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Those of us in the fast-changing field of computing often dismiss anything writ-
ten more than five years ago as obsolete. Yet several decades-old papers by
David L. Parnas [1, 4, 5, 6, 7, 8] are as timely as those published in recent issues
of the top journals. Parnas articulates the timeless software design concepts
known as information hiding and abstract interfaces.

Most programmers would describe a module as a unit of code such as a sub-
routine or class. Parnas focuses on the programmers rather than the programs.
He defines a module as “a work assignment given to a programmer or group of
programmers” as a part of a larger software development project [7]. His goals
are to enable programmers to develop each module independently, change one
module without affecting other modules, and comprehend the overall system by
examining one module at a time [5].

Programmers often design a software system by breaking the required pro-
cessing into steps and making each step a module. Instead, Parnas uses in-
formation hiding to decompose the system into modules that satisfy his goals
(2); each module keeps its own secreta design decision about some aspect of the
system (e.g., choice of a data structure). A modules design decision can change
but none of the other modules should be affected. If some aspect is unlikely to
change, the design can distribute this knowledge across several modules and the
interfaces among them.

Most programmers would define a module by listing the names, parameters,
and return values–the operation signatures–of its subprograms. Parnas again
focuses on the programmers rather than the programs. He defines the “inter-
face between two programs” to consist “of the set of assumptions that each
programmer needs to make about the other program in order to demonstrate
the correctness of his own program.” [4] In addition to an operation signature,
these assumptions must specify the restrictions on data passed to the operation,
the effect of the operation, and exceptions to the normal processing that may
arise.
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The interface of an information-hiding module must enable programmers to
replace one implementation of the module by another without affecting other
modules. This is called an abstract interface because it represents the assump-
tions common to all implementations of the module [1, 7]. It reveals the module’s
unchanging aspects but obscures aspects that may vary among implementations.

Information hiding and abstract interfaces underlie object-oriented program-
ming, the predominant contemporary approach to programming. But program-
mers often oversimplify these concepts as merely hiding data representations
inside classes [9]. A secret of a well-designed module is more than hidden data.
It is any aspect that can change as the system evolves: processing algorithms
used, hardware devices accessed, other modules present, and specific functional
requirements supported [4, 5, 8].

Although 40 years have passed since Parnas first wrote about information
hiding, programmers can still learn much from studying his papers carefully and
can improve their software designs by applying his ideas systematically.
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