Object World Berlin ‘99
Design & Components
Berlin, May 17th-20th 1999

Examples of Design by Contract in Java

using Contract, the Design by Contract™ Tool for Java™

Reto Kramer, kramer@acm.org

Java is a registered trademark of Sun Microsystems Inc.
Design by Contract is a registered trademark of ISE Inc.

Design by Contract - What is it ?

m Classes of a system communicate
with one another on the basis of
precisely defined benefits and
obligations.

[Bertrand Meyer, CACM, Vol. 36, No 9, 1992]

© Reto Kramer, kramer@acm.org

Example - Class Person

m o/ | m New comment-tags:
:/ @nvariant age_ > 0 @pr e, @post ,
cl ass Person { @l nvari ant
protected age_; m All instances of person
[x must have a positive
* @©Opost return > 0 age.

*/

int get Age() {.1 m Clients are promised

that the age Is

[positive provided that:
* @re age > 0 : :

y m Clients are obligated
void setAge(int age){.} to pass positive ages

only. Service will be
denied otherwise.

)

’

Cambridge Technology Partners © Reto Kramer, kramel’@acm.org

Meaning of pre, post and invariant

m If preconditions are m If any postcondition is
not obeyed by the violated, it uncovers a
client of the class’ problem on the service
method, the service provider side.
provider will deny its m If any class invariant
service | is violated it uncovers a

problem on the service
provider side.

m The problem can be
— Implementation error

— not specific enough
preconditions

’

Cambridge Technology Partners © Reto Kramer, kramel’@acm.org

’

Cambridge Technology Partners

Benefits - Obligations

Benefit Obligation
- no need to check
= output values .)
D | -result guaranteed to satisfy pre
— conditions
@) comply to
postcondition
= - no need to check
= input values satisfy post-
> | -input guaranteed to .
e) conditions
bt comply to
o precondition

© Reto Kramer, kramer@acm.org

So, Is It like “assert. h” ?

m Assert statements are a great tool - design by
contract even goes one step beyond them:
— assert does not provide a contract
— clients can not see asserts as part of the interface
— does not have a semantic associated with it

— not explicit whether they represent pre-, post-
conditions or invariants

— no OO support (e.qg. inheritance), see later
— does not lead to “automatic” documentation

’

Cambridge Technology Partners

© Reto Kramer, kramer@acm.org

Example - A Simple Interface

m 1. interface Person { 1: class Enpl oyee inplenents Person {
2. 2.
3: / **age al ways positive 3: protected int age_;
4. * @ost return > 0 4.
5: */ 5: public int getAge() {
6: I nt get Age(); 6: return age_;
7: 7: };
8: /** age al ways positive 8:
9: * @re age > 0 9: public void setAge(int age) {
10: */ 10: age_ = age;
11: void set Age(int age); 11: }i
12: } 12: }

’

Cambridge Technology Partners © Reto Kramer, kramel’@acm.org

Benefits - General

m failures occur close to the faults

(I.e. during integration tests and field use!)
m interface documentation always up-to-date,

can be trusted!

m documentation can be generated
automatically (iDoclet)

m contract specification serves as a basis for
black box testing of classes (test-driver spec)

© Reto Kramer, kramer@acm.org

Benefits - Abstraction and Precision

Precise

Ambiguous

’

Cambridge Technology Partners

A

Type (class) model with
precise meaning
(design by contract)

Type (class)
model

inter-
action
diagrams

—__—

~ Textual
requirements
description

Abstract Terms Specific Terms

Interface A Invariant ...

Precondition,
Postcondition !

/

/

Zexpections/
effects
(pre-, post) //
/
/

/
/

7/ business rules

’ (invariants)

© Reto Kramer, kramer@acm.org

Benefits - Project Phase
o [

S
S

)

Scope b Analysis F> Design #>
— - Subsystem API :
= mm= \% gﬁ/ e, specification ’E> Subsystem Stub impl. b
requirements funcggnality =E. = %@ % =
business case ;
- domain model - F5 P
ES“bSyStems - % Stub APIs
APIs
':'E=='

Implementation F> Integration N
Unit Test against Stubs }:{> & Test
ﬁ%ﬁ - E%
[—
== —E &
Stub APIs APls
— N\ Acceptance =ollout Maintenance >
/ Test ollou Extension >
> T
i - © Reto Kramer, kramer@acm.org

Cambridge Technology Partners

>
o
»

Benefits - Project Roles

m Class user

— postconditions
guaranteed

— can trust documentation
m Class provider

— preconditions guaranteed

— automatic documentation
B Test manager

— more accurate test-effort
estimation

— black box spec for free

’

