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Abstract

This is a working paper for the Software Methods Research Group. A full version
of the paper is forthcoming.

1 Introduction

Natural language, with all of its nuances and ambiguities, is an effective medium for
most aspects human communication, but software specification demands more precision
than can be supplied by natural language alone [5]. It demands the kind of precision
that only formal notations can provide. Formal notations naturally lead the specifier
to identify important issues that might otherwise be obscured by the ambiguities of a
natural language statement of a problem. It is better to confront such issues early, before
design begins, rather than later when a costly design change may be required or later yet
after a defective product has been delivered. Formal notations enable specifiers to record
requirements precisely and communicate them unambiguously to software developers. In
addition, the formal specification provides a framework for the systematic development
and rigorous verification of the software product.

A precise specification is especially important when one is developing a reactive pro-
gram, that is, a program, like an operating system, whose role is to maintain an ongoing
interaction with its environment rather than just to compute some final value on termina-
tion [3]. Because of the complexity of the interactions of concurrent components, reactive
programs are notoriously difficult to get right. The rigor promoted by formal notations
can help tame this complexity.

In this case study, we examine an interesting problem and seek to devise an elegant
formal specification for a reactive program to solve the problem. The problem concerns
the requirements for the controlling mechanism for a system of N separate elevators, each
of which can visit any of the M floors of a building [4].

1. Each elevator has a set of buttons, one for each floor. These illuminate when pressed
and cause the elevator to visit the corresponding floor. The illumination is cancelled
when the corresponding floor is visited by the elevator.



2. Each floor has two buttons (except the ground and top floors), an up button to
request transport to a higher floor and a down button to request transport to a
lower floor. These buttons illuminate when pressed. The illumination is cancelled
when an elevator visits the floor and is either moving in the desired direction or has
no outstanding requests. In the latter case, if both floor buttons are pressed, only
one should be cancelled.

3. When an elevator has no requests to service, it should remain at its final destination
with its doors closed and await further requests.

4. Each elevator has an emergency button that, when pressed, causes a warning signal
to be sent to the site manager. The elevator is then deemed “out of service”. Each
elevator has a mechanism to cancel its “out of service” status.

This case study seeks to construct a specification of the elevator controller as an open,
reactive system. That is, the case study seeks a formulation that gives the properties of the
controller in terms of its interactions with an unspecified environment. The environment
consists of the people, devices, and programs with which the elevator controller must
interact. The controller specification must also state the assumptions it makes about its
environment.

The problem poses several challenges that this case study should address:

• uncovering the sometimes subtle interactions among the operations of the system
(e.g., pushing buttons, moving the elevator car, changing direction of movement,
opening doors, etc.)

• considering the (often unstated) expectations that people who use the elevators
have about the system’s operation,

• stating the complex properties of the reactive system in a concise and modular way,

• devising a general specification that is as “weak” as is practical (e.g., allowing the
designer to choose among many possible methods for scheduling elevators to service
up and down requests rather than imposing a particular method a priori),

• identifying a reasonable set of assumptions that the elevator can make about its
environment.

The remainder of the paper is organized as follows. Section 2 gives the specification
model. Sections 3 and 4 develop the formal specification, first for a single elevator and
then for a multiple elevator system.

2 Specification Model and Logic

This case study adopts Chandy and Misra’s UNITY model [1] as the notation and
logic for specification of the elevator controller. A UNITY program is, in essence, a
nondeterministic program in Dijkstra’s Guarded Commands notation [2] with the form

initialize variables ; do g0 → a0 g1 → a1 · · · gn−1 → an−1 od

where
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• n is a finite constant,

• ai (for 0 ≤ i < n) denotes an atomic, terminating, deterministic, multiple-assignment
command that accesses a fixed set of variables,

• the execution is fair in the sense that, if a guard gi holds at some point in an infinite
computation, then there exists a later point at which either ai is executed or gi no
longer holds.

The union of two UNITY programs consists of a program in which the initialization is
formed by the union of the two initializations (assuming no inconsistency exists) and the
do loop is formed by the union of the two sets of guarded commands.

UNITY’s operational model represents a program as the set of all maximal execution
sequences of the corresponding do program. A maximal execution sequence records the
sequence of states corresponding to a possible execution of the program. The transition
from one state to the next corresponds to the execution of an atomic action. These
execution sequences are either infinite or end in a state in which all guards of the do
program are false. This operational model allows program properties to be stated in
terms of temporal logic [3].

This case study uses UNITY’s simple subset of temporal logic [1] to specify the prop-
erties that a program must be constructed to satisfy. For the purposes here, we consider
the logical relations initially, unless, stable, invariant (abbreviated as inv), constant,
and 7−→ (read “leads-to”). Informally, for arbitrary predicates p and q on program states:

• initially p means that p must hold for the initial state of every execution sequence.
(In the do loop above, the predicate p must hold between the initialization and the
beginning of the loop.)

