
Building a Layered Framework 
for the Table Abstraction

H. Conrad Cunningham
Dept. of Computer & Information Science 

University of Mississippi

Jingyi Wang
Acxiom Corporation



21-Oct-2003 2

Project
Context: development of an instructional  data and file 

structures library
– artifacts for study of good design techniques
– system for use, extension, and modification

Motivation: study techniques for
– presenting important methods to students (frameworks, software 

design patterns, design by contract, etc.)
– unifying related file and data structures in framework



21-Oct-2003 3

Table Abstract Data Type

• Collection of records
• One or more data fields per record
• Unique key value for each record
• Key-based access to record
• Many possible implementations

 
Key1 Data1 
Key2 Data2 
Key3 Data3 
Key4 Data4 
 



21-Oct-2003 4

Table Operations

• Insert new record
• Delete existing record given key
• Update existing record
• Retrieve existing record given key
• Get number of records
• Query whether contains given key
• Query whether empty
• Query whether full



21-Oct-2003 5

Framework

• Reusable object-oriented design
• Collection of abstract classes (and interfaces)
• Interactions among instances
• Skeleton that can be customized
• Inversion of control (upside-down library)



21-Oct-2003 6

Requirements for Table Framework

• Provide Table operations
• Support many implementations
• Separate key-based access mechanism from 

storage mechanism
• Present coherent abstractions with well-defined 

interfaces
• Use software design patterns and design contracts



21-Oct-2003 7

Software Design Contracts
• Preconditions for correct use of operation
• Postconditions for correct result of operation
• Invariant conditions for corrrect implementation of class

Insert record operation
pre:    record is valid and not already in table
post:   record now in table

Invariant for table
all records are valid, no duplicate keys



21-Oct-2003 8

Software Design Patterns

• Describe recurring design problems arising in 
specific contexts

• Present well-proven generic solution schemes
• Describe solution’s components and their 

responsibilities and relationships
• To use:

– select pattern that fits problem
– structure solution to follow pattern



21-Oct-2003 9

Layered Architecture Pattern

• Distinct groups of services 
• Hierarchical arrangement of groups into layers
• Layer implemented with services of layer below
• Enables independent implementation of layers

Client Layer

Access Layer

Storage Layer



21-Oct-2003 10

Applying Layered Architecture Pattern

Client Layer
– client programs 
– uses layer below to store and retrieve records

Access Layer
– table implementations 
– provides key-based access to records for layer above
– uses physical storage in layer below

Storage Layer
– storage managers
– provides physical storage for records



21-Oct-2003 11

Access Layer Design
Challenges:

– support client-defined keys and records
– enable diverse implementations of the table

Pattern:
– Interface



21-Oct-2003 12

Access Layer Interfaces
Comparable interface for keys (in Java library)

– int compareTo(Object key) compares object 
with argument

Keyed interface for records
– Comparable getKey() extracts key from record

Table
– table operations 



21-Oct-2003 13

Table Interface

void insert(Keyed r) inserts r into table
void delete(Comparable key) removes record with key
void update(Keyed r)changes record with same key
Keyed retrieve(Comparable key) returns record  with key
int getSize() returns size of table
boolean containsKey(Comparable key) searches for key
boolean isEmpty()checks whether table is empty
boolean isFull()checks whether table is full

– for unbounded, always returns false



21-Oct-2003 14

Access Layer Model
Partial function table :: Comparable → Keyed

– represents abstract table state
– #table in postcondition denotes table before operation

Abstract predicates (depend upon environment)
– isValidKey(Comparable) to identify valid keys
– isValidRec(Keyed) to identify valid records
– isStorable(Keyed) to identify records that can be stored

Invariant: 

(∀ k, r : r = table(k) : 

isValidKey(k) && isValidRec(r)  && 
isStorable(r) && k = r.getKey() )



21-Oct-2003 15

Table Design Contract (1 of 4)

void insert(Keyed r) inserts r into table
Pre:   isValidRec(r) && isStorable(r) &&     
!containsKey(r.getKey())&& !isFull()

Post:  table = #table ∪ {(r.getKey(),r)}

void delete(Comparable key) removes record with 
key from table
Pre: isValidKey(key) && containsKey(key) 
Post: table = #table - {(key,#table(key))}



21-Oct-2003 16

Table Design Contract (2 of 4)

void update(Keyed r)changes record with same key
Pre:   isValidRec(r) && isStorable(r) && 
containsKey(r.getKey())

