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1 INTRODUCTION

In a provocative essay from the mid-1980s, Brooks asHwt “building software
will always be hard” because software systems are intigreomplex, must con-
form to all sorts of physical, human, and softwareriiaices, must change as the
system requirements evolve, and are inherently irleistities (Brooks 1986).
A decade later Brooks again observes, “The best westtawk the essence of
building software is not to build it at all.” (BroskL995) That is, software engi-
neers should reuse both software and, more importaofiyyare designs.

The concept of software family (Parnas 1976) is onthefresponses to the
need for software reuse. Parnas (Parnas 1976 )ededsoftware family as “a set
of programs with so many common properties that itaghwhile to study the set
as a group”. Thus, by developers analyzing and é@kgicthe “common aspects
and predicted variabilities” (Weiss and Lai 1999) amaohe members of a soft-
ware family, the resulting software system can be coctgtd to reuse code for the
common parts and to enable convenient adaptatitimeofariable parts (Cunning-
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ham et al. 2006a). Some writers use the térozen spot to denote a common as-
pect of the family andhot spot to denote a variable aspect of the family (Pree
1995; Schmid 1996).

A software framework (Johnson and Foote 1988) is a form of software family
A framework is “a generic application that allowéfetient applications to be cre-
ated from a family of applications” (Schmid 1999). deneral, a framework
represents the skeleton of a system that can benoizsith for a particular purpose.
The frozen spots embody the overall structure of thméwork (that is, the over-
all design) and are reused by the entire family pliegations. In the context of an
object-oriented language, frozen spots are expressedset of abstract and con-
crete classes that collaborate to embody the solutipsoblems in the applica-
tion domain. The hot spots are represented by theaah classes, which can be
extended to provide customized implementations of/én@ble aspects of a fam-
ily. A specific set of implementations of the hot spgtelds a member of the
software family.

A framework is a system that is designed with gengralitd reuse in mind.
Software design patterns (Gamma et al. 1995; Buschmann et al. 1996), which are
well-established solutions to program design probleras ¢bmmonly occur in
practice, are intellectual tools for achieving ttesired level of generality and re-
use (Cunningham et al. 2006a). They are the bygjldlocks for reusing designs.
Building a software framework for a family is morestlg than building a single
application, but a well-designed framework can y@ddsiderable benefit if many
members of the family eventually need to be cocstdl

In software design it is always important to specifycigely what a software
artifact is to do. This is especially important irftaare frameworks, where the
implementations of the hot spots vary from one apfidinao another and are not
usually developed at the same time nor by the sameadsahre framework itself.
Framework designers must specify interfaces that dochahge regardless of
which implementation is “plugged in” to a hot spoteTspecification should
guide the users of the framework to provide appropiiplementations of the
hot spots. Parnas and his colleagues (Parnas 19T@nBat al. 1981) call this an
abstract interface because it gives the assumptions that are common itoH#-
mentations. Meyer’'s Design by Contract (Meyer 199997; Mitchell and
McKim 2002) method providean effective formal technique for specifying the
expected behaviors of abstract interfaces.

This chapter shows how commonality and variabilitylgsig, software de-
sign patterns, and Meyer-like formal design contraets be applied in the design
of a small Java software framework for building impéerations of the Table Ab-
stract Data Type (ADT). A previous paper (Cunninghaush \&/ang 2001) presents
an earlier version of the framework design developed careful, but ad hoc
manner. This chapter expands on that work by rewisitie design from the per-
spective of commonality and variability analysis, imyng the formal specifica-
tions, specifying additional framework features, amdneining how the frame-
work can evolve.

The Table ADT represents a collection of records thatbe accessed by the
uniqgue keys of the records. The framework desigouli encompass a wide
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range of possible implementations of the Table ADTmpdé array-based data
structures in memory, B-tree file structures on dgshaps even structures dis-
tributed across a network. By approaching this asrdlyfathe goal is to be able to
assemble a Table implementation by selecting the catibimof record access
structures and storage structures to meet a spedfiicagion need.

The design process first analyzes the Table ADT asndyfand then takes
advantage of several well-known software desigtepad to structure the frame-
work. The commonality/variability analysis (in pattlar, the desire to decouple
the record access mechanism from the storage mechanigggsts a hierarchical
structure based on the Layered Architecture (Buschreaal. 1996; Shaw 1996)
and Interface (Grand 1998) design patterns. Givenlahered architecture, the
Bridge and Proxy patterns (Gamma et al. 1995; Gr&98)lthen suggest how to
organize the interactions among the various lay@&tee Iterator pattern (Gamma
et al. 1995; Grand 1998) is also helpful; it progide systematic mechanism for
accessing groups of records. The Template Methodte§yraDecorator, and
Composite patterns (Gamma et al. 1995; Grand 1998)de standard structures
for plugging variable components into the frameworlEurthermore, as the
framework evolves, it follows the general developmeaith documented by the
Evolving Frameworks system of patterns (Roberts and JoH898).

The rest of the chapter is organized as follows. 8e&ibriefly describes the
requirements of the Table ADT and applies commonalilg variability analysis
to recognize the frozen spots and hot spots of théeTEDT framework. Section
3 briefly introduces the technique of using formekidn contracts, which is ap-
plied in the specification of the interface desigithe sections that follow. Section
4 applies Layered Architecture design pattern todothie top-level framework ar-
chitecture. Sections 5, 6 and 7 apply several patterthe design of interfaces
among the different layers. Section 8 describes layuthodule needed by the
lower levels of the architecture. Section 9 applres Iterator pattern to enhance
the framework design. Section 10 illustrates theepast of evolving frameworks
that can be adopted into the Table framework deSgntion 11 discusses the re-
lated work and Section 12 gives a conclusion.

2 ANALYSIS OF THE TABLE ADT

The Table ADT is an abstraction of a widely used setaté and file structures. It
represents a collection of records, each of which stmsf a finite sequence of
data fields. The value of one (or a composite of sdyef these fields uniquely
identifies a record within the collection; this figkl called thekey. For the pur-
poses here, the values of the keys are assumed terbengs of a totally ordered
set. The operations provided by the Table ADT aléovecord to be stored and re-
trieved using its key to identify it within the cedtion.

In (Cunningham and Wang 2001), Cunningham and Wangider the de-
sign of the Table framework to have the followieguirements:



4  H. Conrad Cunningham 1, Yi Liu 2, Jingyi Vga®

1. It must provide the functionality of the Table ADTrfa large domain of
client-defined records and keys.

2. It must support many possible representations of th&eT&DT, includ-
ing both in-memory and on-disk structures and a tané indexing
mechanisms.

3. It must separate the key-based record access mechaniemstie
mechanisms for storing records physically.

4. All interactions among its components should onlytbeugh well-
defined interfaces that represent coherent abstraction

5. lts design should use appropriate software designrpsatte increase re-
liability, understandability, and consistency.

In building a framework, it is important to separtite concerns. The design-
ers must separate the frozen spots, the aspects comriendntire family mem-
bers, from the hot spots, the aspects specific to ondyfameimber. Furthermore,
they must separate the various common and variabletadpam each other and
consider them somewhat independently (Cunninghaah 2006a). Commonality
and variability analysis (Coplien et al. 1998; Weisd &ai 1999) is a means of
identifying the frozen spots and hot spots. The amalysiduces commonalities,
a list of assumptions that are true to all the membetiseofamily, and variabili-
ties, a list of assumptions that are true for only somelmees of the family.
Thus, frozen spots and hot spots are chosen on the dfasisnmonalities and
variabilities, respectively. In this chapter, the comaliies and variabilities of
the Table ADT are examined based on the requirenoéitte Table ADT and the
prototype implementations (Wang 2000).

