from
this set and release allocated slots for reuse. Therg hoaever, be restrictions
upon the characteristics of the records acceptalileetstorage medium. For ex-
ample, if a random-access disk file is used, it mapdmessary to restrict the re-
cord to data that can be written into a fixed-léngibck of bytes.

There are many possible implementationsrable in the Access Layer—
such as simple indexes, balanced trees, and hash tabje$able implementa-
tion must be able to allocate a new slot, store ardemto it, retrieve the record
from it, and then deallocate the slot when it idoriger needed. ThHEable must
be able to refer to slots in a medium-independent maMweover, most imple-
mentations will need to treat these slot referencestasthia can be stored in re-
cords and written to a slot. For example, the nodes toée-structured table are

16 Error! Notext of specified stylein document.

“records” that may be stored in RecordStore ; these nodes must include
“pointers” to other nodes, that is, references torathas.

12.7.3 Proxy Pattern

Because we cannot expose the internal details oR#oerdStore to the Ac-
cess Layer, we need a medium-independent means fagsadudy the records in
the RecordStore . The approach we take is a variation of fmexy design pat-
tern (Gamma et al. 1995; Grand 1998).

The idea of the Proxy design patterndsise a proxy object that acts as a sur-
rogate for a target object. When a client wantsctess the target object, it does
so indirectly via the proxy object. Since the targefect is not accessed directly
by the client, the exact nature and location, eherexistence, of the target object
is not directly visible to the client. The proxy otfjeerves as a “smart pointer” to
the target object, allowing the target’s locatiod ascess method to vary.

Table RecordStore
RecordSlot

—> handle

Fig. 12.3. Applying the Proxy pattern

In this design, we define tHgecordSlot abstraction to represent the prox-
ies for the slots within &ecordStore . As shown in Fig. 12.3, these two ab-
stractions collaborate to enable the Access Layewote sind retrieve records in a
uniform way, no matter which storage medium is usedaBse of the need to
write the slot references themselves into records aswatalso assign an integer
“handle” to uniquely identify each physical slot irRacordStore . Since mul-
tiple RecordStore instances may be in use at a time, eRebordSlot also
needs a reference to tRecordStore instance to which it refers.

12.7.4 RecordStore Interface

We can now specify thRecordStore andRecordSlo t interfaces. The model
for the semantics of these ADTSs includes two sets. Tiedlee denotes the set
of slot handles that have been assignedRécordSlot instances. The set
store is a partial function from the set of valid handlesh® set of storable ob-
jects. For convenience, the sefalloc is used to denote the set of valid but un-

12 Designing a Flexible Framework for a Table Afstion 17

allocated handles, that is, the complement of theallet . The constant
NULLHANDLErepresents a special integer code that cannot be agsigreevalid
slot handle; it is neither ialloc norunalloc. Here we assume th&e-
cordStore s finite, but unbounded in size.

We define theRecordStore ADT as a Java interface that includes the fol-
lowing ADT invariant and public methods. In Englighg invariant can be
stated:

All recordsin the st or e are capable of being stored on the selected medium
and the stored records can be accessed by their handles.

Stated more formally in logic, the invariant is:

(O h, r:r==store(h) : isStorable(r)) &&
(Oh:h O alloc == defined(store(h)))

The RecordStore ADT has operations with the following descriptionsl ate-
sign contracts:

e RecordSlot newSlot() allocates a new record slot and returns the
RecordSlot object.
Pre: true

Post: result.getContainer() == this &&
result.getRecord() == NULLRECORD &&

result.getHandle() O #alloc &&
result.getHandle() O alloc O {NULLHANDLE}
¢ RecordSlot getSlot(int handle) reconstructs a record slot us-

ing the giverhandle and returns thRecordSlot
Pre: handle O alloc
Post: result.getContainer() == this &&
result.getRecord() == #store(handle) &&
result.getHandle() == handle

¢ void releaseSlot(RecordSlot slot) deallocates the allocated
recordslot
Pre: slot.getHandle() O alloc 0 {NULLHANDLE} &&

slot.getContainer() == this
Post: alloc == #alloc - {slot.getHandle()} &&
store == #store —
{(slot.getHandle(),slot.getRecord())}

Note that, to support a wide domain of variabilityimplementation, the pa-
rameterlesmiewSlot method allows lazy allocation of the handle andhcee of
the associated physical slot. That is, the handlelmaallocated here or later upon
its first use to store a record in tRecordStore . For this method, we set the
value of a new slot to ldULLRECORD. This constant denotes an inert, empty

18 Error! Notext of specified stylein document.

record implemented according to thiell Object design pattern (Woolf 1998;
Grand 1998). That iS\ULLRECORDas the same interface as the other records
returned bygetRecord (below) except that it has no data associated wahadt

the operations have no effect. According to Wodkie“Null Object encapsulates
the implementation decision to do nothing and hideseldetails from its collabo-
rators” (Woolf 1998). It sometimes avoids a situatidmere a caller must take a
special action to capture error returns from operation

12.7.5 RecordSlot Interface

The RecordSlot interface represents a proxy for the physical re¢stots”
within a RecordStore . The semantics of its operations are, hence, stated in
terms of the effects upon the associd®atordStore instance. We model the
RecordSlot ADT as having two abstract attributes, tomtainer which is a
reference to the associatedcordStore and the integdnandle.

We thus define th&®ecordSlot ADT as a Java interface that includes the
following ADT invariant and public methods. In Ergfli theinvariant can be
stated:

The handle of a Recor dSl ot object denotesa slot of the st or e that has
been allocated, unlessit has the value NULLHANDLE.

