
Examples of Design by Contract in Java
using Contract, the Design by Contracttm Tool for Javatm

Reto Kramer, kramer@acm.org

Java is a registered trademark of Sun Microsystems Inc.
Design by Contract is a registered trademark of ISE Inc.

Object World Berlin ‘99
Design & Components
Berlin, May 17th-20th 1999

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

Design by Contract - What is it ?

n Classes of a system communicate
with one another on the basis of
precisely defined benefits and
obligations.

[Bertrand Meyer, CACM, Vol. 36, No 9, 1992]

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

Example - Class Person

n /**
 * @invariant age_ > 0
 */
class Person {
 protected age_;

 /**
 * @post return > 0
 */
 int getAge() {..}

 /**
 * @pre age > 0
 */
 void setAge(int age){..}

...}

n New comment-tags:
@pre, @post,
@invariant

n All instances of person
must have a positive
age.

n Clients are promised
that the age is
positive provided that:

n Clients are obligated
to pass positive ages
only. Service will be
denied otherwise.

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

Meaning of pre, post and invariant

n If preconditions are
not obeyed by the
client of the class’
method, the service
provider will deny its
service !

n If any postcondition is
violated, it uncovers a
problem on the service
provider side.

n If any class invariant
is violated it uncovers a
problem on the service
provider side.

n The problem can be
– implementation error
– not specific enough

preconditions

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

Benefits - Obligations

Benefit Obligation

P
ro

vi
d

er
C

lie
n

t - no need to check
output values

- result guaranteed to
comply to

postcondition

- no need to check
input values

- input guaranteed to
comply to

precondition

satisfy pre-
conditions

satisfy post-
conditions

2 3

14

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

So, is it like “assert.h” ?

n Assert statements are a great tool - design by
contract even goes one step beyond them:
– assert does not provide a contract
– clients can not see asserts as part of the interface
– does not have a semantic associated with it
– not explicit whether they represent pre-, post-

conditions or invariants
– no OO support (e.g. inheritance), see later
– does not lead to “automatic” documentation

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

Example - A Simple Interface

n 1: interface Person { 1: class Employee implements Person {
2: 2:
3: /**age always positive 3: protected int age_;
4: * @post return > 0 4:
5: */ 5: public int getAge() {
6: int getAge(); 6: return age_;
7: 7: };
8: /** age always positive 8:
9: * @pre age > 0 9: public void setAge(int age) {
10: */ 10: age_ = age;
11: void setAge(int age); 11: };
12: } 12: }

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

Benefits - General

n failures occur close to the faults
(I.e. during integration tests and field use!)

n interface documentation always up-to-date,
can be trusted!

n documentation can be generated
automatically (iDoclet)

n contract specification serves as a basis for
black box testing of classes (test-driver spec)

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

Specific TermsAbstract Terms

Ambiguous

Precise

Textual
requirements
description

Benefits - Abstraction and Precision

Use casesinter-
action

diagrams

Type (class)
model

Type (class) model with
precise meaning
(design by contract)

Interface A

…
...

Invariant …

Precondition,
Postcondition

business rules
(invariants)

expections/
effects

(pre-, post)

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

Benefits - Project Phases

Acceptance
Test Rollout

Scope

requirements
functionality
business case

Subsystem Stub impl.

APIsStub

Subsystem API
specification

APIs

Analysis

use cases

domain model
subsystems

Integration
& Test

APIs

Design

API

Unit Test against Stubs

APIsStub

Implementation

API

Maintenance
Extension

APIs

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

Benefits - Project Roles

n Class user
– postconditions

guaranteed
– can trust documentation

n Class provider
– preconditions guaranteed
– automatic documentation

n Test manager
– more accurate test-effort

estimation
– black box spec for free

n Project manager
– easier to preserve design

over a long time
– reduced maintenance

effort in the long run
(failure close to fault)

– enables unambiguous
interface specification

– lower documentation cost
– fearless reuse (enables

specification of reusable
classes)