• p unless q means that, for any execution sequence, if p holds for some state, then
either q never holds and p continues to hold for all succeeding states or q holds
eventually and p holds at least until q holds. (If p ∧ ¬q holds before the execution
of an action in the loop body, then p ∨ q must hold after its execution.)

• stable p means that, for any execution sequence, if p holds for some state, then p
must continue to hold for all succeeding states of the sequence. That is, stable p
means that p unless false holds. (A stable predicate is preserved by the actions
in the body of the do loop above.)

• invariant p means that p must hold for all states of all execution sequences. That
is, both initially p and stable p hold. (UNITY invariants are loop invariants of
the do loop above.)

• constant p means that both stable p and stable ¬p hold. That is, for any execu-
tion sequence, p must either remain true forever or remain false forever.

• p 7−→ q means that, if p holds for any state of any execution sequence, q must also
hold within a finite number of steps in the execution sequence.
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The annotation prop in P denotes that prop is a property of program P considered in
isolation and P Q denotes the union of programs P and Q. A UNITY conditional
property specified a property of a reactive program that is dependent upon properties of
the program’s environment. The specification

Hypothesis: Property List 1
Conclusion: Property List 2

means that the program must satisfy Property List 2 whenever Property List 1 holds.

3 One Elevator

The elevator controller, as described in Section 1 has many facets that must be cap-
tured in a specification. Handling the entire specification at once would thus be quite
unwieldy. For the purpose of clarity and modularity, it was decided to first specify a
single-elevator system and then build upon it to achieve the required specification.

The single-elevator system is a restricted case of the multi-elevator system, in which
N , the number of elevators, is 1.

In specifying any system, there are usually a few logical entities that are inherent in
the description. For this case in particular, the elevator buttons, the up buttons and the
down buttons on each floor, the position and direction of the elevator, and the emergency
stop button are all functionally discrete units that need to be represented in the formal
specification.

The above units can be used as a basis upon which to construct our specification. As
required by UNITY, the variables and constants representing these units first need to be
declared.

M : integer constant, M ≥ 1, number of floors
b[1..M ] : boolean, internal button, light on if true
up[1..M − 1] : boolean, external up button, light on if true
dn[2..M ] : boolean, external down button, light on if true
pos : integer, floor location for elevator car in [1..M ]
dir : integer −1 ≤ dir ≤ 1, DOWN, HOLD, UP, direction of movement
door[1..M ] : boolean, true if elevator, floor doors open
emstop : boolean, true if emergency stop button on

For convenience, we assume that all free variables are universally quantified. We also
assume that out-of-range references to boolean arrays have the value false. Within this
section, we shall refer to the single-elevator system as Elev and its environment as User .

Once the variables have been declared, constraints on the scope of the variables need
to be stated. The interactions among these variables should also be elaborated upon.
This serves the dual purpose of explicitly excluding unwanted scenarios, and reiterating
implicit properties that might be otherwise overlooked.

Consider the variable pos, the position of the elevator. As the building has M floors,
the valid values for the position of the elevator has to be confined to those M floors. This
constraint can be stated as an invariant property of the elevator program.
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inv 1 ≤ pos ≤M in Elev (1)

Similarly, the elevator’s direction of movement, recorded by the dir variable, can only
be changed by the elevator controller, and, then, only among the three valid directions —
up, down, and hold. This requirement can be formalized with the use of three statements,
i.e. an invariant and two constant properties. The invariant restricts the valid values for
the dir variable, while the constant properties define and constrain the functionality of
Elev and User .

inv dir ∈ {UP,DOWN,HOLD} in Elev (2)
constant pos = k in User (3)
constant dir = d in User (4)

We also need to constrain the doors on each floor to open only when the elevator is
present on that floor. The simplest way to do this is to add an invariant property for
Elev .

inv door.j ⇒ pos = j in Elev (5)

Another property that is convenient from a user standpoint is that the door should
not be opened at floor j unless a request has been made for that floor—this will prevent
the elevator from stopping and opening the door at each floor.