Stated more formally in logic, the invariant is:
getHandle() O alloc O {NULLHANDLE}

The RecordSlot ADT has operations with the following descriptions ate-
sign contracts:

« void setRecord(Obiject rec) stores the argument objeet
into thisRecordSlot
Pre: isStorable(rec)
Post: Leth == getHandle():

(h O #alloc = store == (#store —
{(h#store(h))}) O (h,rec)})
&& (h == NULLHANDLE =
(Og:g O #unalloc :
alloc == #alloc O {g} &&
store == #store O {(g,rec)}))

Note that this allows the allocation of the handlbéadone here or al-
ready done by theewSlot method ofRecordStore

* Object getRecord() returns the record stored in tiie-
cordSlot
Pre: true

12 Designing a Flexible Framework for a Table Afstion 19

Post: Leh == getHandle()
(h O #alloc = result == #store(h)) &&
(h == NULLHANDLE = result == NULLRECORD)

* int getHandle() returns the handle of thiRecordSlot
Pre: true
Post: result == this.handle

» RecordStore getContainer() returns a reference to tRe-
cordStore with which thisRecordSlot is associated.
Pre: true
Post: result == this.container

* boolean isEmpty() determines whether thRecordSlot is
empty (i.e., does not hold a record).
Pre: true

Postresult == (getHandle() == NULLHANDLE ||
getRecord() == NULLRECORD)

Note thatgetRecord returns the inerNULLRECORDDbject if no record has
been stored in the slot. Also note tisEEmpty returns true for either an unallo-
cated handle or tidULLRECORDeing stored in the slot.

12.7.6 Interactions among the Layers

The Storage Layer consists of tRecordStore andRecordSlot interfaces
and the abstract predicasStorable (all of which are part of the framework)
and the concrete classes that implement the inter{adgsh are part of an appli-
cation of the framework). A'able implementation in the Access Layer calls a
RecordStore implementation in the Storage Layer to gcordSlot ob-
ject. The Access Layer code then c&EcordSlot to store and retrieve its re-
cords. If needed, BecordSlot object calls back to Record implementation
in Access Layer. Th®ecord interface is part of the Externalization Module,
which we examine in the next section.

The design of thd&kecordStore and RecordSlot abstractions and the
use of slot handles give the Storage Layer the diftgatb be implemented using
a diverse group of physical media, including both nma@mory and on-disk struc-
tures. These interfaces provide operations with safftciunctionality and make
the functionality available in manner that is indegemt from the actual physical
medium used. The combination of these interfaces lamRécord interface in
the Externalization Module (defined in the nextteer) enable the Storage Layer
to be decoupled from the layers above and for theeég Layer to store a wide
range of information in the Storage Layer.

20 Error! Notext of specified stylein document.

12.8 EXTERNALIZATION MODULE

How can theRecordSlot mechanism store the records on and retrieve them
from the physical slots on the storage medium? Thanisssue because the re-
cords themselves are defined in the layers above aidititernal details are,
hence, hidden from thRecordStore . For in-memory implementations Bfe-
cordStore this is not a problem; thRecordStore can simply clone the re-
cord (or perhaps copy a reference to it). Howevisk-based implementations
must write the record to a (random-access) file aednstruct the record when it
is read. So, once we allow diverse physical medéahave to handle the external
byte presentation of record state (hot spot #3).

The solution taken here is similar to what is donthheKeyed interface.
We introduce a&Record interface with three user-defined methods with tHe fo
lowing design contracts:

» void writeRecord(DataOutput out) writesthis record to
streamout .
Pre:true
Post: suffix of strearout ==this record's state encoded as
byte sequence

» void readRecord(Datalnput in) readshis record from

streamin .

Pre:true

Post:ithis record's state= prefix of streanin decoded from

yté sequence

* int getLength() returns the number of bytes in the external represen-

tation ofthis record (e.g., that will be written hyriteRecord).

Pre:true

Postiresult == number of bytes in external representatiothsf

record

The Record interface must also satisfySiate Restoration Property, defined
as follows:

If, for some Recor d object,awri t eRecor d call isfollowed by a
r eadRecor d call with the same byte sequence, the observable state of the
Recor d object will be unchanged.

The concrete implementations of tRecord interface appear in either the
Client Layer for client-defined records or in thec&ss Layer for “records” used
internally within aTable implementation. The Storage Layer calls Rexord
methods when it needs to read or write the physerd. The code in thRe-
cord -implementing class does the conversion of the inteird data to and
from a stream of bytes. ThRecordStore andRecordSlot implementations

12 Designing a Flexible Framework for a Table Afstion 21

are responsible for routing the stream of bytes tofeom the physical storage
medium.

The framework design using thHRecord interface takes a low-level ap-
proach to handling the conversion of user-definednas to the desired external
form. It requires that the users provide facilities faanslating their records
to/from a sequence of bytes by having the recoreimisielves implement thee-
cord interface. An alternative would be to encapsuthie functionality within
an externalization object developed in accordanddh whe Strategy pattern
(Gamma et al. 1994). Methods of the externalizatibject could access the
fields of the user’s record to create the neededreat form and vice versa. This
access might be direct using accessor methods the aeedt provides or it might
be indirect using reflection. Taking this approactiter, the Storage Layer might
be parameterized with other Strategy objects thatvexd from a device-
independent form coming from the externalization cbj@® the form actually
stored on the physical device. Given that stricirigps not maintained when a re-
cord is externalized, this would be an acceptaldssiply more dynamic alterna-
tive to the approach using tRecord interface. It would also better support ex-
ternal forms such as an XML representation. However,opt for the simpler,
low-level approach for the framework design in thigter.