The requirements stated above mix concerns in the Warkedesign—
commonalities, variabilities, and non-functional aspeaf the design and code.
These need to be more cleanly separated than is dd@mnningham and Wang
2001). Requirements 1 and 2 describe functional reménts of the family,
which are our primary concerns here. Requirementsl3laxpress desired char-
acteristics of the framework. Requirement 5 suggesésacteristics of the design
process. By analyzing the functional requirementsjdeetify one primary com-
monality, i.e., frozen spot, as follows:

1. All clients of the framework use the Table ADT’'s Kessed access
methods to the collections of records stored in tdBlequirement #1)
We also identify five variabilities, i.e., hot spp#s follows:

1. Variability in the keys. Clients of the Table framework can define the
keys using many different data structures. (Requireshent

2. Variabilityintherecords. Clients of the Table framework can define the
records using many different data structures. (Reopang #1)
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3. Variability in the external representation of the record state. For tables
stored on external devices, it must be possible to sherstate of a re-
cord accurately on the external device and restote memory when
needed. This process may vary somewhat depending hpamature of
the record and the external device. (Requiremensn#1#2)

4. Variability in the indexing mechanisms. Different customizations of the
Table framework can use different algorithms for kidg the records.
(Requirement #2)

5. Variability in the storage mechanisms. Different customizations of the
framework can use different mechanisms for storingrdoerds. (Re-
quirement #2)

The hot spots #1 and #2 are not completely indepgrafeeach other. However,
to separate the concerns, we choose to separate thbilitaas of keys and re-
cords into two different hot spots. Hot spot #3 is asblttle, but the need for this
variability should be clear as we proceed with tbsigh.

Following the design method outlined above, thenrevork should allow the
five variabilities to be realized independently frerach other, which has an im-
plication for the architecture of the Table framekvdBefore we proceed further,
let's look a bit more at the use of formal design ats for specifying software
behaviors.

3 FORMAL DESIGN CONTRACTS

Design by Contract is a design approach developed by Meyer (Meyer 1992
1997). It is motivated by an analogy with a contiacbusiness. In the business
setting a contract defines an agreement betweengdiesugnd a client:

1. The supplier must satisfy certain obligations, suchrasiding the prod-
uct the client ordered, and expects certain bensfit) as the client pay-
ing the established price for the product.

2. The client must satisfy certain obligations, such gingathe supplier the
established price for the product, and expects theflig, such as getting
the product.

3. Both the supplier and the client must satisfy centéiigations that apply
to all contracts, such as laws and regulations.

Meyer (Meyer 1992, 1997) adopts the concepts of ritlje“supplier” and
“contract” into object-oriented design. Buildingarpearlier work on program
verification (Hoare 1969), information hiding (Pasnd972), data abstraction
(Hoare 1972), and abstract data types (Guttag 18¥&yer introduces logical as-
sertions to describe the contract between the sligisiers) of an abstract data type
(ADT) and the suppliers (i.e., developers) of the ADIR. Meyer's approach to



6  H. Conrad Cunningham 1, Yi Liu 2, Jingyi Vige®

object-oriented design and programming, an ADT is mdlsnrepresented by a
class. The key assertions are of three types: precomslifpostconditions, and-
variants.

Preconditions and postconditions are assertions attaoheach operation of
an ADT. A precondition expresses requirements that any call of the operation
must satisfy if it is to be correct. postcondition expresses properties that are en-
sured in return by the execution of the call. ¥ firecondition is not satisfied, the
operation is not guaranteed to return a correctevaluto even return at all. For
example, an operation to delete a record from lea@n might have a precondi-
tion requiring that a record with that key exists angostcondition requiring that
it no longer be an element of the collection.

An invariant is a constraint attached to an ADT that must hold foneach
instance of the ADT whenever an operation is not dgarformed on that in-
stance. In object-oriented design, this type of iiava is often called alass in-
variant. For example, in the Table ADT, an invariant migkdte that the table
mustnot have more than one record with a particular kdye hvariant gives a
condition that must be satisfied to maintain thegritg of the table.

In the client-supplier context,

» a client must satisfy the obligation (the preconditiof an operation to
expect to receive the benefit (the postconditionjetfing a correct result
from the operation,

e a supplier must satisfy the obligation to make the quostition of the
operation hold upon return whenever the precornditiothe operations is
satisfied by the call,

* both the client and the supplier must maintainaderproperties, the
invariants.

In specifying the design of the interfaces of thel@dkamework, we not only
need to give the method signatures (i.e., parasatad return type) but also to
express their semantics (i.e. behaviors), using prettonsliand postconditions for
each method and invariants for the ADT as a wholenf@gham and Wang
2001).

The simple application of Design by Contract is notitsglf sufficient for
formal proofs of correctness of the desired propemieframework applications.
The concrete classes that implement hot spots in aeWwark must, of course,
preserve the general expectations of the frameworkifg@dion, that is, they
should be behavioral subtypes (Liskov and Wing 1994he abstract classes they
extend. However, the concrete implementations exhittier behaviors than the
minimum required by the framework specification. Textended techniques are
needed to handle these richer behaviors (SoundassidnFridella 2000; Hall-
strom and Soundarajan 2002). Nevertheless, simpligndeentract techniques
are still quite useful in helping designers explord eafine the requirements and
framework designs.
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4 LAYERED ARCHITECTURE

The overall architecture of the Table framework $tti@mbody the frozen spot
and, as much as possible, separate the concerns tel&ach hot spot into an in-
dependent component. That is, it should hide ti@amentation of each hot spot
within a separate component, behind a well-defimeerface. To use the termi-
nology from Parnas’ information-hiding approach todular software design, the
implementation details for a hot spot should be ar&s& of the component that is
hidden behind an appropriate “abstract interfacedrfBs 1972; Britton et al.
1981; Cunningham et al. 2004).

Clearly, there is a mix of high- and low-level issuwsmong the hot spots. Cli-
ents can define their own key (hot spot #1) andre¢hot spot #2) structures and
then call the table (frozen spot) to store the rexor@he table implementation
may use some key-based record access mechanism (hgtspaired with some
storage structure (hot spot #5).

This mix of high- and low-level issues suggests a hobieal architecture
based on thé&ayered Architecture pattern (Buschmann et al. 1996; Shaw 1996).
When there are several distinct groups of servicesctirabe arranged hierarchi-
cally, this pattern assigns each group to a layer Ee@r can then be developed
independently. A layer is implemented using the sesvifethe layer below and,
in turn, provides services to the layer above. Insihgplest version of this pat-
tern, services in a layer cannot directly call ugenvices defined more than one
layer down. It cannot directly call services definin a layer above except using
specificcall-backs that it is supplied in calls from the higher level.

As shown in Fig. 1, we can define three layers inTtable framework design.
From the top to the bottom these include:

Client Laver

|

Access Layer

v f

Storage Layver

Fig. 1. Applying theLayered Architecture pattern

Client Layer. This layer consists of the client-level programg tee the table
implementation in the layer below to store and re&rieecords. Clients of the
Table framework implement the user-defined datadyipekeys and records,
which are the variabilities expressed by hot spotantll#2.

Access Layer. This layer must provide client programs key-basedssto the re-
cords in the table. It uses the layer below to stoeeerecords physically. Im-
plementations of this layer provide the data strustamed algorithms for in-
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dexing the records, which is hot spot #4. The interf this layer represents
the frozen spot.

Sorage Layer. This layer must provide facilities to store aetrieve the records
from the chosen physical storage medium. Implementatbthis layer pro-
vide the data structures and algorithms for storirgrecords, for example, a
structure in the computer's main memory or a randooess file on disk.
The layer expresses hot spot #5.

For example, suppose we want a simple indexed filetst@ with an in-
memory index that uses an array-like relative filsttre the records on disk (Folk
et al. 1998). The implementation of the index wdukdpart of the Access Layer;
the implementation of the relative file would betlie Storage Layer. A program
that uses the simple indexed file structure wouléthitbe Client Layer.