Cambridge Technology Partners

B Project manager

easier to preserve design
over a long time

reduced maintenance
effort in the long run
(failure close to fault)

enables unambiguous
Interface specification

lower documentation cost

fearless reuse (enables
specification of reusable
classes)

© Reto Kramer, kramer@acm.org

References

m iContract: http://www.reliable-systems.com

m Books:

— “Object Oriented Software Construction”, 2" edition, Bertrand
Meyer, Prentice Hall, 1997

— “Objects, Components and Frameworks with UML”, D.F.
D’Souza, A. Cameron Wills, Addison Wesley, 1999

m Eiffel [Interactive Software Engineering, ISE]
http://www.eiffel.com

m UML 1.1 / Object Constraint Language (OCL)
http://www.rational.com

’

Cambridge Technology Partners © Reto Kramer, kramel’@acm.org

IContract - the

W source code pre-

Tool

processor

m no run-time library required

m compatible with OCL
— old value, x@pre

— return value
— quantifiers: fora

m supports Java ty

|, exists

e

extension mechanisms
(contract propagation)

© Reto Kramer, kramer@acm.org

Tool Components

Class Instrumentation

Instrumentatio
R itor
_ epository

e @[
Used for type .class

extension class
mechanisms _REP_C

n

AN

iContract.Tool

.

javac

.java

class
__REP_C

paragraphs

SOURCE-CODE

4+— java

source-code with @pre, @post and
@invariant annotations in comment

/¢@ — IN_ \

not \

_ljava

instrumented

class C
/

- instrumented source-code which

/

instrumented @]

checks pre-, postconditions and

invariants.

’

Cambridge Technology Partners

.class

oL J
/ A !

/

4
=l O java

© Reto Kramer, kramer@acm.org

Performance Tuning

m Check instrumentation m Files can be

IS done per .java file Instrumented with any
(public class) combination of checks
m Performance critical for:
classes can be excluded — pre-
from the checks — post-conditions and
— invariants

m E.g. if implementation is
tested thoroughly, only
check preconditions

’

Cambridge Technology Partners © Reto Kramer, kramel’@acm.org

Java Language Support

Interface | § packages
implements a A Q
Interface J % @
Z\ Z\ extends
package
\ 4 \ 4
@ Interface K 4_’ B R
impl
Interface M § meemens lA (4)
extends }l Interface L[——] C [§] X
e
Interface N Innerclass

’

Cambridge Technology Partners © Reto Kramer, kramel’@acm.org

’

Java Language Support (con’t)

All but private methods m Default constructors are

are instrumented with added to classes

Invariant checks. automatically, if needed
The finalize() method is m In constructors the

not instrumented with delegation to this(...) and
Invariant checks. super(...) i1s put in front of
Invariant checks are the precondition check
“synchroni zed” (Javac demands this).

Recursive invariant
checks are avoided
automatically

Cambridge Technology Partners © Reto Kramer, kramel’@acm.org

Specification Language

m Propositional logic with m Scope:
guantifiers — as if the invariant were a

m Any expression that method of the class,
- - Interface
may appear in an if(...)

dit . — as if the pre- and
condition may appear in postcondition were are

a pre-, post- and statement of the method
Invariant expression

’

Cambridge Technology Partners © Reto Kramer, kramel’@acm.org

Specification Language (con'’t)

m forall Type t in <enumeration> | <expr>
— <collection=-=forAll(t | <expr>)

m exists Type t in <enumeration> | <expr>
— <collection>-=exists(t | <expr>)

B <a> implies (same as OCL)
— same as OCL

m Differences between iContract and OCL
— syntactic & iContract needs to know Type!

Cambridge Technology Partners © Reto Kramer, kramer@acm.org

Specification Language (con'’t)

m In postconditions references to the following
pseudo-variables are allowed:

m return denotes the return value of a method
— this i1s called “result” in OCL

B <expression>@pre denotes the value of the
expression (e.g. variable) when the method
was entered - notation from UML / OCL
“old value reference”

’ — same as OCL

Cambridge Technology Partners © Reto Kramer, kramer@acm.org

Example

m Office Management System

— Manage the rooms available to a company.
Provide new hires with office and support
employees that move from one office to another.

m Focus on

— Initial type model of domain (UML)

— Add business constraints and rules (OCL)
— Add precise meaning of operations (OCL)
— Generate Java (iContract)

© Reto Kramer, kramer@acm.org

Office Management Example (hire)
1 2

Company void Company:hire(Employee e
- rooms->isEmpty() implies employees.isEmpty() pre: (e '= null) && ('employees->includes(e))
- employees -> forAll (e |
rooms -> includes(e.office)) post:
- employees->forAll(el | - employees->includes(e)
employees->forAll(e2 |
(el '=e2) implies (el.room != e2.room)) - getAvailableRoom()@pre != getAvailableRoom()
// hire must call an unspecified method that will