Table

' Client Layer ' Externalization !
i H Module !
i Keyed ———=>| Comparable i i i
Access Layer i i

' Record i

Sorage
Layer

RecordStore RecordSlot

Fig. 12.4. Abstraction Usage Relationships

22 Error! Notext of specified stylein document.

In summary, Fig. 12.4 shows thiee relationships among the Client, Access,
and Storage Layer and Externalization Module abstreee The user program in
the upper-level Client layer calls the Table ADTedity and the lower layers have
callbacks to implementations of théeyed, Comparable , and Record ab-
stractions defined in the layers above.

12.9 ITERATORS

So far, we have specified the basic structure ofti#e framework. More design
patterns could be applied to enhance the desigmediamework. This section il-
lustrates how to apply thierator design pattern (Gamma et al. 1995; Grand
1998) in the Table framework. This design pattmables the client code to ac-
cess all the records in the table in some order witepposing the internal details
of the table implementations. The interfdtarator , defined in the Java API,
provides a standard means for Java programs to supemtors. It includes
method hasNext to check for the existence of another element ethod
next to return the next element. We can add severdlliserators and iterator-
manipulating methods to the framework design.

12.9.1 Table Iterator Methods

As a convenience for clients of the table impleméorat we add two iterator ac-
cessor methodgietKeys() andgetRecords() , to theTable interface (de-
fined in the Access Layer). Remember that the ADT iavérfor Table must
also hold as a precondition and postcondition fosettmperations.

Here we introduce new notation for describing theas#ios of iterators. The
abstract attributseq of anlterator denotes the sequence of elements that the
iterator yields on any subsequent calls ofrib&t() method. The suffix predi-
catenodups operates on sequences and rettnues if and only if the sequence
contains no repeated elements. We also overload! thied [operators to work
with sequences as well as sets. The utility functiocurs(e,s) returns the
number of occurrences of elemenin sequencs.

e lterator getKeys() returns an iterator that enables the client to
access all the keys in the table one by one.
Pre: true
Post result.seq.nodups &&
(Ok::
k O result.seq == defined(#table(k))
e lterator getRecords() returns an iterator that enables the client

to access all the records in the table one by one.
Pre: true

12 Designing a Flexible Framework for a Table Abstion 23

Post result.seq.nodups &&
(Or::
r O result.seq == Ok :: r = #table(k)))

Similarly, we can add overloaded versions ofitieert anddelete meth-
ods that take appropriate iterators as arguments.

¢ void insert(lterator iter) inserts theKeyed objects denoted
by the iteratoiter into the table.
Pre: iter.seq.nodups &&
(Or:r O iter.seq : isValidRec(r) &&
isStorable(r) && !containsKey(r.getKey()))

Post: table == #table O
{(r.getkey(),r) : r Oiter.seq}
» void delete(lterator iter) deletes the objects from the table
whose keys match those returned by iterior .
Pre: iter.seq.nodups &&

Ok:k Oiter.seq:
isValidKey(k) && containsKey(k))
Post: table == #table —
{(k,#table(k)) : k O iter.seq }

We note that the precondition of timsert(lterator) method requires all
elements yielded by the iterator to be absent framtdble. In practice, this may
be difficult to ensure for all calls. Alternativpexifications might be to require
that an insert of an existing key to either be rgadoor result in an update opera-
tion, but these would make the iterator version beldifferently than the non-
iterator version ofnsert . A similar situation arises fatelete(lterator)
because its precondition requires the presence of &eg.

12.9.2 Input Iterators

The methodnsert(Iterator) is a convenient mechanism for loading a ta-
ble with a sequence of items that come from a diffefemhat. We add the ab-
stract base cladaputlterator to enable users to conveniently create a class

to read records from external files. The desigrhif tlass takes advantage of the
Template Method design pattern.

The Template Method design pattern (Gamma et al. 1995; Grand 1998) is a
quite useful pattern for building frameworks. Cahto this pattern is an abstract
class that provides a skeleton of the needed behavidrs.class consists of two
kinds of methods:

Template methods are concrete methods that implement the shared duadity of
the class hierarchy. They are not intended to beidden by subclasses.

24 Error! Notext of specified stylein document.

Hook methods are (often abstract) methods that provide “hooks afttaching the
functionality that varies among applications. Altgbuhook methods may
have a default definition in the abstract clasgéneral they are intended to be

overridden by subclasses. A template method calls k inethod to carry out
application-dependent operations.

The Inputlterator class implements the Jalterator interface, pro-

methods as template methods. It also includes
two abstract hook methods that are called by thplate methods:

viding the requiredterator

¢ boolean atEnd() that returngrue when the end of the input has

been reached.

e Object readNext()

that returns the next object in the input stream.

Iterator

bool ean hasNext ()
oj ect next ()
voi d renove()

implementsZF

Inputlterator

bool ean hasNext ()
Obj ect next ()
voi d renove()

boolean atEnd()
Object readNext()

T

Concretelnputliteratorl

boolean atEnd()
Object readNext()

Concretelnputlterator2

boolean atEnd()
Object readNext()

Fig. 12.5. Applying the Template Method pattern

A client who wishes to use this class must extendrpatlterator class,
providing appropriate concrete definitions for eitestract methods. As shown in

Fig. 12.5 thdnputlterator

is itself a small framework, with a hot spot con-

cerning that nature of the source from which dataabjare being read.