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

References

n iContract: http://www.reliable-systems.com
n Books:

– “Object Oriented Software Construction”, 2nd edition, Bertrand
Meyer, Prentice Hall, 1997

– “Objects, Components and Frameworks with UML”, D.F.
D’Souza, A. Cameron Wills, Addison Wesley, 1999

n Eiffel [Interactive Software Engineering, ISE]
http://www.eiffel.com

n UML 1.1 / Object Constraint Language (OCL)
http://www.rational.com

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

iContract - the Tool

n source code pre-processor
n no run-time library required
n compatible with OCL

– old value, x@pre
– return value
– quantifiers: forall, exists

n supports Java type
extension mechanisms
(contract propagation)

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

Tool Components

class C

javac

java

not
instrumented

Class Instrumentation
 source-code with @pre, @post and
 @invariant annotations in comment
 paragraphs

SOURCE-CODE

instrumented

class C

.java

1

.class

5

_I.java

iContract.Tool

- instrumented source-code which
 checks pre-, postconditions and
 invariants.

3

class C

.class

.java

javac

Instrumentation
Repository

2

4

class
__REP_C

class
__REP_C

Used for type
extension

mechanisms

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

Performance Tuning

n Check instrumentation
is done per .java file
(public class)

n Performance critical
classes can be excluded
from the checks

n Files can be
instrumented with any
combination of checks
for:
– pre-
– post-conditions and
– invariants

n E.g. if implementation is
tested thoroughly, only
check preconditions

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

Java Language Support

extends

Innerclass

A

BInterface K

CInterface L

Q

R

Interface M

Interface N

Interface I

Interface J

implements

extends

implements

packages

X

package

1

2

3

4

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

Java Language Support (con’t)

n All but private methods
are instrumented with
invariant checks.

n The finalize() method is
not instrumented with
invariant checks.

n Invariant checks are
“synchronized”

n Recursive invariant
checks are avoided
automatically

n Default constructors are
added to classes
automatically, if needed

n In constructors the
delegation to this(…) and
super(…) is put in front of
the precondition check
(javac demands this).

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

Specification Language

n Propositional logic with
quantifiers

n Any expression that
may appear in an if(...)
condition may appear in
a pre-, post- and
invariant expression

n Scope:
– as if the invariant were a

method of the class,
interface

– as if the pre- and
postcondition were are
statement of the method

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

Specification Language (con’t)

n forall Type t in <enumeration> | <expr>
– <collection>->forAll(t | <expr>)

n exists Type t in <enumeration> | <expr>
– <collection>->exists(t | <expr>)

n <a> implies (same as OCL)
– same as OCL

n Differences between iContract and OCL
– syntactic & iContract needs to know Type!

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

Specification Language (con’t)

n In postconditions references to the following
pseudo-variables are allowed:

n return denotes the return value of a method
– this is called “result” in OCL

n <expression>@pre denotes the value of the
expression (e.g. variable) when the method
was entered - notation from UML / OCL
“old value reference”
– same as OCL

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

Example

n Office Management System
– Manage the rooms available to a company.

Provide new hires with office and support
employees that move from one office to another.

n Focus on
– Initial type model of domain (UML)
– Add business constraints and rules (OCL)
– Add precise meaning of operations (OCL)
– Generate Java (iContract)

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

Office Management Example (hire)

Company

boolean roomsAvailable()
Room getAvailableRoom()
void hire(Employee e)
void move(Employee e, Room newRoom)

Room

.

.

Employee

.

.

0..n

rooms

employees0..n

office1

1 2
Company

- rooms->isEmpty() implies employees.isEmpty()
- employees -> forAll (e |
 rooms -> includes(e.office))
- employees->forAll(e1 |
 employees->forAll(e2 |
 (e1 != e2) implies (e1.room != e2.room))

void Company:hire(Employee e)

pre: (e != null) && (!employees->includes(e))

post:
 - employees->includes(e)

 - getAvailableRoom()@pre != getAvailableRoom()
 // hire must call an unspecified method that will
 // ensure that a new, available room is choosen

 - e.office == getAvailableRoom() // SIDE EFFECT FREE!

