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Project
Context: development of an instructional  data and file 

structures library
– artifacts for study of good design techniques
– system for use, extension, and modification

Motivation: study techniques for
– presenting important methods to students (frameworks, software 

design patterns, design by contract, etc.)
– unifying related file and data structures in framework
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Table Abstract Data Type

• Collection of records
• One or more data fields per record
• Unique key value for each record
• Key-based access to record
• Many possible implementations

 
Key1 Data1 
Key2 Data2 
Key3 Data3 
Key4 Data4 
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Table Operations

• Insert new record
• Delete existing record given key
• Update existing record
• Retrieve existing record given key
• Get number of records
• Query whether contains given key
• Query whether empty
• Query whether full
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Framework

• Reusable object-oriented design
• Collection of abstract classes (and interfaces)
• Interactions among instances
• Skeleton that can be customized
• Inversion of control (upside-down library)
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Requirements for Table Framework

• Provide Table operations
• Support many implementations
• Separate key-based access mechanism from 

storage mechanism
• Present coherent abstractions with well-defined 

interfaces
• Use software design patterns and design contracts
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Software Design Contracts
• Preconditions for correct use of operation
• Postconditions for correct result of operation
• Invariant conditions for corrrect implementation of class

Insert record operation
pre:    record is valid and not already in table
post:   record now in table

Invariant for table
all records are valid, no duplicate keys
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Software Design Patterns

• Describe recurring design problems arising in 
specific contexts

• Present well-proven generic solution schemes
• Describe solution’s components and their 

responsibilities and relationships
• To use:

– select pattern that fits problem
– structure solution to follow pattern
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Layered Architecture Pattern

• Distinct groups of services 
• Hierarchical arrangement of groups into layers
• Layer implemented with services of layer below
• Enables independent implementation of layers

Client Layer

Access Layer

Storage Layer
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Applying Layered Architecture Pattern

Client Layer
– client programs 
– uses layer below to store and retrieve records

Access Layer
– table implementations 
– provides key-based access to records for layer above
– uses physical storage in layer below

Storage Layer
– storage managers
– provides physical storage for records
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Access Layer Design
Challenges:

– support client-defined keys and records
– enable diverse implementations of the table

Pattern:
– Interface
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Access Layer Interfaces
Comparable interface for keys (in Java library)

– int compareTo(Object key) compares object 
with argument

Keyed interface for records
– Comparable getKey() extracts key from record

Table
– table operations 
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Table Interface

void insert(Keyed r) inserts r into table
void delete(Comparable key) removes record with key
void update(Keyed r)changes record with same key
Keyed retrieve(Comparable key) returns record  with key
int getSize() returns size of table
boolean containsKey(Comparable key) searches for key
boolean isEmpty()checks whether table is empty
boolean isFull()checks whether table is full

– for unbounded, always returns false
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Access Layer Model
Partial function table :: Comparable → Keyed

– represents abstract table state
– #table in postcondition denotes table before operation

Abstract predicates (depend upon environment)
– isValidKey(Comparable) to identify valid keys
– isValidRec(Keyed) to identify valid records
– isStorable(Keyed) to identify records that can be stored

Invariant: 

(∀ k, r : r = table(k) : 

isValidKey(k) && isValidRec(r)  && 
isStorable(r) && k = r.getKey() )
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Table Design Contract (1 of 4)

void insert(Keyed r) inserts r into table
Pre:   isValidRec(r) && isStorable(r) &&     
!containsKey(r.getKey())&& !isFull()

Post:  table = #table ∪ {(r.getKey(),r)}

void delete(Comparable key) removes record with 
key from table
Pre: isValidKey(key) && containsKey(key) 
Post: table = #table - {(key,#table(key))}
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Table Design Contract (2 of 4)

void update(Keyed r)changes record with same key
Pre:   isValidRec(r) && isStorable(r) && 
containsKey(r.getKey())