/I ensure that a new, available room is choosen

0..n
Company p— Room - e.office == getAvailableRoom() // SIDE EFFECT FREE!
boolean roomsAvailable()
Room getAvailableRoom()] .
void hire(Employee e) Room Company:getAvailableRoom
void move(Employee e, Room newRoom) 1] office re: roomsAvailable()
post:
0..n| employees - result != null
- rooms->includes(result)
Employee - lemployees->exists(e | e.office == result)

- result == getAvailableRoom() // SIDE EFFECT FREE!

boolean Company:roomsAvailable

pre: TRUE
post: result == rooms->exists(room |

lemployees->exists(e |
e.office == room))

Cambridge Technology Partners © Reto Kramer, kramel’@acm.org

Office Management Example (move)

3

void Company:move(Employee e, Room newRoom

pre:
- (e = null) && (newRoom != null)

- emplovees->includes(e)

- lemployee->exists(e | e.office == newRoom)
/l newRoom is not anyones office

post:
- e.office == newRoom

- lemployee->exists(other | other.office == e.office@pre)
/I the employee’s (e) old office (e.office@pre) is not
[/l used by any other employee

Room.isAvailable() ??

boolean Room:isAvailable()

pre: TRUE

post:
- result == onwer != null

’

Cambridge Technology Partners

4

5

0..n
rooms

Company

Room

boolean roomsAvailable()
Room getAvailableRoom()

isAvailable()

void hire(Employee e)
void move(Employee e, Room newRoom)

0..n| employees

0.1

1

Employee {
owner

void Company:move(Employee e, Room nhewRoom)

pre:
- (e = null) && (newRoom != null)
- employees->includes(e)

- newRoom.isAvailable() |

post:
- e.office == newRoom

- e.office@pre.isAvailable()
- InewRoom.isAvailable()

© Reto Kramer, kramer@acm.org

office

APl Specification for Subsystem

m Assume Office

B Hence requires proper
separation of interface
from implementation.

’

Management System to

be a subsystem of a
larger, total solution

for client
— N
API Serv_es_ as a
. specification
‘i; realizes
1 .
and provider
Impl.

Cambridge Technology Partners

m Specification of previous
slides is mapped to Java
package containing
Interfaces.

m but what about the

associations ?

B Need to create “get”

methods for each role
IN an association ...

© Reto Kramer, kramer@acm.org

APl Specification for Subsystem

API

Company
<<Interface>>

Room
<<Interface>>

boolean roomsAvailable()
Room getAvailableRoom()
void hire(Employee e)

: void move(Employee e, Room newRoom) boolean isAvailable
Room getOffice() Vector getRooms() IEmponee getOwner() I

Employee
<<Interface>>

Vector getEmployees()

:
* 3 RA
L4

g " "realizes

] 0..n
Company — Room

boolean roomsAvailable()

Implementation

Room getAvailableRoom() isAvailable()
void hire(Employee e)
void move(Employee e, Room newRoom) 1

0..n| lemployees

0.1

Sassndusnnnnnnnnnnny Emp'oyee

© Reto Kramer, kramer@acm.org

Cambridge Technology Partners

Company

i C O n t raCt - rooms->isEmpty() implies employees.isEmpty()

- employees -> forAll (e |
rooms -> includes(e.office))
- employees->forAll(el |

employees->forAll(e2 | []
(el !=e2) implies (el.room != e2.room))
] /**
* @nvariant get Roons().isEnpty() inplies getEnployees.isEnmpty()
* @nvariant forall Enployee e in get Enpl oyees().elenents() |
* get Roons. contai ns(e.getOfice())
* @nvariant forall Enployee el in getEnployees().elenents() |
* forall Enpl oyee e2 in getEnpl oyees().elenents() |
* (el'=e2) inplies (el.getOfice()!=e2.getOfice())
*/
i nterface Oorrpany { void Company:move(Employee e, Room nhewRoom)
| ** pre:
* pre (el=null) && (newRoom =null) - (e !=null) && (newRoom != null)
* - employees->includes(e)
T . . . - newRoom.isAvailable()
* @ost e.getOfice() @re.isAvail abl e()
* post:
. - e.office == newRoom
voi d I’TDVE(Errpl oyee e, Room neWROO'T) ; - e.office@pre.isAvailable()
- InewRoom.isAvailable()
}

IContract propagates API specification into implementing classes !

’

Cambridge Technology Partners © Reto Kramer, kramel’@acm.org