Room Company:getAvailableRoom()

pre: roomsAvailable()
post:
 - result != null
 - rooms->includes(result)
 - !employees->exists(e | e.office == result)
 - result == getAvailableRoom() // SIDE EFFECT FREE!

boolean Company:roomsAvailable()

pre: TRUE
post: result == rooms->exists(room |
 !employees->exists(e |
 e.office == room))

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

Office Management Example (move)

Room

.

Employee

.

.

0..n

rooms

employees0..n

office1

3 4
void Company:move(Employee e, Room newRoom)

pre:
 - (e != null) && (newRoom != null)
 - employees->includes(e)
 - !employee->exists(e | e.office == newRoom)
 // newRoom is not anyones office

post:
 - e.office == newRoom
 - !employee->exists(other | other.office == e.office@pre)
 // the employee’s (e) old office (e.office@pre) is not
 // used by any other employee

Company

boolean roomsAvailable()
Room getAvailableRoom()
void hire(Employee e)
void move(Employee e, Room newRoom)

isAvailable()

0..1

owner

Room.isAvailable() ??

boolean Room:isAvailable()

pre: TRUE
post:
 - result == onwer != null

void Company:move(Employee e, Room newRoom)

pre:
 - (e != null) && (newRoom != null)
 - employees->includes(e)
 - newRoom.isAvailable()

post:
 - e.office == newRoom
 - e.office@pre.isAvailable()
 - !newRoom.isAvailable()

5

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

API Specification for Subsystem

n Assume Office
Management System to
be a subsystem of a
larger, total solution

n Hence requires proper
separation of interface
from implementation.

n Specification of previous
slides is mapped to Java
package containing
interfaces.

n but what about the
associations ?

n Need to create “get”
methods for each role
in an association ...

API

Impl.

realizes

Serves as a
specification

for client

and provider

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

API Specification for Subsystem

Company

boolean roomsAvailable()
Room getAvailableRoom()
void hire(Employee e)
void move(Employee e, Room newRoom)

Room

.

isAvailable()

Employee

.

.

0..n

rooms

employees0..n

office1

Company
<<Interface>>

boolean roomsAvailable()
Room getAvailableRoom()
void hire(Employee e)
void move(Employee e, Room newRoom)
Vector getRooms()
Vector getEmployees()

Room
 <<Interface>>

.

boolean isAvailable()
Employee getOwner()

Employee
 <<Interface>>

.

Room getOffice()

0..1

owner

Implementation

API

realizes

© Reto Kramer, kramer@acm.orgCambridge Technology Partners

iContract

n /**
 * @invariant getRooms().isEmpty() implies getEmployees.isEmpty()
 * @invariant forall Employee e in getEmployees().elements() |
 * getRooms.contains(e.getOffice())
 * @invariant forall Employee e1 in getEmployees().elements() |
 * forall Employee e2 in getEmployees().elements() |
 * (e1!=e2) implies (e1.getOffice()!=e2.getOffice())
 */
interface Company {
 /**
 * @pre (e!=null) && (newRoom!=null)
 * ..
 * @post e.getOffice()@pre.isAvailable()
 */
 void move(Employee e, Room newRoom);
 ..
}

Company

- rooms->isEmpty() implies employees.isEmpty()
- employees -> forAll (e |
 rooms -> includes(e.office))
- employees->forAll(e1 |
 employees->forAll(e2 |
 (e1 != e2) implies (e1.room != e2.room))

void Company:move(Employee e, Room newRoom)

pre:
 - (e != null) && (newRoom != null)
 - employees->includes(e)
 - newRoom.isAvailable()

post:
 - e.office == newRoom
 - e.office@pre.isAvailable()
 - !newRoom.isAvailable()

iContract propagates API specification into implementing classes !