Post:  table = (#table -
{(r.getKey(),#table(r.getKey()))} ) ∪
{(r.getKey(),r)}

Keyed retrieve(Comparable key) returns record  
with key
Pre:  isValidKey(key) && containsKey(key)
Post: result = #table(r.getKey())
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Table Design Contract (3 of 4)

int getSize() returns size of table
Pre:   true
Post:  result = cardinality(#table)

boolean containsKey(Comparable key) searches 
table for key
Pre:   isValidKey(key)
Post:  result = defined(#table(key))
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Table Design Contract (4 of 4)

boolean isEmpty()checks whether table is empty
Pre:   true
Post:  result = (#table = ∅)

boolean isFull()checks whether table is full
– for unbounded, always returns false
Pre :   true
Post:   result = (#table has no free space to store record)
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Access Layer Challenges
Support client-defined keys and records

– callbacks to Comparable and Keyed abstractions 
which hide the implementation details

Enable diverse implementations of the table
– careful design of  table interface semantics using design 

by contract
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Client/Access Layer Interactions

• Client calls Access Layer class implementing 
Table interface

• Access calls back to Client implementations of 
Keyed and Comparable interfaces
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Storage Layer Design
Challenges:

– support diverse table implementations in Access Layer 
(simple indexes, hashing, balanced trees, etc.)

– allow diverse physical media (in-memory, on-disk, etc.)
– decouple implementations as much as possible
– support client-defined records 
– enable persistence of table, including access layer

Patterns:
– Bridge
– Proxy
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Bridge Pattern
• Decouple “interface” from “implementation”

– table from storage in this case

• Allow them to vary independently
– plug any storage mechanism into table

Table RecordStore

Simple
Indexed

File

Hashed
File

Slotted
File

Store

Vector
Store

uses
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Proxy Pattern

• Transparently manage services of target object
– isolate Table implementation from nature/location of 

record slots in RecordStore implementation

• Introduce proxy object as surrogate for target

      Table             RecordSlot           RecordStore

handle
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Storage Layer Interfaces

RecordStore
– operations to allocate and deallocate storage slots

RecordSlot
– operations to get and set records in slots 
– operations to get handle and containing RecordStore

Record
– operations to read and write client records
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Storage Layer Model
Partial function store :: int → Object

– represents abstract RecordStore state
Set Handles ⊂ int, NULLHANDLE ∉ Handles
Set alloc ⊆ Handles 

– represents set of allocated slot handles
Set unalloc = Handles - alloc 

– represents set of unallocated slot handles
Abstract predicate isStorable(Object)

– depends on storage mechanism (differs from Access Layer)

Invariant:  
(∀ h, r : r = store(h) : isStorable(r)) &&
(∀ h :: h ∈ alloc ≡ defined(store(h)))
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RecordStore Interface

RecordSlot getSlot()
allocates a new record slot

RecordSlot getSlot(int handle)
rebuilds record slot using given handle

void releaseSlot(RecordSlot slot)
deallocates record  slot
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RecordStore Design Contract (1 of 2)

RecordSlot getSlot() allocates a new record slot
Pre:    true
Post:   result.getContainer() = this_RecordStore 
&& result.getRecord() = NULLRECORD         
&& result.getHandle() ∉ #alloc             
&& result.getHandle() ∈ alloc ∪ {NULLHANDLE}

RecordSlot getSlot(int handle) rebuilds record 
slot using given handle
Pre:    handle ∈ alloc
Post:   result.getContainer() = this_RecordStore 
&& result.getRecord() = #store(handle)     
&& result.getHandle() = handle
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RecordStore Design Contract (2 of 2)

void releaseSlot(RecordSlot slot) deallocates 
record  slot

Pre:    slot.getHandle() ∈ alloc && 
slot.getContainer() = this_RecordStore

Post:   alloc = #alloc - {slot.getHandle()} && 
store = #store –
{(slot.getHandle(),slot.getRecord())}
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RecordSlot Interface
void setRecord(Object rec) stores rec in this slot