12 Designing a Flexible Framework for a Table Afstion 25

12.9.3 Filtering Iterators

Sometimes users need to transform the elements of opers® into another.

Some elements may need to be deleted and others Eeptetimes a conversion
operation needs to be applied to every element sfquence. We can support
these operations on iterators by introducingRitierlterator class.

The Filterlterator class is a concrete class that implementsltthe
erator interface. Its constructor takes three argumeartsiterator, a selector,
and a converter. Its implementation takes advanthtiedecorator and Strategy
design patterns as shown in Fig. 12.6.

The Decorator design pattern extends the functionality of an cbije a way
that is transparent to the users of that object (Gantrak £995; Grand 1998). A
Decorator object is of the same type as the origingcbblt serves as a wrapper
around the original object that provides enhancetttfanality but it delegates
part of its work to the original object. THslterlterator is an iterator
whose constructor takes another iterator as an argurerses the argument it-
erator as its source of data but selects and transfthvendata that is returned by
itsnext() method. The use of the Decorator design patterngtows aFil-
terlterator to provide enhanced functionality at any placd Hraltera-
tor is used.

Iterator <

T

Filteriterator k> |

N

Selector Convertor

Fig. 12.6. Applying the Strategy and Decorator patterns

The Strategy design pattern abstracts a family of related algmstibbehind an
interface (Gamma et al. 1995; Grand 1998). The egsatgorithm can be se-
lected at runtime and plugged into the object tisas the algorithm. The selector
and converter arguments of tRéterlterator are Strategy objects that en-
capsulate the selection and conversion algorithrspergively. For example, the
selector is an object of a class that implement$Stiector interface. This in-
terface requires that the class implement the method:

* boolean selects(Object obj) that returngrue if and only if
obj satisfies the chosen criteria.

26 Error! Notext of specified stylein document.

The Filterlterator delegates the choice of which objects from its input
sequence to keep to thelects() method of the selector object. The use of the
Strategy design pattern enables the shitterlterator object to be config-
ured flexibly to have different behaviors as needed.

12.9.4 Query lterator Methods

The Table abstraction defined in a previous section only es access based
on the unique, primary key of the record. Sometimebeat may want to access
records based on the values of other fields. Unlieeprimary key, these secon-
dary key fields may not uniquely identify the regevithin the collection.

The framework can be readily extended to accommautatess on secondary
keys as well as the primary key. We can, for exang#éne aMultiKeyed in-
terface in the Client Layer that extends Keyed interface with additional meth-
ods:

e int getNumOfKeys() that returns the number of keys supported by
the associated record implementation

* Comparable getKey(int k) that extracts the key from the re-
cord, where key 0 is the primary key

While it is sufficient for the basidable mechanism to have a simple
method retrieve(Comparable) , a table that supports access on multiple
keys needs to allow a variable number of items teebi@eved for each secondary
key value. Therefore, we define a n€ueryTable interface that extends the
Table interface and includes several new iterator-reigmmethods. These in-
clude:

» lterator selectKeys(int k, Selector sel) that returns
the sequence g@rimary keys for the records whose kéysatisfies the se-
lectorsel

« lterator selectRecords(int k, Selector sel) that re-

turns the sequence of records whoselkkegtisfies selectasel

As a convenience, it is also useful to allow a querye done using a combina-
tion of various primary and secondary key value® t8n thus define two addi-
tional iterator methods:

e lterator selectkeys(Query Q) that evaluates the quegyand
returns the sequence wfiimary keys of all records that satisfy the query

e lterator selectRecords(Query q) that evaluates the quety
and returns the sequence of all records that satisfyuéey

12 Designing a Flexible Framework for a Table Astion 27

In this designQuery is the abstract base of a class hierarchy constracted
cording to theComposite design pattern (Gamma et al. 1995; Grand 1998)is T
hierarchy, shown in Fig. 12.7, represents the alisgyttax tree of the query
commands. The primary operation of Peery classes is the method:

e lterator eval(QueryTable t) that evaluates the query in the
context of theQueryTable argumentt and returns the primary keys
from the table for records that satisfy the query

The concrete claskieldSelector is a leaf subclass of th@uery Com-
posite hierarchy. The class has two attributes, an integer to identlijch key
field of the multikeyed table is to be considered a@elector Strategy object
to determine what values of that (secondary or prijnkaey field are to be se-
lected for inclusion in the result. When a simplerguof this nature is evaluated
(e.g., by theselectKeys method), the set associated with the resultingtdera
consists of all the primary keys from the table for theords that satisfy the
FieldSelector

Query p

Iterator eval(QueryTable)

I

FieldSelector And
Iterator eval(QueryTable) Iterator eval(QueryTable) K>—
Selector getSelector() Query getLeft() 1
int getField() Query getRight()

Fig. 12.7. Applying the Composite pattern

Query also has several composite subclasses denoting operédide per-
formed. For example, the subclassd has two attributes, a left and a right child
query. When arind query is evaluated by theelectKeys method, first the
two sub-queries are evaluated recursively to getgets of primary keys and then
the intersection of the two sets is returned. Sitgilar performs a union of the
sets,Diff subtracts the set represented by the second argmenthiedimst, and
Xor constructs the symmetric difference of the two @ets elements in only one
of the two sets).

The prototype implementation of the Table framewdfikafg 2000) imple-
ments a flat query syntax with the same general secsaasidescribed above. The
QueryTable it implements has an index for each primary and segricey.