¬door.j unless (b.j ∧ dir 6= HOLD) ∨
(up.j ∧ dir = UP) ∨
(dn.j ∧ dir = DOWN) in Elev (6)

However, for the above property to hold true, we need to assume that the User is not
allowed to open a closed door, i.e., a closed door is stable in the User environment.

stable ¬door.j in User (7)

Once the more obvious properties have been defined, each logical entity in the system
can be looked at in detail. For the elevator, we have already listed these entities. These
“groupings” of atomic objects into “entities” are based upon the functionality of the
objects and their interactions with other entities. It would be redundant and unnecessary
to classify each up button on a floor as a separate unit. Also, since the response of
the elevator to the up button and the down button, is effectively different, it would be
counterproductive to group the up and down button on each floor together as an unit.
The goal in grouping objects is to be able to generalize properties to a class of similar
objects, without weakening a specification to the point of uselessness.
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We begin by examining the functioning of the internal buttons of the elevator. An
implicit requirement for a button is that an elevator should not be able to generate its
own requests—all requests must come from the elevator’s environment. We formalize this
as follows:

stable ¬b.j in Elev (8)

Another requirement for the internal buttons is that the pressing of a button should
result in the elevator visiting the corresponding floor. The term “visiting” can be split
into three atomic actions: the button must be cleared, the position of the elevator must
be the appropriate floor, and the door at that floor should be open. Formalizing this, we
obtain,

b.j 7−→ ¬b.j ∧ pos = j ∧ door.j in Elev User (9)

Upon further reflection, however, the above property seems to have several inconsis-
tencies. First, it allows the illumination of the button to be cancelled before the elevator
visits that floor. This could result in confusion on part of the user. More seriously, from
an user standpoint, the above property does not require the elevator to visit that floor
on the first pass, nor does it force the elevator to clear the button on its first visit to that
floor.

The first two objections can be overcome by weakening the right hand side of the
property, and then adding safety properties as follows

b.j 7−→ ¬b.j in Elev User (10)
b.j unless pos = j ∧ door.j in Elev (11)

This weakening of the property allows requests to be cancelled by the environment,
and ensures that the elevator cannot clear the light before visiting the floor. In order to
force the elevator to clear the button on its first visit, we add

pos = j ∧ door.j unless ¬b.j in Elev (12)

A property that will make the elevator visit the floor on its first pass is also needed,

b.j ∧ pos = j ∧ dir 6= HOLD unless door.j in Elev (13)

Thus, the original property (9) has been modified into the set of properties (10) (11)
(12) (13), which specify exactly how we want the elevator to react in that situation. It
was due to the formal specification process that we were able to point out and overcome
potential problem areas, before the cost of handling them became significant.

The next unit to be specified is the up buttons. Again, there are several properties,
implicit to the basic functioning of the up buttons, that we need to state. First, as for
the internal buttons, we do not want the elevator to be able to illuminate an up button,
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stable ¬up.j in Elev (14)

An illuminated up button also needs to result in a visit to that floor

up.j 7−→ ¬up.j ∧ pos = j ∧ dir = UP ∧ door.j in Elev User (15)

This is analogous to the property we had for the internal buttons. It also, suffers from
the same shortcomings. So, we weaken the property to result in the following

up.j 7−→ ¬up.j in Elev User (16)
up.j unless pos.j ∧ door.j in Elev (17)
pos = j ∧ door.j unless ¬up.j in Elev (18)
up.j ∧ pos = j unless door.j in Elev (19)

These properties constrain the up buttons interactions with the other entities, in the
same manner that the corresponding properties did for the internal buttons. Properties
(16) and (17) ensure that the up requests can be cancelled by the environment and that
the elevator can’t clear the up button before visiting that floor. In turn, (18) and (19)
make the elevator visit the floor on its first pass, and force it to clear the button on
its first visit. However, this set of properties still does not constrain the interactions
between the units as strenuously as needed. As can be seen by a careful perusal of the
above properties, there are no restrictions on the direction in which the elevator is moving
when answering a request. This could conceivably result in an up request being answered
by the elevator when it is moving downwards. It would also prevent the progress property
(16) from holding, since with the properties as they stand, it is not possible to guarantee
that an up request will be answered. This problem can be rectified by strengthening the
left hand side of each of the properties in the up unit. As the problem is caused by a
lack of a direction vector, we strengthen the properties by inserting a direction clause.
We want to restrict the elevator to answering up requests only if its direction is up, and
down requests only when its direction is down. So, the modified properties are:

up.j 7−→ ¬up.j in Elev User (20)
up.j unless pos.j ∧ door.j ∧ dir = UP in Elev (21)
pos = j ∧ door.j ∧ dir = UP unless ¬up.j in Elev (22)
up.j ∧ pos = j ∧ dir = UP unless door.j in Elev (23)

As the up and down buttons perform identical tasks, albeit in opposite directions,
the properties for the down buttons will be similar to the above properties with two
obvious exceptions. All up.j clauses will become dn.j clauses, and all dir = UP clauses
will become dir = DOWN clauses.

We now continue on to the properties for the direction unit. Although direction has
already been used in some of the properties stated above, it served as a secondary variable;
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the main focus of the properties was on other entities. We now want to verbalize those
properties that are based primarily on dir.

The first rule for constraining the value of dir involves specifying under what circum-
stances a change in direction can take place. One obvious constraint is that we do not
want to change directions in an elevator when a door is open. Also, if an elevator is
moving up (or down), and has outstanding requests for floors above (or below) it. Then
we do not want it switching direction before all the requests that are above (or below) it
are fulfilled. In order to formalize this, a variable for outstanding requests needs to be
declared.