What about hot spot #3? This hot spot involves thityabd represent a “re-
cord” in an external form suitable for storage on sqgvhysical storage medium
(e.g., rendering it as a sequence of bytes). So, esutace, it would seem that
this would be a structure defined by the Client érathat is passed through the
Access Layer to the Storage Layer, where a call-batie implementation of the
structure in the client may take place. Howevetjoger examination reveals a
more complicated situation. The client’'s keyed-recoay itself consist of a hier-
archy of structures, each of which needs to be ctenwéo the external form inde-
pendently. For some implementations of the Access Layghysical record to be
stored by the Storage Layer might consist of a gafugient keyed-records (e.qg.,
a B-tree node or a hash-table bucket) or it migimscst of auxiliary information
about the access structure that needs to be made grersitcause hot spot #3
does not fit cleanly into any of the layers, we pldlce needed abstraction in a
utility module called the Externalization Module.

The various layers and modules need to be kept amdimt from one an-
other. Thus, following the fundamentaterface design pattern (Grand 1998), we
define each layer in terms of a set of related Jaeafates and require that inter-
actions among the layers use only the provided eted. Next, let us examine
the design of the each layer and its interfaces.

5 CLIENT LAYER

The design of theClient Layer must enable the Access Layer to access client-
defined keys and records and should avoid requinmgecessary programming to
use common data types.
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5.1 Abstract Predicates for Keys and Records

As much as possible, clients (i.e., users) of thestahplementations should be
able to define their own key (hot spot #1) and récructures (hot spot #2). The
internal details of the different types of recordd &rys, which are implemented
in the Client Layer, must be hidden from the Access @torage Layers. How-
ever, the specification of the Access Layer depends wgertain assumptions
about the nature of the records and keys. In spagifyie operations for the inter-
faces in this and other layers, we express key featdirége keys and records as
abstract predicates (Meyer 1997) to make these assunmpnore explicit. These
are calledabstract because they are used for specification only; theyadaepre-
sent functions that are to be built as executable.cdtie precise definition of
these predicates depends upon the particular impltiens used in this layer.
The abstract predicates associated with the Clieygriare

* boolean isValidKey(Object key) that is true if and only if
key is an element of the set of meaningful keys suppdyetie client’'s
key class.

* boolean isValidRec(Object rec) that is true if and only if

rec is an element of the set of meaningful records sue@day the cli-
ent’s keyed record class.

5.2 Keys and the Comparable Interface

As stated earlier, clients of the table implemeanteatishould be able to define their
own record and key structures (hot spot #1). Howemgy implementation of the
Table ADT must be able to extract the keys from #mords and compare them
with each other. Thus we restrict the records to objeots fwhich keys can be
extracted and compared using some client-definetidadaring.

The built-in Java interfacEomparable is sufficient to define the function-
ality of the keys. Any class that implements this irsteef must provide a public
methodcompareTo , which is defined to have the signature and sema(dies
sign contract) as defined below.

To state logical and mathematical expressions in Bpetidns, this chapter
uses a Java-influenced notation. The sym&®& denotes logical conjunction
(“and”), || denotes the logical disjunction (inclusive “or’)lenotes negatioas
denotes logical implication (“if-then”), ard= denotes equality. The symbdl
denotes universal quantification (“for all”) aitbenotes existential quantification
(“there exists”). For mathematical sets, we use bracawd} to list the elements
explicitly , 0 to denote union,— to denote set subtractiod,to denote member-
ship, andd to denote the empty set. In appropriate contextss phiparentheses
( and) denote tuple formation. In postconditions, the alaleresult  refers to
the value returned by a function method call ardpiefix# attached to a variable
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denotes the value at the time the method was célieléss a new value is explic-
itly assigned to a variable in the postconditionvitue must not be changed by
the method call.

The description and design contract (pre- and pasiitions) for thecom-
pareTo method are as follows:

e int compareTo(Object key) that compares the associated ob-
ject (his ) with argumenkey and returns -1 ikey is greater, O if
they are equal, and 1 Key is less.

Pre: isValidKey(this) && isValidKey(key)
Post:result == (if this < key then -1
else if this == key then O
else 1)

Clients can use any existifgpmparable class for their keys or implement their
own.

5.3 Records and the Keyed Interface

To enable keys to be extracted from records, we dotte the Java interface
Keyed to represent the type of objects that can be matigailby a table (hot
spot #2). We model thikeyed abstraction as having an abstract attritke .
Any class that implements this interface must implenteetmethodgetKey ,
which has the following description and design caritra

» Comparable getKey() that extracts the key from the associated re-
cord this ).
Pre: isValidRec(this)
P ost: (result == this.key) && isValidKey(result)

An alternative design for handling the keys and mésanight be to allow the
client to use any Java objects and then to supglyogpiate objects that encapsu-
late the key-extraction and key-comparison operatiestesveloped in accordance
with the Srategy design pattern (Gamma et al. 1995; Grand 1998)s alkérna-
tive might enable changes to these operations to he ohwre dynamically but at
the loss of some type safety and of the ability totheeclasses in the API that im-
plement theComparable interface. With the approach taken in this sectitip,
ents can, if needed, construct wrapper classes thatrimepkt theComparable
andKeyed interfaces and encapsulate the actual key anddedijects. This use
the Adapter design pattern (Gamma et al. 1995; Grand 1998) esalients to
utilize a wide range of pre-defined objects as keygoords as needed.
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5.4 Interactions among the Layers

The Client Layer thus consists of t®mparable andKeyed interfaces and
the abstract predicatésv/alidKkey  andisValidRec  (all of which are part of
the framework) and the concrete classes that implemernitérfaces (which are
part of the customization of the framework for some iigeapplication). The en-
capsulation of the key and record implementationshenGomparable - and
Keyed -implementing classes, respectively, thus enable thessctayer to use
the client-defined keys and records without knowing $pecifics of their imple-
mentation. A table implementation in the Access kagen use theyetKey
method of th&keyed interface to extract keys from the client-defimedords and
can then use theompareTo method of theComparable interface to compare
the client-defined keys.

6 ACCESS LAYER

The design of théccess Layer must provide the Client Layer programs key-based
access to a collection of records (frozen spot), endivierse implementations of
the indexing structures (hot spot #4), and suppedrse storage structures in the
Storage Layer. The primary abstraction of the Asdeayer is the Table ADT.

6.1 Abstract Predicates for Tables

In the specifications in this section, we use thifang abstract predicates to
capture assumptions the Table ADT makes about theommént:

« isValidKey(Object key) and isValidRec(Object rec)
which are defined in the Client Layer to identifglid keys and records.

» isStorable(Object rec) which is defined in the Storage Layer to
identify records that can be stored.

The specifications of other interfaces may also ddpgon assumptions about
the integrity of a Table ADT instance. We thusadduce the abstract predicate:

* boolean isValidTable(Table t) that is true if and only if is
a valid instance ofable (i.e., satisfies all the design contracts below).
6.2 Table Interface

We model the collection of records by the variatable , which is a partial
function from the set of keys defined by the typemparable to the set of re-
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cords defined by the tyg€eyed . For convenience, we use the varidblele to
denote either the function or the corresponding Bkeey-record pairs.

Now, we can define the Table ADT as a Java interflaaeincludes the follow-
ing ADT invariant and public methods. In Englidheinvariant can be stated:

All stored keys and recordsin thet abl e arevalid and capable of being
stored on the chosen external device, and the records can be accessed by
their keys.

Stated more formally, the invariant is:

(Ok,r: r == table(k) : isValidRec(r)

&& isStorable(r) && k == r.getKey())

The Table ADT has mutator (i.e., command or settenatipas with the follow-
ing descriptions and design contracts:

void insert(Keyed r) inserts the&keyed objectr into the table.
Pre: isValidRec(r) && isStorable(r) &&

IcontainsKey(r.getKey()) && lisFull()
Post: table == #table O {(r.getKey(),nN}

void delete(Comparable key) deletes th&eyed object with
the giverkey from the table.