28 Error! Notext of specified stylein document.

12.10 EVOLVING FRAMEWORKS

The framework design described informally in thisyoter is presented from the
perspective of am priori design approach for frameworks. Such an approach
seeks to derive the framework using systematic analysipli€D et al. 1998;
Weiss and Lai 1999) and generalization (Schmid 1@#ningham and Tade-
palli 2006) techniques. In a more traditional apphpdamework designs tend to
evolve as their usage grows and the developers leare about the application
domain. This evolution often follows the steps wlbented in theEvolving
Frameworks system of patterns (Roberts and Johnson 1998). The ievohitthe
different versions of the Table Framework also exhibégeral of theserocess
patterns.

12.10.1 Three Examples

In most nontrivial frameworks, it is not easy to corpenith the right abstractions
just by thinking about the problem. Domain expertsdgity do not know how to
express the abstractions in their heads in ways timabedurned into designs for
abstract classes; programmers typically do not havdfi@ient understanding of
the domain to derive the proper abstractions immelgigRoberts and Johnson
1998).

Often, three implementation cycles are needed tolole\s sufficient under-
standing of the application to construct good abstmas (Roberts and Johnson
1998). The original design of the Table frameworlswa different despite the
simplicity of the problem (Cunningham and Wang 200iXhe exploration of the
design, Wang constructed three prototype implemientatof RecordStore
and two implementations dfable (Wang 2000). Earlier work designing similar
Table libraries also yielded insight. Each implemgoitaeffort gave new insights
into what an appropriate set of abstractions werk warcovered potential prob-
lems.

12.10.2 Whitebox Frameworks

As this framework is defined so far, the Table framdwis a purewhitebox
framework (Johnson and Foote 1988; Fayad et al. 1998). mhergé a whitebox
framework consists of a set of interrelated abstoase classes. Developers im-
plement new applications by extending these base clasdesverriding methods
to achieve the desired new functionality. The immaters must understand the
intended functionality and interactions of the was classes and methods. Such
frameworks are flexible, extensible and easy to bbild they are difficult to learn
and use.

While whitebox frameworks rely upon inheritance a@chieve extensibility,
blackbox frameworks use object composition to support extensible system&-{(Joh

12 Designing a Flexible Framework for a Table Afstion 29

son and Foote 1988; Fayad et al. 1998). Such framkes define interfaces for

components and allow existing components to be pluggedthese interfaces.

Appropriate components that conform to these intesface collected in a com-

ponent library for ready reuse. Such frameworks lzareasy to use and extend.
However, they tend to be difficult to develop besmthey require the developers
to provide appropriate interfaces for a wide ranigeotential uses.

12.10.3 Component Library

Once a basic whitebox framework is in place, thegteasually evolves to-
ward a blackbox framework by the addition of usefularete classes tocampo-
nent library (Roberts and Johnson 1998). The addition of coedraplementa-
tions of theTable andRecordStore abstractions thus is a natural next step
the evolution of the Table framework.

A prototype component library has been developedafoearlier version of
Table framework design (Wang 2000). This componieraty provides three dif-
ferent implementations of the Storage Layer, inipaldr of theRecordStore
interface:

n

* VectorStore , an implementation that stores the records in a Java
Vector

» LinkedMemoryStore , an implementation that stores the records in a

linked list

* SlottedFileStore , an implementation that stores the records in a
relative file of fixed length blocks on disk and usdsitamap to manage
the blocks.

The component library also provides two implementetiof the Access Layer,
in particular of thelable interface:

e SimplelndexedFile , an implementation that uses a simple sorted in-
dex in memory to support the location of records\gidieys (Folk et al.
1998)

« HashedFileClass , an implementation that uses a hash table to stippor
the key-based access

In the prototype component library (Wang 2000), 8implelndexedFile
component actually implements tQelieryTable interface, the extended version
supporting more complex queries.

30 Error! Notext of specified stylein document.

12.10.4 Hot Spots

Even if one does attempt to identify some of thedroand hot spots beforehand,
experience in developing applications with a frammdwhelps to identify more
points of shared functionality and more points ofiatatity. Once identified, the
shared functionality (new frozen spots) can be ino@ed into the framework as
concrete classes or as concrete methods of abstraciscl@lsepoints of variabil-
ity (new hot spots) can be incorporated into thenBaork as abstract hook meth-
ods that are refined via inheritance (e.g., ushmgTtemplate Method pattern). Al-
ternatively, hot spots can be implemented by delegad classes that encapsulate
the required functionality (e.g., using the Stratagg Decorator patterns).

In the Table framework, the input iterator extensie an example of new
functionality that might be added to the framewaskaaresult of user experience.
Users of the framework discover that they are fredyentiting new iterator
classes to wrap different data sources. This suggesta thaw frozen spot, the
Inputlterator Template Method class, be added to the framewdr&.Hbok
methods of this class represent a hot spot that calefireed by subclassing the
Inputlterator class.

12.10.5 Pluggable Objects

In early versions of an evolving framework, therehis tendency to have large-
grained hot spots implemented in a whitebox fashiongusiheritance. As the
framework is used, it is sometimes discovered that dlthessame subclass is be-
ing repeatedly implemented. The solution is to implentea common parts of
these subclasses as a concrete class and parametsuitieat the variable aspects
can be “plugged in” as an argument to the construstspme setter method.

In the Table framework, the filtering iterator exdem is another example of
new functionality that might be added to the frameweas a result of user experi-
ence. Users of the framework discover that they raguéntly selecting a subset
of the items in the table using a standard iteratat then performing some trans-
formation on each selected item. This suggests afroeen spot, thé&ilter-
Iterator concrete decorator class, be added to the framewattk,two new
hot spots for the selection and conversion functiofibe hot spots are imple-
mented as Strategy objects passed as arguments to#trictor.

