
Revealing the Secrets of David Parnas

H. Conrad Cunningham

Department of Computer and Information Science
University of Mississippi

March 7, 2014

Those of us in the fast-changing field of computing often dismiss anything writ-
ten more than five years ago as obsolete. Yet several decades-old papers by
David L. Parnas [1, 4, 5, 6, 7, 8] are as timely as those published in recent issues
of the top journals. Parnas articulates the timeless software design concepts
known as information hiding and abstract interfaces.

Most programmers would describe a module as a unit of code such as a sub-
routine or class. Parnas focuses on the programmers rather than the programs.
He defines a module as “a work assignment given to a programmer or group of
programmers” as a part of a larger software development project [7]. His goals
are to enable programmers to develop each module independently, change one
module without affecting other modules, and comprehend the overall system by
examining one module at a time [5].

Programmers often design a software system by breaking the required pro-
cessing into steps and making each step a module. Instead, Parnas uses in-
formation hiding to decompose the system into modules that satisfy his goals
(2); each module keeps its own secreta design decision about some aspect of the
system (e.g., choice of a data structure). A modules design decision can change
but none of the other modules should be affected. If some aspect is unlikely to
change, the design can distribute this knowledge across several modules and the
interfaces among them.

Most programmers would define a module by listing the names, parameters,
and return values–the operation signatures–of its subprograms. Parnas again
focuses on the programmers rather than the programs. He defines the “inter-
face between two programs” to consist “of the set of assumptions that each
programmer needs to make about the other program in order to demonstrate
the correctness of his own program.” [4] In addition to an operation signature,
these assumptions must specify the restrictions on data passed to the operation,
the effect of the operation, and exceptions to the normal processing that may
arise.

1



The interface of an information-hiding module must enable programmers to
replace one implementation of the module by another without affecting other
modules. This is called an abstract interface because it represents the assump-
tions common to all implementations of the module [1, 7]. It reveals the module’s
unchanging aspects but obscures aspects that may vary among implementations.

Information hiding and abstract interfaces underlie object-oriented program-
ming, the predominant contemporary approach to programming. But program-
mers often oversimplify these concepts as merely hiding data representations
inside classes [9]. A secret of a well-designed module is more than hidden data.
It is any aspect that can change as the system evolves: processing algorithms
used, hardware devices accessed, other modules present, and specific functional
requirements supported [4, 5, 8].

Although 40 years have passed since Parnas first wrote about information
hiding, programmers can still learn much from studying his papers carefully and
can improve their software designs by applying his ideas systematically.

Acknowledgements

The author and collaborators published some of these ideas previously [2, 3].

References

[1] K. H. Britton, R. A. Parker, and D. L. Parnas, “A procedure for designing
abstract interfaces for device interface modules,” in Proceedings of the 5th
International Conference on Software Engineering, March 1981, pp. 195–
204.

This classic paper by Parnas and his colleagues builds on the con-
cept of information hiding [5]. It describes the concept of an ab-
stract interface as a mechanism for hiding the details of a low-level
interface from the other modules of the software system. It uses a
two-phase design method for such modules.

[2] H. C. Cunningham, P. Tadepalli, and Y. Liu, “Secrets, hot spots, and gener-
alization: Preparing students to design software families,” Journal of Com-
puting Sciences in Colleges, vol. 20, no. 6, pp. 118–124, June 2005.

[3] H. C. Cunningham, C. Zhang, and Y. Liu, “Keeping secrets within a family:
Rediscovering Parnas,” in Proceedings of the International Conference on
Software Engineering Research and Practice (SERP). CSREA Press, June
2004, pp. 712–718.

[4] D. L. Parnas, P. C. Clements, and D. M. Weiss, “The modular structure of
complex systems,” IEEE Transactions on Software Engineering, vol. SE-11,
no. 3, pp. 259–266, March 1985.

2



[5] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053–1058,
1972.

This classic paper by Parnas is the first publication of the design
concept known as information hiding. The key idea is to design
software modules around a single design decision that may change
over time or among versions of the system. The module hides this
design decision, known as the secret of the module, behind an
interface that is unlikely to change.

[6] ——, “On the design and development of program families,” IEEE Trans-
actions on Software Engineering, vol. SE-2, no. 1, pp. 1–9, March 1976.

This classic paper by Parnas introduces the design concept known
as program (or software) families, often called software product
lines today. This means that the designers of a software system
should seek to design the system to exist in multiple versions from
the beginning. New versions may be created for different customers
or platforms or perhaps just over time as improvements are made
to the original system.

[7] ——, “Some software engineering principles,” in Infotech State of the Art
Report on Structured Analysis and Design. Infotech International, 1978, p.
10 pages, reprinted in Software Fundamentals: Collected Papers by David L.
Parnas, Daniel M. Hoffman and David M. Weiss, editors, Addison Wesley,
2001.

[8] ——, “Designing software for ease of extension and contraction,” IEEE
Transactions on Software Engineering, vol. SE-5, no. 1, pp. 128–138, March
1979.

[9] D. M. Weiss, “Introduction: On the criteria to be used in decomposing sys-
tems into modules,” in Software Fundamentals: Collected Papers by David
L. Parnas, D. M. Hoffman and D. M. Weiss, Eds. Addison-Wesley, 2001,
pp. 143–144.

3