Pre: isValidKey(key) && containsKey(key)

Post: table == #table — {(key,#table(key))}

void update(Keyed r) updates the table by replacing the existing
entry having the same key as argumenwith the argument object.
Pre: isValidRec(r) && isStorable(r) &&
containsKey(r.getKey())
Post: table == (#table —
{(r.getKey(),#table(r.getkey()))} )
0 {(r.getKey().n} )

TheTable ADT has accessor (i.e., query or getter) operatiatisthe following
descriptions and design contracts:

Keyed retrieve(Comparable key) searches the table for the
argumenkey and returns th&eyed object that contains this key.

Pre: isValidKey(key) && containsKey(key)

Post:result == #table(r.getKey())

boolean containsKey(Comparable key) searches the table
for the argumenkey .

Pre: isValidKey(key)

Post: result == defined(#table(key))

boolean isEmpty() checks whether the table is empty.
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Pre: true
Post: result == (#table == )
* boolean isFull() checks whether the table is full.
Pre : true
Post: result == (#table  implementation has no free space to
store a new rel§o
e int getSize() returns the size of the table.
Pre: true

Post: result == cardinality(#table)

Note that there are several tacit assumptions being.métavinggetSize
return an integer means that the size of the table beuinite, but it is not neces-
sarily bounded. Of course, for unbounded taidEsll  would always need to
return the valudalse . The contracts for the methods other tigatSize do
not preclude the definition of an infinite size l@le.g., with some ranges of key
values having records that are generated by a mets needed). However, the
behavior ofgetSize would need to be defined for infinite tables. Alselass
that implements an infinite table would need to pilevé constructor or additional
methods for setting up techniques for calculated rexctivat are not explicitly in-
serted into the table.

6.3 Interactions among the Layers

The Access Layer thus consists of Treble interface and thesValidTable
abstract predicate (which form part of the framewiself) and the concrete
classes that implemeiiable (which are part of a customization of the frame-
work to create a specific member of the family). nGete classes that implement
theComparable andKeyed interfaces are part of the Client Layer. The intera
tions between the Client Layer and the Access Lageuraas follows:

» The Client Layer calls the Access Layer usingThble interface.

* The Access Layer calls back to the Client classesithpement the
Keyed andComparable interfaces to do part of its work.

In the design of the Access Layer, the only condtiglsced upon the storage
mechanism is that the records inserted into the tableapable of being stored
and retrieved reliably (i.e., satisigStorable ). Thus the design of the Access
Layer enables client-defined keys and records, diversard access mechanisms,
and diverse storage mechanisms. Next, let us examin8ttirage Layer and its
interface.
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7 STORAGE LAYER

The Sorage Layer provides facilities to store records to and retrie@rds from

a physical storage medium. It encapsulates hot spah&5hence, must enable a
diverse range of physical media. Of course, thisrlayest also support client-

defined records in the Client Layer and diverse né@zcess mechanisms in the
Access Layer. It should also enable the access stradtutiee Access Layer to be
stored on the physical media and decouple the impletiens in the layers above

from the physical media as much as possible.

7.1 Abstract Predicate for Storable Records

The specifications of the Access Layer and the Seotayer interfaces depend
upon certain assumptions about the nature of recoedscttn be stored on the
physical storage media. In specifying the operatiome express key features of
the media in terms of an abstract predicate to ntlasgee assumptions more ex-
plicit. The predicate defined by the Storage Lager

* boolean isStorable(Keyed rec) that is true if and only ifec
can be stored on the storage medium being usedhetimplementation
of thetable

7.2 Bridge Pattern

To define the interfaces between the Access andd&tdagers, we adopt a struc-
ture motivated by the Bridge and Proxy design past§Gamma et al. 1995;
Grand 1998) to achieve the desired degree of deioguphd collaboration. We
also take into account both the expected charadtsrist the storage media and
the expected needs of the implementations oT#ide ’'s indexing mechanisms.
The Bridge design pattern is useful when we wish to decoupléitierface”

of an abstraction from its “implementation” so ttte two can vary independently
(Gamma et al. 1995; Grand 1998). In this design (as sliowig. 2), the “inter-
face” is theTable abstraction in the Access Layer, which providestayed ac-
cess to a collection of records; the “implementatianthie RecordStore  ab-
straction in the Storage Layer, which provides a mlaysitorage mechanism for
records. These two hierarchies of abstractions calidbdao provide the table
functionality. At the time a table is created, ampareteTable -implementing
class can be combined with any concRéeordStore -implementing class.



Designing a Flexible Framework for a Table Absi@att 15

Table s EecordStore
Simple Hash Slotted Vector
Tndex File File

Store

Fig. 2. Applying theBridge pattern

We assume that a storage medium abstracted intBaberdStore  ADT
consists of a set of physical “slots”. Each slot hasiquen‘address”, the exact na-
ture of which is dependent upon the medium. A mogmay allocate slots from
this set and release allocated slots for reuse. Therg hoaever, be restrictions
upon the characteristics of the records acceptalileetstorage medium. For ex-
ample, if a random-access disk file is used, it mapdmessary to restrict the re-
cord to data that can be written into a fixed-léngibck of bytes.

There are many possible implementationsrable in the Access Layer—
such as simple indexes, balanced trees, and hash tabje$able implementa-
tion must be able to allocate a new slot, store ardeinto it, retrieve the record
from it, and then deallocate the slot when it idoriger needed. ThHEable must
be able to refer to slots in a medium-independent maMwmeover, most imple-
mentations will need to treat these slot referencestastiia can be stored in re-
cords and written to a slot. For example, the nodes toée-structured table are
“records” that may be stored in RecordStore ; these nodes must include
“pointers” to other nodes, that is, references toratlags.

7.3 Proxy Pattern

Because we cannot expose the internal details oRéwerdStore to the Ac-
cess Layer, we need a medium-independent means fagsaddy the records in
the RecordStore . The approach we take is a variation of Enexy design pat-
tern (Gamma et al. 1995; Grand 1998).

The idea of the Proxy design pattertdsise a proxy object that acts as a sur-
rogate for a target object. When a client wantsctess the target object, it does
so indirectly via the proxy object. Since the targkject is not accessed directly
by the client, the exact nature and location, dherexistence, of the target object
is not directly visible to the client. The proxy otfieserves as a “smart pointer” to
the target object, allowing the target’s locatiod ascess method to vary.
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Table EecordZtore
Eecord=lot

handle

Fig. 3. Applying theProxy pattern

In this design, we define tHgecordSlot  abstraction to represent the prox-
ies for the slots within &ecordStore . As shown in Fig. 3, these two abstrac-
tions collaborate to enable the Access Layer to stoderetrieve records in a uni-
form way, no matter which storage medium is usedaBse of the need to write
the slot references themselves into records as datalse assign an integer “han-
dle” to uniquely identify each physical slot inRecordStore . Since multiple
RecordStore instances may be in use at a time, eRebordSlot  also needs
a reference to thRecordStore instance to which it refers.

7.4 RecordStore Interface

We can now specify thRecordStore  andRecordSlo t interfaces. The model
for the semantics of these ADTSs includes two sets. Tiellee  denotes the set
of slot handles that have been assignedRémordSlot instances. The set
store is a partial function from the set of valid handleshi® set of storable ob-
jects. For convenience, the sefalloc  is used to denote the set of valid but un-
allocated handles, that is, the complement of thealet . The constant
NULLHANDLErepresents a special integer code that cannot be edsagra valid
slot handle; it is neither ialloc  nor unalloc. Here we assume th&e-
cordStore s finite, but unbounded in size.

We define theRecordStore  ADT as a Java interface that includes the fol-
lowing ADT invariant and public methods. In Englisgie invariant can be
stated:

All recordsin the st or e are capable of being stored on the selected medium
and the stored records can be accessed by their handles.

Stated more formally in logic, the invariant is:

(O h, r:r==store(h) : isStorable(r)) &&
(Oh:h O alloc == defined(store(h)))

TheRecordStore  ADT has operations with the following descriptions ate-
sign contracts:

* RecordSlot newSlot() allocates a new record slot and returns the
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RecordSlot  object.