The Evolving Frameworks patterns include severalrateps that the devel-
opment of long-lived frameworks may take: the gradhgusion of many useful,
fine-grained objects to eventually enable a fullgdbox framework to be con-
structed and the development of visual builders anduage-oriented tools to as-
sist clients to use the framework to develop and st applications. The Table
framework has not yet evolved to the point whers¢hmatterns have been used.

12 Designing a Flexible Framework for a Table Afstion 31

12.11 DISCUSSION

A key requirement in the framework design preseimetlis chapter is the separa-
tion of the key-based access mechanisms, representtite Byable interface,
from the physical storage mechanisms for the recorgsesented by th&e-
cordStore interface. This idea is inspired, in part, by Srih&dACL C++ li-
brary's approach to B-trees (Sridhar 1996), whichre¢ps the B-tree implemen-
tation from the NodeSpace that supports storage foBitree nodes. The design
extends Sridhar's concept with tRecordSlot abstraction, which is inspired,
in part, by Goodrich and Tamassia's Position ADT (Gabd@and Tomassia
1998). The Position ADT abstracts the concept of ‘glagithin a sequence so
that the element at that place can be accessedrmihf regardless of the actual
implementation of the sequence.

This chapter’'s approach generalizes the NodeSpacEasition concepts and
systematizes their design by using standard desitferps. The Layered Archi-
tecture and Bridge patterns motivate the desigh@RecordStore abstraction
and the Proxy pattern motivates the design oRéeordSlot mechanism. The
result is a clean structure that can be described addrstood in terms of stan-
dard design patterns concepts and terminology. Glaaétention to the semantics
of the abstract methods in the various interfacesshedpallocate responsibility
among the various abstractions in the frameworkaigs us decide what func-
tionality can be supported across many possible impitatiens.

Framework design involves incrementally evolvingesign rather than dis-
covering it in one single step. Historically, thikition is a process of examin-
ing existing designs for family members, identifying flozen spots and hot spots
of family, and generalizing the program structureetable reuse of the code for
frozen spots and use of different implementations foh éet spot. This generali-
zation may be done in an informal, organic manrsethe Patterns for Evolving
Frameworks (Roberts and Johnson 1998) or it may be dsing systematic tech-
nigues such asystematic generalization (Schmid 1997, 1999) arfdnction gen-
eralization (Cunningham and Tadepalli 2006; Cunningham e2G06b).

Schmid's methodology seeks a way to identify thespots a priori and con-
struct a framework systematically. It identifies fouepst for construction of a
framework: (1) creation of a fixed application mhd@) hot spot analysis and
specification, (3) hot spot high-level design, afpigeneralization transformation.
In Schmid's approach, the fixed application modanibject-oriented design for
a specific application within the family. Once a cdete model exists, the frame-
work designer analyzes the model and the domainstmdér and specify the hot
spots. The hot spot's features are accessed througlrtimon interface of the
abstract class. However, the design of the hot spbsystem enables different
concrete subclasses of the base class to be used idepttow variant behaviors.

Function generalization (Cunningham and Tadep@llie2 Cunningham et al.
2006b) is another systematic approach. Instead of giezieg the class structure
for an application design as Schmid's methodology dbesfunction generaliza-
tion approach generalizes the functional structfi@cexecutable specification to

32 Error! Notext of specified stylein document.

produce a generic application. It introduces thedpatt abstractions into the de-
sign by replacing concrete operations by more geradrstract operations. These
abstract operations become parameters of the gemetdlinctions. That is, the
generalized functions are higher-order, having patara that are themselves
functions. Such functions can be expressed in fumgtiprogramming languages,
such as Haskell (Peyton Jones 2003), and also in newkiparadigm languages
such as Scala (Odersky et al. 2006) and applicatioguges such as Ruby
(Thomas et al. 2005)After generalizing the various hot spots of the farmihe
designers can use the resulting generalized furstio define a framework in an
object-oriented language such as Java.

The Table framework presented here was originall\eliged in a somewhat
organic fashion but did utilize software design @aits systematically (Cunning-
ham and Wang 2001). This chapter revisits that wank fthe standpoint of more
careful commonality/variability analysis. Future wathkould examine the frame-
work design using a more formally systematic techngueh as function gener-
alization and seek to evolve the framework desigrenmward a blackbox design.

12.12 CONCLUSION

This chapter describes how commonality/variability gsial software design pat-
terns, and formal design contracts are applied adgeatsly in the design of a
small application framework for building implementaisoof the Table ADT. The
framework consists of a group of Java interfaces thlalmrate to define the
structure and high-level interactions among componaiise Table implementa-
tions. The key feature of the design is the separatiche Table’s key-based re-
cord access mechanisms from the physical storage mechaiisensystematic
application of commonality/variability analysis atite Layered Architecture, In-
terface, Bridge, and Proxy design patterns lead ttesign that is sufficiently
flexible to support a wide range of client-definedards and keys, indexing struc-
tures, and storage media. The use of the Templateollie8trategy, Decorator,
and Composite design patterns also enables variantccmnis to be easily
plugged into the framework. The Evolving Framewgrk#ierns give guidance on
how to modify the framework as more is learned abafamily of applications.
The conscious use of these software design patterreases the understandabil-
ity and consistency of the framework’s design.

12.13 EXERCISES

1. Suppose you wish to modify the Client Layer desigmnge comparison and
extraction Strategy objects as described in Sectiof.3.2 Discuss the im-
pacts of these changes upon the Client and Acce&s Hasigns.