Post:  table = (#table -
{(r.getKey(),#table(r.getKey()))} ) ∪
{(r.getKey(),r)}

Keyed retrieve(Comparable key) returns record  
with key
Pre:  isValidKey(key) && containsKey(key)
Post: result = #table(r.getKey())



21-Oct-2003 17

Table Design Contract (3 of 4)

int getSize() returns size of table
Pre:   true
Post:  result = cardinality(#table)

boolean containsKey(Comparable key) searches 
table for key
Pre:   isValidKey(key)
Post:  result = defined(#table(key))



21-Oct-2003 18

Table Design Contract (4 of 4)

boolean isEmpty()checks whether table is empty
Pre:   true
Post:  result = (#table = ∅)

boolean isFull()checks whether table is full
– for unbounded, always returns false
Pre :   true
Post:   result = (#table has no free space to store record)



21-Oct-2003 19

Access Layer Challenges
Support client-defined keys and records

– callbacks to Comparable and Keyed abstractions 
which hide the implementation details

Enable diverse implementations of the table
– careful design of  table interface semantics using design 

by contract



21-Oct-2003 20

Client/Access Layer Interactions

• Client calls Access Layer class implementing 
Table interface

• Access calls back to Client implementations of 
Keyed and Comparable interfaces



21-Oct-2003 21

Storage Layer Design
Challenges:

– support diverse table implementations in Access Layer 
(simple indexes, hashing, balanced trees, etc.)

– allow diverse physical media (in-memory, on-disk, etc.)
– decouple implementations as much as possible
– support client-defined records 
– enable persistence of table, including access layer

Patterns:
– Bridge
– Proxy



21-Oct-2003 22

Bridge Pattern
• Decouple “interface” from “implementation”

– table from storage in this case

• Allow them to vary independently
– plug any storage mechanism into table

Table RecordStore

Simple
Indexed

File

Hashed
File

Slotted
File

Store

Vector
Store

uses



21-Oct-2003 23

Proxy Pattern

• Transparently manage services of target object
– isolate Table implementation from nature/location of 

record slots in RecordStore implementation

• Introduce proxy object as surrogate for target

      Table             RecordSlot           RecordStore

handle



21-Oct-2003 24

Storage Layer Interfaces

RecordStore
– operations to allocate and deallocate storage slots

RecordSlot
– operations to get and set records in slots 
– operations to get handle and containing RecordStore

Record
– operations to read and write client records



21-Oct-2003 25

Storage Layer Model
Partial function store :: int → Object

– represents abstract RecordStore state
Set Handles ⊂ int, NULLHANDLE ∉ Handles
Set alloc ⊆ Handles 

– represents set of allocated slot handles
Set unalloc = Handles - alloc 

– represents set of unallocated slot handles
Abstract predicate isStorable(Object)

– depends on storage mechanism (differs from Access Layer)

Invariant:  
(∀ h, r : r = store(h) : isStorable(r)) &&
(∀ h :: h ∈ alloc ≡ defined(store(h)))



21-Oct-2003 26

RecordStore Interface

RecordSlot getSlot()
allocates a new record slot

RecordSlot getSlot(int handle)
rebuilds record slot using given handle

void releaseSlot(RecordSlot slot)
deallocates record  slot



21-Oct-2003 27

RecordStore Design Contract (1 of 2)

RecordSlot getSlot() allocates a new record slot
Pre:    true
Post:   result.getContainer() = this_RecordStore 
&& result.getRecord() = NULLRECORD         
&& result.getHandle() ∉ #alloc             
&& result.getHandle() ∈ alloc ∪ {NULLHANDLE}

RecordSlot getSlot(int handle) rebuilds record 
slot using given handle
Pre:    handle ∈ alloc
Post:   result.getContainer() = this_RecordStore 
&& result.getRecord() = #store(handle)     
&& result.getHandle() = handle



21-Oct-2003 28

RecordStore Design Contract (2 of 2)

void releaseSlot(RecordSlot slot) deallocates 
record  slot

Pre:    slot.getHandle() ∈ alloc && 
slot.getContainer() = this_RecordStore

Post:   alloc = #alloc - {slot.getHandle()} && 
store = #store –
{(slot.getHandle(),slot.getRecord())}



21-Oct-2003 29

RecordSlot Interface
void setRecord(Object rec) stores rec in this slot

– allocation of handle done here or already done by  getSlot

Object getRecord() returns record stored in this slot

int getHandle() returns handle of this slot

RecordStore getContainer() returns reference to 
RecordStore holding this slot

boolean isEmpty() determines whether this slot empty



21-Oct-2003 30

RecordSlot Model
• Reference to RecordStore to which this 
RecordSlot belongs

• handle for the associated physical storage 
slot in the RecordStore



21-Oct-2003 31

RecordSlot Design Contract (1 of 3)
void setRecord(Object rec) stores rec in this slot