Pre: true

Post: result.getContainer() == this &&
result.getRecord() == NULLRECORD &&

result.getHandle() O #alloc &&
result.getHandle() O alloc O {NULLHANDLE}
* RecordSlot getSlot(int handle) reconstructs a record slot us-

ing the giverhandle and returns thRecordSlot
Pre: handle Oalloc
Post: result.getContainer() == this &&
result.getRecord() == #store(handle) &&
result.getHandle() == handle

¢ void releaseSlot(RecordSlot slot) deallocates the allocated
recordslot
Pre: slot.getHandle() O alloc O {NULLHANDLE} &&

slot.getContainer() == this
Post: alloc == #alloc - {slot.getHandle()} &&
store == #store —
{(slot.getHandle(),slot.getRecord())}

Note that, to support a wide domain of variabilityimplementation, the pa-
rameterlessiewSlot method allows lazy allocation of the handle anadhclee of
the associated physical slot. That is, the handlelmaallocated here or later upon
its first use to store a record in tRecordStore . For this method, we set the
value of a new slot to ldULLRECORD. This constant denotes an inert, empty
record implemented according to thell Object design pattern (Woolf 1998;
Grand 1998). That ifN\ULLRECORDas the same interface as the other records
returned bygetRecord (below) except that it has no data associated iviahd
the operations have no effect. According to Wodlig“Null Object encapsulates
the implementation decision to do nothing and hideseldetails from its collabo-
rators” (Woolf 1998). It sometimes avoids a situatiorereha caller must take a
special action to capture error returns from openatio

7.5 RecordSlot Interface

The RecordSlot interface represents a proxy for the physical re¢stuots”
within a RecordStore . The semantics of its operations are, hence, stated in
terms of the effects upon the associdRatordStore instance. We model the
RecordSlot ADT as having two abstract attributes, twatainer  which is a
reference to the associat@dcordStore and the integdanandle.
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We thus define th®ecordSlot ADT as a Java interface that includes the
following ADT invariant and public methods. In Ergfli theinvariant can be
stated:

The handle of a Recor dSl| ot object denotesa dot of the st or e that has
been allocated, unlessit has the value NULLHANDLE.

Stated more formally in logic, the invariant is:
getHandle() O alloc O {NULLHANDLE}

The RecordSlot  ADT has operations with the following descriptionsl afe-
sign contracts:

« void setRecord(Object rec) stores the argument objeet
into thisRecordSlot
Pre: isStorable(rec)
Post: Leth == getHandle():

(h O #alloc = store == (#store —
{(h,#store(h))}) O (h,rec)})
&& (h == NULLHANDLE =
( Og:g O #unalloc :
alloc == #alloc O {0} &&
store == #store O {(g,rec)}) )

Note that this allows the allocation of the handlbé¢adone here or al-
ready done by theewSlot method ofRecordStore

*  Object getRecord() returns the record stored in tiie-
cordSlot
Pre: true
Post: Leh == getHandle()
(h O #alloc = result == #store(h)) &&
(h == NULLHANDLE = result == NULLRECORD )

e int getHandle() returns the handle of thigecordSlot
Pre: true
Post: result == this.handle

« RecordStore getContainer() returns a reference to tRe-
cordStore  with which thisRecordSlot is associated.
Pre: true

Post: result == this.container

* boolean isEmpty() determines whether tlRecordSlot is
empty (i.e., does not hold a record).
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Pre: true
Post:result == (getHandle() == NULLHANDLE ||
getRecord() == NULLRECORD)

Note thatgetRecord returns the inerNULLRECORDDbject if no record has
been stored in the slot. Also note tlsEEmpty returns true for either an unallo-
cated handle or tidULLRECORDeing stored in the slot.

7.6 Interactions among the Layers

The Storage Layer consists of tRecordStore  andRecordSlot interfaces
and the abstract predicasStorable (all of which are part of the framework)
and the concrete classes that implement the inter{adgsh are part of an appli-
cation of the framework). A'able implementation in the Access Layer calls a
RecordStore  implementation in the Storage Layer to gefcordSlot  ob-
ject. The Access Layer code then cBExordSlot to store and retrieve its re-
cords. If needed, RecordSlot object calls back to Record implementation
in Access Layer. Th&ecord interface is part of the Externalization Module,
which we examine in the next section.

The design of thd&kecordStore  and RecordSlot  abstractions and the
use of slot handles give the Storage Layer the diftgatb be implemented using
a diverse group of physical media, including both nmagmory and on-disk struc-
tures. These interfaces provide operations with safftciunctionality and make
the functionality available in manner that is indegemt from the actual physical
medium used. The combination of these interfaces lamRécord interface in
the Externalization Module (defined in the nextteer) enable the Storage Layer
to be decoupled from the layers above and for theedg Layer to store a wide
range of information in the Storage Layer.

8 EXTERNALIZATION MODULE

How can theRecordSlot mechanism store the records on and retrieve them
from the physical slots on the storage medium? Thanisssue because the re-
cords themselves are defined in the layers above asidithernal details are,
hence, hidden from thRecordStore . For in-memory implementations Ble-
cordStore  this is not a problem; thRecordStore can simply clone the re-
cord (or perhaps copy a reference to it). Howevisk-dased implementations
must write the record to a (random-access) file andnstouct the record when it

is read. So, once we allow diverse physical mediahave to handle the external
byte presentation of record state (hot spot #3).
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The solution taken here is similar to what is donth wheKeyed interface.
We introduce &Record interface with three user-defined methods with tHe fo
lowing design contracts:

» void writeRecord(DataOutput out) writesthis  record to
streamout .
Pre:true
Post: suffix of streamut == this  record's state encoded as
byte sequence

» void readRecord(Datalnput in) readgshis record from

streamin .

Pre:true

Post:ithis record's state= prefix of streanin decoded from

ytd sequence

* int getLength() returns the number of bytes in the external represen-

tation ofthis  record (e.g., that will be written hyriteRecord ).

Pre:true

Postirresult == number of bytes in external representatiothi

record

The Record interface must also satisfyState Restoration Property, defined
as follows:

If, for some Recor d object, awr i t eRecor d call isfollowed by a
r eadRecor d call with the same byte sequence, the observable state of the
Recor d object will be unchanged.

The concrete implementations of tRecord interface appear in either the
Client Layer for client-defined records or in thec&ss Layer for “records” used
internally within aTable implementation. The Storage Layer calls Rexord
methods when it needs to read or write the physe&zdrd. The code in thee-
cord -implementing class does the conversion of the inten@ird data to and
from a stream of bytes. TheecordStore andRecordSlot  implementations
are responsible for routing the stream of bytes tofeand the physical storage
medium.

The framework design using tHRecord interface takes a low-level ap-
proach to handling the conversion of user-definetnas to the desired external
form. It requires that the users provide facilities foanslating their records
to/from a sequence of bytes by having the recdremselves implement the-
cord interface. An alternative would be to encapsuthaie functionality within
an externalization object developed in accordandd the Strategy pattern
(Gamma et al. 1994). Methods of the externalizatibject could access the
fields of the user’s record to create the neededmadtéorm and vice versa. This
access might be direct using accessor methods the oeed provides or it might
be indirect using reflection. Taking this approasttter, the Storage Layer might
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be parameterized with other Strategy objects thatve from a device-
independent form coming from the externalization cbj@® the form actually
stored on the physical device. Given that stricirigps not maintained when a re-
cord is externalized, this would be an acceptaldssiply more dynamic alterna-
tive to the approach using tRecord interface. It would also better support ex-
ternal forms such as an XML representation. However,opt for the simpler,
low-level approach for the framework design in ttiister.
HExternalization
Madile

Eecord

Table

i Storage
i Layer BecordStore BecordSlot

Fig. 4. Abstraction Usage Replationships

In summary, Fig. 4 shows thuse relationships among the Client, Access, and
Storage Layer and Externalization Module abstrastiofhe user program in the
upper-level Client layer calls the Table ADT dirgctind the lower layers have
callbacks to implementations of théyed, Comparable , and Record ab-
stractions defined in the layers above.