12 Designing a Flexible Framework for a Table Abstion 33

10.

Suppose you wish to modify tiiable ADT to allow a (conceptually) infi-
nite number of key-value pairs to be held in thegtaliow would you mod-
ify the specification? What new operations, if awpuld you add? Suggest
an implementation of such a table.

Suppose you wish to develop a nevap operation (similar to what might be
found in a functional programming language like Hals@r Lisp) in theTa-

ble ADT. A map operation takes a function and applies the functmn
every element of some data structure, leaving theiffreddelement in the
place of the previous element. Define the metimagp and give its design
contract. What restrictions, if any, on the functionst be made to ensure the
integrity of theTable ?

Suppose you wish to use a more general approactigmalization of the re-
cord’s internal state than the low-level, byte-strempproach used in this
chapter. (See the discussion in Section 12.8.) Qivelternative design and
identify the impacts of this change upon the Extézation Module and other
aspects of the framework.

Characterize the new hot spot(s) introduced inédFitierlterator ab-
straction. What are the variabilities? What degigttern is used to realize
each variability?

The Inputlterator uses the Template Method design pattern and the
Filterlterator uses the Strategy design pattern. Investigateitdra-|
ture on these patterns (Gamma et al 1995; Grand 19985t are the relative
advantages and disadvantages of these two patternsaas fior implement-
ing variability for a hot spot?

Using the logical notation of this chapter, stateribeded preconditions for
the methodsnt getNumOfKeys() and Comparable getKey(int)
of theMultiKeyed abstraction defined in Section 12.9.4.

Using the logical notation of this chapter, staterappate design contracts
for the Iterator -returning methodsselectKeys(int,Selector)
andselectRecords(int,Selector) of theQueryTable abstraction
defined in Section 12.9.4.

Using the logical notation of this chapter, staterappate design contracts
for the Iterator -returning query methodselectKeys(Query) and
selectRecords(Query) defined in Section 12.9.4. These can use the
eval(QueryTable) method of th&Query class hierarchy.

Using the logical notation of this chapter, stateappropriate design contract
for the methodeval(QueryTable) of theQuery class hierarchy defined
in Section 12.9.4.

34 Error! Notext of specified stylein document.

11. Implement the framework and design an application.

a. Develop a version of the Access Layer (iTable) that uses an ar-
ray in memory (oWector orArraylList) to create a sorted index
of the keys.

b. Develop a version of the Storage Layer that usesa\destor (or
ArrayList) as the storage medium for the records.

c. Pair the two programs developed in the previous twblpms.
d. Test the application with various kinds of keys andrés.

12. Continue the programming exercise above and devedapcomponents. De-
velop a version of the Access Layer that uses a hathdad pair it with the
Storage Layer developed above.

13. Complete the design and implement an Access Layedbas a multikeyed
table as defined by tH@ueryTable abstraction in Section 12.9.4.

14. The framework presented in this chapter mostly consistarge-grained
components. Examine one of the detailed designs andnmeptations of the
Access Layer from the previous three exercises. Stigglestional frozen
spots and hot spots in your design that will allow a ulsBher-grained
framework to be constructed by using more “pluggabiects”.

15. Examine the Java API for stream and file input/outfdentify the hot spots
in this framework. How are the hot spots implementadfhat design pat-
terns are used to structure the designs?

ACKNOWLEDGEMENTS

The preparation of an earlier version of this chapitas supported, in part, by a
grant from Acxiom Corporation titled “An Acxiom Lakettory for Software Ar-
chitecture and Component Engineering (ALSACE)". Ehghors thank Robert
Cook and “Jennifer” Jie Xu for their suggestions fmpiovements to the paper
(Cunningham and Wang 2001). We also thank the tvamymous reviewers, the
editors, Chuck Jenkins, and Pallavi Tadepalli fagirtuseful comments on this
chapter. As this chapter was being revised, the firgtaa benefited from discus-
sions about various aspects of the framework desigim Jeinkins. Pallavi Tade-
palli is a collaborator on the related function gatization research (Cunningham
and Tadepalli 2006; Cunningham et al. 2006b) anti@uzhang is involved with
work on the educational aspects of software pat@ndsframework design (Cun-
ningham et al. 2004, 2006a). This research also beddfom insights provided
by projects completed by the first author's former stiwsl&Vei Feng on relative
files, Jian Hu on Table libraries, and Deep SharmB-tnee libraries.

12 Designing a Flexible Framework for a Table Afstion 35

REFERENCES

Britton KH, Parker RA, Parnas DL (1981) A procedfoedesigning abstract interfaces for
device interface modules, In: Proceedings of tiellternational Conference on Soft-
ware Engineering, pp 95-204.

Brooks FP Jr (1986) No silver bullet—Essence aruideats in software engineering, In:
Information Processing, Elsevier Science, pp 108861

Brooks FP Jr (1995) “No Silver Bullet” refired, Gitar 17, In: The mythical man-month,
Anniversary edn, Addison-Wesley.

Buschmann F, Meunier R, Rohnert H, Sommerlad R,Nbtgl996) Pattern-oriented soft-
ware architecture: A system of patterns, Wiley.

Coplien J, Hoffman D, Weiss D (1998) Commonalityl arriability in software engineer-
ing, IEEE Software, vol 15, no 6, pp 37-45.

Cunningham HC, Wang J (2001) Building a layeredn&avork for the table abstraction,
In: Proceedings of the ACM Symposium on Applied @otng, pp 668-674.