– allocation of handle done here or already done by  getSlot

Object getRecord() returns record stored in this slot

int getHandle() returns handle of this slot

RecordStore getContainer() returns reference to 
RecordStore holding this slot

boolean isEmpty() determines whether this slot empty



21-Oct-2003 30

RecordSlot Model
• Reference to RecordStore to which this 
RecordSlot belongs

• handle for the associated physical storage 
slot in the RecordStore
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RecordSlot Design Contract (1 of 3)
void setRecord(Object rec) stores rec in this slot

– allocation of handle done here or already done by  getSlot()

Pre:    isStorable(rec)
Post:   

Let  h = getHandle() && g ∈ #unalloc:
(h ∈ #alloc ⇒ store = (#store -

{(h,#store(h))}) ∪ {(h,rec)}) && 
(h = NULLHANDLE ⇒ alloc = #alloc ∪ {g} &&

store = #store ∪ {(g,rec)})
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RecordSlot Design Contract (2 of 3)
Object getRecord() returns record stored in this slot

Pre:    true
Post:   Let  h = getHandle(): 

(h ∈ #alloc ⇒ result = #store(h)) && 
(h = NULLHANDLE⇒ result = NULLRECORD) 

int getHandle() returns handle of this slot
Pre:    true
Post:   result = handle associated with this slot
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RecordSlot Design Contract (3 of 3)
RecordStore getContainer() returns reference to 
RecordStore holding this slot
Pre:    true
Post:   result = RecordStore associated with this slot

boolean isEmpty() determines whether this slot empty
Pre:    true
Post:   result =(getHandle() = NULLHANDLE || 

record associated with slot is NULLRECORD)
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Record Interface

Problem: how to write client’s record in generic way

Solution: call back to client’s record implementation

void writeRecord(DataOutput) writes the 
client’s record to stream

void readRecord(DataInput) reads the 
client’s record from stream

int getLength() returns number of bytes 
written by writeRecord
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Record Interface Note

• Record used by Storage Layer may be defined 
by either layer above
– might be one Client Layer Keyed record
– might contain more than one (or perhaps a portion of 

one) Client Layer record (e.g, multiway tree nodes)
• Storage Layer calls back to Record 

implementation in a layer above
– implementation in Access Layer might call back to 

implementations in Client Layer
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Storage Layer Challenges
Support diverse table implementations in Access Layer

– careful design of RecordStore and RecordSlot abstractions 
to have sufficient functionality

Allow diverse physical media (in-memory, on-disk, etc.)
– careful design of RecordStore abstraction to hide media 

details, but be implementable in many ways
Decouple implementations as much as possible

– use of RecordSlot , handle,and Record

Support client-defined records
– callbacks to Record implementations

Enable persistence of table, including access layer
– store RecordStore identifier and handles
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Abstraction Usage Relationships

 
Table Keyed 

Comparable 

RecordStore RecordSlot 

Record 

 

Access 
Layer 

Storage 
Layer 
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Other Design Patterns Used

• Null Object
• Iterator

– extended Table operations
– query mechanism
– utility classes

• Template Method
• Decorator
• Strategy
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Evolving Frameworks Patterns

• Generalizing from three examples
• Whitebox and blackbox frameworks
• Component library

– Wang prototype: two Tables and three 
RecordStores

• Hot spots
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Conclusions

• Novel design achieved by separating access and 
storage mechanisms

• Design patterns offered systematic way to 
discover reliable designs

• Design contracts helped make specifications 
precise

• Case study potentially useful for educational 
purposes
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Future Work

• Modify prototypes to match revised design
• Adapt earlier work of students on AVL and  B-Tree class 

libraries
• Integrate into SoftwareInterfaces library
• Study hot spots and build finer-grained component library
• Study use of Schmid’s systematic generalization 

methodology for this problem
• Develop instructional materials
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