9 ITERATORS

So far, we have specified the basic structure of di@elframework. More design
patterns could be applied to enhance the desigmediramework. This section il-
lustrates how to apply theerator design pattern (Gamma et al. 1995; Grand 1998)
in the Table framework. This design pattern enatilesclient code to access all
the records in the table in some order without exgp#ie internal details of the
table implementations. The interfatterator , defined in the Java API, pro-
vides a standard means for Java programs to suppaibiter It includes method
hasNext to check for the existence of another element antiod@ext to re-
turn the next element. We can add several usefubtitey and iterator-
manipulating methods to the framework design.
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9.1 Table lterator Methods

As a convenience for clients of the table implemémtat we add two iterator ac-
cessor methodgietKeys() andgetRecords() , to theTable interface (de-
fined in the Access Layer). Remember that the ADT riavé for Table must
also hold as a precondition and postcondition fosettmperations.

Here we introduce new notation for describing theasios of iterators. The
abstract attributeeq of anlterator denotes the sequence of elements that the
iterator yields on any subsequent calls ofribgt() method. The suffix predi-
catenodups operates on sequences and rettnus  if and only if the sequence
contains no repeated elements. We also overloadl thied (] operators to work
with sequences as well as sets. The utility functiocurs(e,s) returns the
number of occurrences of elemenin sequencs.

e lterator getKeys() returns an iterator that enables the client to
access all the keys in the table one by one.
Pre: true
Post result.seq.nodups &&
( Ok::
k O result.seq == defined(#table(k))
e lterator getRecords() returns an iterator that enables the client
to access all the records in the table one by one.
Pre: true
Post result.seq.nodups &&
( Or::
r O result.seq == Ok :: r = #table(k)))

Similarly, we can add overloaded versions ofitteert  anddelete meth-
ods that take appropriate iterators as arguments.

* void insert(lterator iter) inserts theKeyed objects denoted
by the iteratorter into the table.
Pre: iter.seg.nodups &&
( Or:r O iter.seq : isValidRec(r) &&
isStorable(r) && !containsKey(r.getKey()))

Post: table == #table O
{(r.getkey(),r) : r Oiter.seq}
» void delete(lterator iter) deletes the objects from the table

whose keys match those returned by iteraor .
Pre: iter.seq.nodups &&
( Ok k Oiterseq:
isValidKey(k) && containsKey(k))
Post: table == #table —
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{(k,#table(k)) : k O iter.seq }

We note that the precondition of timsert(lterator) method requires all
elements yielded by the iterator to be absent fragrtdble. In practice, this may
be difficult to ensure for all calls. Alternatiwpecifications might be to require
that an insert of an existing key to either be rgdoor result in an update opera-
tion, but these would make the iterator version beldifferently than the non-
iterator version ofnsert . A similar situation arises fatelete(lterator)
because its precondition requires the presence of &eg.

9.2 Input Iterators

The methodnsert(Iterator) is a convenient mechanism for loading a ta-
ble with a sequence of items that come from a diffefemhat. We add the ab-
stract base cladsputlterator to enable users to conveniently create a class

to read records from external files. The desigrhisf tlass takes advantage of the
Template Method design pattern.

The Template Method design pattern (Gamma et al. 1995; Grand 1998) is a
quite useful pattern for building frameworks. Cahtp this pattern is an abstract
class that provides a skeleton of the needed behavidrs.class consists of two
kinds of methods:

Template methods are concrete methods that implement the shared dunaditly of
the class hierarchy. They are not intended to beidden by subclasses.

Hook methods are (often abstract) methods that provide “hooks’aftaching the
functionality that varies among applications. Altgbhuhook methods may
have a default definition in the abstract class, imega they are intended to be
overridden by subclasses. A template method calt®i method to carry out
application-dependent operations.

The Inputlterator class implements the Jaitarator interface, pro-
viding the requiredterator methods as template methods. It also includes
two abstract hook methods that are called by thel®mmethods:

e boolean atEnd() that returngrue when the end of the input has
been reached.

e Object readNext() that returns the next object in the input stream.
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Tterator

boolean hasWNexty)
Object next()
void remove()

implements ﬁF‘

Inputlterator

boolean hasNext()
Object next()
void remove()

boolean atEndi)
Object readNext()

Concretelnputlterator] ConcreteInputlterator2
bhoolean atEnd() boolean atEnd()
Object readWext() Object readNexti)

Fig. 5. Applying theTemplate Method pattern

A client who wishes to use this class must extendrtpatlterator class,
providing appropriate concrete definitions for itestract methods. As shown in
Fig. 5 thelnputlterator is itself a small framework, with a hot spot coneern
ing that nature of the source from which data objedeing read.

9.3 Filtering Iterators

Sometimes users need to transform the elements of emngersce into another.

Some elements may need to be deleted and others eptetimes a conversion

operation needs to be applied to every element s#quence. We can support
these operations on iterators by introducingRitierlterator class.

The Filterlterator class is a concrete class that implementsitthe
erator interface. Its constructor takes three argumeanisiterator, a selector,
and a converter. Its implementation takes advantatfeddecorator and Strategy
design patterns as shown in Fig. 6.

The Decorator design pattern extends the functionality of an dhjea way
that is transparent to the users of that object (Gaetrah 1995; Grand 1998). A
Decorator object is of the same type as the origibpab. It serves as a wrapper
around the original object that provides enhancetttfonality but it delegates
part of its work to the original object. THelterlterator is an iterator
whose constructor takes another iterator as an arguiheises the argument it-
erator as its source of data but selects and transtbendata that is returned by
its next() method. The use of the Decorator design patternatoss aFil-
terlterator to provide enhanced functionality at any placd traltera-
tor is used.
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Tterator
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‘ Selector ‘ ‘ Convertor |

Fig. 6. Applying theStrategy and Decorator pattern

The Srategy design pattern abstracts a family of related algmstivehind an
interface (Gamma et al. 1995; Grand 1998). The egsatgorithm can be se-
lected at runtime and plugged into the object tis&is the algorithm. The selector
and converter arguments of thaéterlterator are Strategy objects that en-
capsulate the selection and conversion algorithrspergively. For example, the
selector is an object of a class that implement$Stiector  interface. This in-
terface requires that the class implement the method:

* boolean selects(Object obj) that returngrue if and only if
obj satisfies the chosen criteria.

TheFilterlterator delegates the choice of which objects from its input
sequence to keep to thelects() method of the selector object. The use of the
Strategy design pattern enables the shitterlterator object to be config-
ured flexibly to have different behaviors as needed.

9.4 Query lterator Methods

The Table abstraction defined in a previous section only hes access based
on the unique, primary key of the record. Sometimetient may want to access
records based on the values of other fields. Unlikepttimary key, these secon-
dary key fields may not uniquely identify the recavithin the collection.

The framework can be readily extended to accommatatess on secondary
keys as well as the primary key. We can, for exang#éne aMultiKeyed in-
terface in the Client Layer that extends Keyed interface with additional meth-
ods:

e int getNumOfKeys() that returns the number of keys supported by
the associated record implementation

* Comparable getKey(int k) that extracts the key from the re-
cord, where key 0 is the primary key
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While it is sufficient for the basi@able mechanism to have a simple
method retrieve(Comparable) , a table that supports access on multiple
keys needs to allow a variable number of items teeb@eved for each secondary
key value. Therefore, we define a n€ueryTable interface that extends the
Table interface and includes several new iterator-rengmnethods. These in-
clude:

e lterator selectKeys(int k, Selector sel) that returns
the sequence girimary keys for the records whose kéysatisfies the se-
lectorsel

» lterator selectRecords(int k, Selector sel) that re-

turns the sequence of records whoselkkegtisfies selectael

As a convenience, it is also useful to allow a querye done using a combina-
tion of various primary and secondary key value® t&n thus define two addi-
tional iterator methods:

o lterator selectkeys(Query Q) that evaluates the quegyand
returns the sequence mfimary keys of all records that satisfy the query

e lterator selectRecords(Query q) that evaluates the quety
and returns the sequence of all records that satisiyubey