Cunningham HC, Tadepalli P (2006) Using functioneyalization to design a cosequential
processing framework, In: Proceedings of the 3%kw&li International Conference on
System Science$EEE, 10 pages.

Cunningham HC, Zhang C, Liu Y (2004) Keeping seckeithin a family: Rediscovering
Parnas. In: Proceedings of the International Cemieg on Software Engineering Re-
search and Practice (SERP), CSREA Press, pp 712-718

Cunningham HC, Liu Y, Zhang C (2006a) Using clagsmblems to teach Java framework
design. Science of Computer Programming, vol 594p169.

Cunningham HC, Liu Y, Tadepalli P (2006b) Framewdesign using function generaliza-
tion: A binary tree traversal case study. In: Pealiegs of the ACM SouthEast Con-
ference pp 312-318.

Fayad ME, Schmidt DC, Johnson RE (1999) Applicatiameworks, In: Fayad ME,
Schmidt DC, Johnson RE (eds) Building applicatioamfeworks: Object-oriented
foundations of framework design, Wiley, pp 3-27.

Folk MJ, Zoellick B, Riccardi G (1998) File structs: An object-oriented approach with
C++, Addison Wesley.

Gamma R, Helm R, Johnson R, Vlissidefl995) Design patterns: Elements of reusable
object-oriented software, Addison Wesley.

Goodrich MT, Tomassia R (1998) Data structuresalgdrithms in Javawiley.

Grand M (1998) Patterns in Java, vol 1, Wiley.

Guttag JV (1977) Abstract data types and the dewedmt of data structures, Communica-
tions of the ACM, vol 20, no 6, pp 396-404.

Hallstrom J, Soundarajan N (2002) Incremental dgwekent using object-oriented frame-
works: A case study, Journal of Object Technol&pecial issue TOOLS USA 2002,
vol 1, no 3, pp 189-205.

Hoare CAR (1969) An axiomatic basis for computergpamming, Communications of the
ACM, vol 12, no 10, pp 45-58,.

Hoare CAR (1992) Proofs of correctness of dataesgnmtations, Acta Informatica, vol 1,
pp 271-281.

Johnson RE, Foote B (1998) Designing reusable edaskurnal of Object-Oriented Pro-
gramming, vol 1, no 2, pp 22-35.

Liskov B, Wing J (1994) A behavioral notion of sybing, ACM Transactions on Pro-
gramming Languages and Systems, vol 16, pp 1810:184

Mitchell B, McKim J (2002) Design by contract, byaenple. Addison-Wesley.

Meyer B (1992) Applying design by contract. IEEBr@puter, pp 40- 51.

36 Error! Notext of specified stylein document.

Meyer B (1997) Object-oriented software construttieecond edn, Prentice Hall PTR.

Odersky M, Altherr P, Cremet V, Dragos |, Duboc@etEmir B, McDirmid S, Micheloud
S, Mihaylov N, Schinz M,. Stenman E, Spoon L, Zerigg2006) An overview of the
Scala programming language, second edn, LAMP-RER@WIB-001, Ecole Poly-
technique Federale De Lausanne (EPFL), 20 pages.

Parnas DL (1972) On the criteria to be used in ogmsing systems into modules, Com-
munications of the ACM, vol 15, no 12, pp 1053-1058

Parnas DL (1976) On the design and developmentazfram families, IEEE Transaction
on Software Engineering, vol SE-2, pp 1-9.

Parnas DL (1978) Some software engineering priasipinfotech State of the Art Report
on Structured Analysis and Design, Infotech Intéomel, 10 pages, 1978. Reprinted
in: Hoffman DM, Weiss DM (eds) (2000) Software famdentals: Collected papers by
David L. ParnasAddison-Wesley.

Peyton Jones S (2003) Haskell 98 language andiglsraThe revised report, Cambridge
University Press.

Pree W (1995) Design patterns for object-orientdthere development, Addison-Wesley.

Roberts D, Johnson R (1998) Patterns for evolviagnéworks, In: Martin R, Riehle D,
Buschmann F (eds) Pattern languages of programgrd@siAddison-Wesley, pp.471-
486.

Schmid HA (1996) Creating applications from compuse A manufacturing framework,
IEEE Software, vol 13, no 6, pp 67-75.

Schmid HA (1999) Framework design by systematic ega@lization, In: Fayad ME,
Schmidt DC, Johnson RE (eds) Building applicatioamfeworks: Object-oriented
foundations of framework design, Wiley, pp 353-378.

Soundarajan N, Fridella S (2000) Framework-basediGgtions: from incremental devel-
opment to incremental reasoning, In: Proceedingbef" Interantional Confernce on
Software Reuse (ICSR), LNCS 1844, Springer-Verntggl100-116.

Shaw M (1996) Some patterns for software architectin: Vlissides JM, Coplien JO,
Kerth NL (eds), Pattern languages of program de8jgAddison Wesley.

Sridhar MA (1996) Building portable C++ applicat®owith YACL, Addison-Wesley.

Thomas D, Fowler C, Hunt A (2005) Programming Rublie pragmatic programmer’'s
guide, second edition, The Pragmatic Bookshelf.

Wang J (2000) A flexible Java library for table ala@nd file structures, Technical Report
UMCIS-2000-07, Department of Computer and InforomatiScience, University of
Mississippi.

Weiss DM, Lai CTR (1999) Software product-line evegring: A family-based software
development process, Addison-Wesley.

Woolf B (1998) Null object. In: Martin R, Riehle Buschmann F (eds), Pattern languages
of program design 3, Addison-Wesley, pp. 5-18.