– allocation of handle done here or already done by  getSlot()

Pre:    isStorable(rec)
Post:   

Let  h = getHandle() && g ∈ #unalloc:
(h ∈ #alloc ⇒ store = (#store -

{(h,#store(h))}) ∪ {(h,rec)}) && 
(h = NULLHANDLE ⇒ alloc = #alloc ∪ {g} &&

store = #store ∪ {(g,rec)})



21-Oct-2003 32

RecordSlot Design Contract (2 of 3)
Object getRecord() returns record stored in this slot

Pre:    true
Post:   Let  h = getHandle(): 

(h ∈ #alloc ⇒ result = #store(h)) && 
(h = NULLHANDLE⇒ result = NULLRECORD) 

int getHandle() returns handle of this slot
Pre:    true
Post:   result = handle associated with this slot



21-Oct-2003 33

RecordSlot Design Contract (3 of 3)
RecordStore getContainer() returns reference to 
RecordStore holding this slot
Pre:    true
Post:   result = RecordStore associated with this slot

boolean isEmpty() determines whether this slot empty
Pre:    true
Post:   result =(getHandle() = NULLHANDLE || 

record associated with slot is NULLRECORD)



21-Oct-2003 34

Record Interface

Problem: how to write client’s record in generic way

Solution: call back to client’s record implementation

void writeRecord(DataOutput) writes the 
client’s record to stream

void readRecord(DataInput) reads the 
client’s record from stream

int getLength() returns number of bytes 
written by writeRecord



21-Oct-2003 35

Record Interface Note

• Record used by Storage Layer may be defined 
by either layer above
– might be one Client Layer Keyed record
– might contain more than one (or perhaps a portion of 

one) Client Layer record (e.g, multiway tree nodes)
• Storage Layer calls back to Record 

implementation in a layer above
– implementation in Access Layer might call back to 

implementations in Client Layer



21-Oct-2003 36

Storage Layer Challenges
Support diverse table implementations in Access Layer

– careful design of RecordStore and RecordSlot abstractions 
to have sufficient functionality

Allow diverse physical media (in-memory, on-disk, etc.)
– careful design of RecordStore abstraction to hide media 

details, but be implementable in many ways
Decouple implementations as much as possible

– use of RecordSlot , handle,and Record

Support client-defined records
– callbacks to Record implementations

Enable persistence of table, including access layer
– store RecordStore identifier and handles



21-Oct-2003 37

Abstraction Usage Relationships

 
Table Keyed 

Comparable 

RecordStore RecordSlot 

Record 

 

Access 
Layer 

Storage 
Layer 



21-Oct-2003 38

Other Design Patterns Used

• Null Object
• Iterator

– extended Table operations
– query mechanism
– utility classes

• Template Method
• Decorator
• Strategy



21-Oct-2003 39

Evolving Frameworks Patterns

• Generalizing from three examples
• Whitebox and blackbox frameworks
• Component library

– Wang prototype: two Tables and three 
RecordStores

• Hot spots



21-Oct-2003 40

Conclusions

• Novel design achieved by separating access and 
storage mechanisms

• Design patterns offered systematic way to 
discover reliable designs

• Design contracts helped make specifications 
precise

• Case study potentially useful for educational 
purposes



21-Oct-2003 41

Future Work

• Modify prototypes to match revised design
• Adapt earlier work of students on AVL and  B-Tree class 

libraries
• Integrate into SoftwareInterfaces library
• Study hot spots and build finer-grained component library
• Study use of Schmid’s systematic generalization 

methodology for this problem
• Develop instructional materials



21-Oct-2003 42

Acknowledgements
• Jingyi Wang for her work on the prototype framework
• Wei Feng, Jian Hu, and Deep Sharma for their work on earlier table-

related libraries
• Bob Cook and Jennifer Jie Xu for reading the paper and making useful 

suggestions
• Sudharshan Vazhkudai, Jennifer Jie Xu, Vandana Thomas, Cuihua

Zhang, Xiaobin Pang, and Ming Wei for work on other frameworks
• Todd Stevens, the Ole Miss patterns discussion group, and students in 

my Software Architecture and Distributed Objects classes for their 
suggestions

• Acxiom Corporation for its encouragement
• Diana Cunningham for her patience