In this designQuery is the abstract base of a class hierarchy constracted
cording to theComposite design pattern (Gamma et al. 1995; Grand 1998)s Th
hierarchy, shown in Fig.7, represents the abstiauag tree of the query com-
mands. The primary operation of iQeery classes is the method:

e |terator eval(QueryTable t) that evaluates the query in the
context of theQueryTable argumentt and returns the primary keys
from the table for records that satisfy the query

The concrete clasBieldSelector is a leaf subclass of tH@uery Com-
posite hierarchy. The class has two attributes, an integer to idemitfich key
field of the multikeyed table is to be considered affelector  Strategy object
to determine what values of that (secondary or prijnkey field are to be se-
lected for inclusion in the result. When a simglery of this nature is evaluated
(e.g., by theselectkeys  method), the set associated with the resulting @erat
consists of all the primary keys from the table for theords that satisfy the
FieldSelector
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Query )

Iterator ewal(QueryTable)

e ) —1

FieldSelector And
Iterator ewval (OueryTable) Iterator eval (OueryTable)
Selector getlelector() Query getLeft()
int getField() Query getRighti)

Fig.7. Applying theComposition Pattern

Query also has several composite subclasses denoting opesrati be per-
formed. For example, the subclassd has two attributes, a left and a right child
query. When arAnd query is evaluated by theelectKeys method, first the
two sub-queries are evaluated recursively to getgets of primary keys and then
the intersection of the two sets is returned. Sitgiladr performs a union of the
sets,Diff subtracts the set represented by the second argmenthiedirst, and
Xor constructs the symmetric difference of the two @ets elements in only one
of the two sets).

The prototype implementation of the Table framewdikafg 2000) imple-
ments a flat query syntax with the same general secsaadidescribed above. The
QueryTable it implements has an index for each primary and segricey.

10 EVOLVING FRAMEWORKS

The framework design described informally in thiguter is presented from the
perspective of am priori design approach for frameworks. Such an approach
seeks to derive the framework using systematic ana{@iplien et al. 1998;
Weiss and Lai 1999) and generalization (Schmid 1@#ningham and Tade-
palli 2006) techniques. In a more traditional apphpdramework designs tend to
evolve as their usage grows and the developers leara about the application
domain. This evolution often follows the steps docuoteé in theEvolving
Frameworks system of patterns (Roberts and Johnson 1998). Thetievoad the
different versions of the Table Framework also exkibitveral of thesprocess
patterns.

10.1 Three Examples

In most nontrivial frameworks, it is not easy to comenigh the right abstractions
just by thinking about the problem. Domain expersdglly do not know how to
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express the abstractions in their heads in ways timabedurned into designs for
abstract classes; programmers typically do not havdfigient understanding of
the domain to derive the proper abstractions immelgigRoberts and Johnson
1998).

Often, three implementation cycles are needed toloe\ae sufficient under-
standing of the application to construct good abstmas (Roberts and Johnson
1998). The original design of the Table frameworlswa different despite the
simplicity of the problem (Cunningham and Wang 200i)he exploration of the
design, Wang constructed three prototype implemientatof RecordStore
and two implementations dfable (Wang 2000). Earlier work designing similar
Table libraries also yielded insight. Each implemgoitaeffort gave new insights
into what an appropriate set of abstractions werk warcovered potential prob-
lems.

10.2 Whitebox Frameworks

As this framework is defined so far, the Table framdéwis a purewhitebox
framework (Johnson and Foote 1988; Fayad et al. 1998). mhergé a whitebox
framework consists of a set of interrelated abstoase classes. Developers im-
plement new applications by extending these base clardesverriding methods
to achieve the desired new functionality. The immaters must understand the
intended functionality and interactions of the was classes and methods. Such
frameworks are flexible, extensible and easy to bbild they are difficult to learn
and use.

While whitebox frameworks rely upon inheritance @chieve extensibility,
blackbox frameworks use object composition to support extensible systdotm¢
son and Foote 1988; Fayad et al. 1998). Such framewdefine interfaces for
components and allow existing components to be pluggedthese interfaces.
Appropriate components that conform to these intedare collected in a com-
ponent library for ready reuse. Such frameworks loareasy to use and extend.
However, they tend to be difficult to develop besmthey require the developers
to provide appropriate interfaces for a wide rangeotential uses.

10.3 Component Library

Once a basic whitebox framework is in place, theigteusually evolves to-
ward a blackbox framework by the addition of usefuhcrete classes to a compo-
nent library (Roberts and Johnson 1998). The addiibconcrete implementa-
tions of theTable andRecordStore abstractions thus is a natural next step in
the evolution of the Table framework.

A prototype component library has been developedafoearlier version of
Table framework design (Wang 2000). This componémnaty provides three dif-
ferent implementations of the Storage Layer, inipaldr of theRecordStore
interface:
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* VectorStore , an implementation that stores the records in a Java
Vector

* LinkedMemoryStore , an implementation that stores the records in a

linked list

* SlottedFileStore , an implementation that stores the records in a
relative file of fixed length blocks on disk and usdsitanap to manage
the blocks.

The component library also provides two implementetiof the Access Layer,
in particular of thel'able interface:

e SimplelndexedFile , an implementation that uses a simple sorted in-
dex in memory to support the location of records\gidieys (Folk et al.
1998)

e HashedFileClass , an implementation that uses a hash table to suppor
the key-based access

In the prototype component library (Wang 2000), 8impleindexedFile
component actually implements tQeieryTable interface, the extended version
supporting more complex queries.

10.4 Hot Spots

Even if one does attempt to identify some of thedroand hot spots beforehand,
experience in developing applications with a framédwloelps to identify more
points of shared functionality and more points of atitity. Once identified, the
shared functionality (new frozen spots) can be ino@ed into the framework as
concrete classes or as concrete methods of abstracisclksepoints of variabil-
ity (new hot spots) can be incorporated into the fraark as abstract hook meth-
ods that are refined via inheritance (e.g., usiegfttmplate Method pattern). Al-
ternatively, hot spots can be implemented by delegati@lasses that encapsulate
the required functionality (e.g., using the Strgtagd Decorator patterns).

In the Table framework, the input iterator extensie an example of new
functionality that might be added to the framewaskaaresult of user experience.
Users of the framework discover that they are freduentiting new iterator
classes to wrap different data sources. This suggesta tiew frozen spot, the
Inputlterator Template Method class, be added to the framewonk.Hbiok
methods of this class represent a hot spot that catefireed by subclassing the
Inputlterator class.
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10.5 Pluggable Objects

In early versions of an evolving framework, therehis tendency to have large-
grained hot spots implemented in a whitebox fashiongusiheritance. As the
framework is used, it is sometimes discovered that althestame subclass is be-
ing repeatedly implemented. The solution is to implentiea common parts of
these subclasses as a concrete class and parametsuitieat the variable aspects
can be “plugged in” as an argument to the construeteome setter method.

In the Table framework, the filtering iterator exdem is another example of
new functionality that might be added to the frameweas a result of user experi-
ence. Users of the framework discover that they r@guéntly selecting a subset
of the items in the table using a standard iteratat then performing some trans-
formation on each selected item. This suggests aftoaen spot, théilter-
Iterator concrete decorator class, be added to the framewdttk,two new
hot spots for the selection and conversion functiofibe hot spots are imple-
mented as Strategy objects passed as arguments to#teictor.

The Evolving Frameworks patterns include severalrateps that the devel-
opment of long-lived frameworks may take: the gradhgusion of many useful,
fine-grained objects to eventually enable a fullgdbox framework to be con-
structed and the development of visual builders anduage-oriented tools to as-
sist clients to use the framework to develop and st applications. The Table
framework has not yet evolved to the point whersehgatterns have been used.

11 DISCUSSION

A key requirement in the framework design presemetlis chapter is the separa-
tion of the key-based access mechanisms, representtdte Byable interface,
from the physical storage mechanisms for the recoggsesented by thRe-
cordStore interface. This idea is inspired, in part, by SrihdACL C++ li-
brary's approach to B-trees (Sridhar 1996), whigfasses the B-tree implemen-
tation from the NodeSpace that supports storage foBitree nodes. The design
extends Sridhar's concept with tRecordSlot  abstraction, which is inspired,
in part, by Goodrich and Tamassia's Position ADT (Gobdand Tomassia
1998). The Position ADT abstracts the concept of ‘@lagithin a sequence so
that the element at that place can be accessedmhjifoegardless of the actual
implementation of the sequence.

This chapter’'s approach generalizes the NodeSpacEa@sition concepts and
systematizes their design by using standard desitgarps. The Layered Archi-
tecture and Bridge patterns motivate the designeRtetordStore  abstraction
and the Proxy pattern motivates the design oRéeordSlot mechanism. The
result is a clean structure that can be describeduaddrstood in terms of stan-
dard design patterns concepts and terminology. Glaaétention to the semantics
of the abstract methods in the various interfaces helpallocate responsibility
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among the various abstractions in the framework la#lds us decide what func-
tionality can be supported across many possible impitatiens.

Framework design involves incrementally evolvingesign rather than dis-
covering it in one single step. Historically, thisokition is a process of examin-
ing existing designs for family members, identifying frozen spots and hot spots
of the family, and generalizing the program struettor enable reuse of the code
for frozen spots and use of different implementatifmnseach hot spot. This gen-
eralization may be done in an informal, organic n&ras the Patterns for Evolv-
ing Frameworks (Roberts and Johnson 1998) or it magobe using systematic
techniques such agystematic generalization (Schmid 1997, 1999) anfinction
generalization (Cunningham and Tadepalli 2006; Cunningham etC161).

Schmid's methodology seeks a way to identify thespots a priori and con-
struct a framework systematically. It identifies fateps for construction of a
framework: (1) creation of a fixed application mhd@) hot spot analysis and
specification, (3) hot spot high-level design, afpdeneralization transformation.
In Schmid's approach, the fixed application modahibject-oriented design for
a specific application within the family. Once a cdete model exists, the frame-
work designer analyzes the model and the domainstodér and specify the hot
spots. The hot spot's features are accessed througlrtimon interface of the
abstract class. However, the design of the hot spbsystem enables different
concrete subclasses of the base class to be used ideptfoe variant behaviors.

Function generalization (Cunningham and Tadep@lli&2 Cunningham et al.
2006b) is another systematic approach. Instead of glétieg the class structure
for an application design as Schmid's methodology dbesfunction generaliza-
tion approach generalizes the functional structfi@ncexecutable specification to
produce a generic application. It introduces thedpatt abstractions into the de-
sign by replacing concrete operations by more gémdustract operations. These
abstract operations become parameters of the gemeerdlinctions. That is, the
generalized functions are higher-order, having patamsethat are themselves
functions. Such functions can be expressed in furaltipmmgramming languages,
such as Haskell (Peyton Jones 2003), and also in newéiparadigm languages
such as Scala (Odersky et al. 2006) and applicdéinguages such as Ruby
(Thomas et al. 2005)After generalizing the various hot spots of the famihe
designers can use the resulting generalized functodsfine a framework in an
object-oriented language such as Java.

The Table framework presented here was originalleliged in a somewhat
organic fashion but did utilize software design patiesystematically (Cunning-
ham and Wang 2001). This chapter revisits that wank fthe standpoint of more
careful commonality/variability analysis. Future wathould examine the frame-
work design using a more formally systematic technisueh as function gener-
alization and seek to evolve the framework designentoward a blackbox design.
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12 CONCLUSION

This chapter describes how commonality/variability gsial software design pat-
terns, and formal design contracts are applied adgeotsly in the design of a
small application framework for building implementaisoof the Table ADT. The
framework consists of a group of Java interfaces thlalmorate to define the
structure and high-level interactions among compongfitse Table implementa-
tions. The key feature of the design is the separatiche Table’s key-based re-
cord access mechanisms from the physical storage mechafisesystematic
application of commonality/variability analysis atite Layered Architecture, In-
terface, Bridge, and Proxy design patterns lead ttesign that is sufficiently
flexible to support a wide range of client-definedards and keys, indexing struc-
tures, and storage media. The use of the TemplateddeStrategy, Decorator,
and Composite design patterns also enables variant cceanfs to be easily
plugged into the framework. The Evolving Framewgrk#terns give guidance on
how to modify the framework as more is learned abaufamily of applications.
The conscious use of these software design patterreases the understandabil-
ity and consistency of the framework’s design.

13 EXERCISES

1. Suppose you wish to modify the Client Layer designge comparison and
extraction Strategy objects as described in Sectiof.3.2 Discuss the im-
pacts of these changes upon the Client and Access Hasigns.

2. Suppose you wish to modify thieble ADT to allow a (conceptually) infi-
nite number of key-value pairs to be held in thegaliiow would you mod-
ify the specification? What new operations, if ampuld you add? Suggest
an implementation of such a table.

3. Suppose you wish to develop a neap operation (similar to what might be
found in a functional programming language like Hals@r Lisp) in theTa-
ble ADT. A map operation takes a function and applies the functon
every element of some data structure, leaving theiffreddelement in the
place of the previous element. Define the metimagp and give its design
contract. What restrictions, if any, on the functionst be made to ensure the
integrity of theTable ?

4. Suppose you wish to use a more general approachieimalzation of the re-
cord’s internal state than the low-level, byte-strempproach used in this
chapter. (See the discussion in Section 12.8.) Qivalternative design and
identify the impacts of this change upon the Exterasilbn Module and other
aspects of the framework.
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10.

11.

12.

13.

14.

Characterize the new hot spot(s) introduced inédFitierlterator ab-
straction. What are the variabilities? What degigttern is used to realize
each variability?

The Inputlterator uses the Template Method design pattern and the
Filterlterator uses the Strategy design pattern. Investigateitdra-|
ture on these patterns (Gamma et al 1995; Grand 1998at are the relative
advantages and disadvantages of these two patternsaas fior implement-
ing variability for a hot spot?

Using the logical notation of this chapter, stateribeded preconditions for
the methodsnt getNumOfKeys() and Comparable getKey(int)
of theMultiKeyed abstraction defined in Section 12.9.4.

Using the logical notation of this chapter, staterappate design contracts
for the Iterator  -returning methodsselectKeys(int,Selector )
andselectRecords(int,Selector) of theQueryTable abstraction
defined in Section 12.9.4.

Using the logical notation of this chapter, staterappate design contracts
for the Iterator  -returning query methodselectKeys(Query) and
selectRecords(Query) defined in Section 12.9.4. These can use the
eval(QueryTable) method of th&uery class hierarchy.

Using the logical notation of this chapter, stateappropriate design contract
for the methodeval(QueryTable) of theQuery class hierarchy defined
in Section 12.9.4.

Implement the framework and design an application.

a. Develop a version of the Access Layer (iTable ) that uses an ar-
ray in memory (oMector orArrayList ) to create a sorted index
of the keys.

b. Develop a version of the Storage Layer that usesa\dastor (or
ArrayList ) as the storage medium for the records.

c. Pair the two programs developed in the previous twblpms.
d. Test the application with various kinds of keys andrés.

Continue the programming exercise above and develapcomponents. De-
velop a version of the Access Layer that uses a hakhaal pair it with the
Storage Layer developed above.

Complete the design and implement an Access Layedbars a multikeyed
table as defined by th@ueryTable abstraction in Section 12.9.4.

The framework presented in this chapter mostly consisterge-grained
components. Examine one of the detailed designs anénmepitations of the
Access Layer from the previous three exercises. Suggkstional frozen
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spots and hot spots in your design that will allow afulstner-grained
framework to be constructed by using more “pluggablects”.

15. Examine the Java API for stream and file input/outfaentify the hot spots
in this framework. How are the hot spots implementadffat design pat-
terns are used to structure the designs?
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