There are, however, three classes into which outstanding requests can be split based
upon the elevator’s current position. The first case consists of simply the event in which
the internal button for the current floor, b.j is pressed. The second case is one in which
the floor button on the current floor, corresponding to the elevator’s current position is
pressed, i.e., if dir = UP and pos = j, and the up button on floor j is pressed. The last
case consists of any occurences of the floor buttons on, or the internal buttons for any
floor lying in the elevators current direction, being pressed. We could define one single
variable for all these cases, as below,

inv req.d.p ≡ b.p ∨ ((d = DOWN ∨ d = UP) ∧
(d = DOWN⇒ (dn.p ∨ (∃k : 1 ≤ k < p : up.k ∨ dn.k ∨ b.k))) ∧
(d = UP⇒ (up.p ∨ (∃k : p ≤ k < M : up.k ∨ dn.k ∨ b.k)))) (24)

This makes the property obscure and bulky. Another disadvantage is that we can
not separately reference each of the cases mentioned above. We should thus declare
two different variables for the two cases. For the first case, we already have concise
formalisms—b.j and up.j (or dn.j)—and don’t require variables for them.

inv req+.d.p ≡ (d = DOWN ∨ d = UP) ∧
(d = DOWN⇒ (∃k : 1 ≤ k < p : up.k ∨ dn.k ∨ b.k)) ∧
(d = UP⇒ (∃k : p < k ≤M : up.k ∨ dn.k ∨ b.k)) (25)

We build upon req+ by grouping it with the second case to arrive at

inv req.d.p ≡ (d = DOWN ∨ d = UP) ∧
(d = DOWN⇒ dn.p ∨ b.p ∨ req+.DOWN.p) ∧
(d = UP⇒ up.p ∨ b.p ∨ req+.UP.p) (26)

Thus, req stands for any outstanding request, i.e., any request from one of the floors
in the elevators direction, or any request from the current floor to a floor in the elevator’s
direction of movement.

We can now state the two properties for dir

dir = d unless ¬door.j in Elev (27)
dir = d ∧ d 6= HOLD unless dir = HOLD ∧ ¬req.d.pos in Elev (28)
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Another property of direction is that if the elevator is holding (dir = HOLD) and
there is an up request, we do not want the elevator to move until its direction has been
changed to up. A similar constraint holds if there is a down request.

dir = HOLD unless (dir = UP ∧ req.UP.pos) ∨
(dir = DOWN ∧ req.DOWN.pos) in Elev (29)

pos = j unless dir 6= HOLD ∧ req+.dir.j ∧ pos = j + dir in Elev (30)

Upon examining the specification obtained so far, we have taken into account most
possible scenarios for an elevator. Nevertheless, we need to keep in mind that this is an
open system specification. As such, we are supposed to make minimal assumptions about
the system’s environment. There are two possible occurences that are not accounted for by
the above specification. The first involves an unknown factor in the environment blocking
the elevator door indefinitely or an user pressing the up or down button infinitely while
the door is open, and thus preventing it from closing. The second one concerns a person
inside the elevator continuously pressing the internal button for the current floor. This
would prevent the elevator from ever moving since it would be answering these requests
forever. So we declare a variable for the second case: These events, while improbable, are
still possible, and therefore need to be dealt with in the formal specification. Both the
aforementioned events would stop the progress properties (10) (20) from being satisfied,
and thus void the entire specification.

The first event is a purely environmental one, having no relation to any of the elevator
functions. Hence, specifying any property that would overcome this problem is impossible.
So, we make an environmental assumption stating that none of the doors for the elevator
will be infinitely blocked. We also can formalize this generally with

door.j 7−→ ¬door.j in Elev User (31)

The second event relates to the manner in which the functions of the elevator are
being handled by the system. In this case, it is possible to prevent the endless opening
and closing of the elevator doors which can be caused by repetitively pressing the inter-
nal button for the current floor. This can be achieved by preventing the elevator from
consecutively satisfying this kind of request more than a fixed number of times. It also
engenders making the elevator have knowledge of having visited a floor. A boolean flag
would suffice in this respect. The flag will be true when an elevator just arrives at a floor,
and will be set to false if the door at that floor is opened.

initially novisit in Elev (32)
novisit unless (∃k :: door.k) in Elev (33)
door.j unless ¬novisit in Elev (34)

The novisit variable will remain false as long as the the elevator remains at the same
floor and its direction remains the same.
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¬novisit ∧ pos = j ∧ dir = d unless pos 6= j ∨ dir 6= d in Elev (35)

The inclusion of a new variable means that some of the earlier properties will have
to be changed. The changes will occur mainly in properties constraining the arrival
and departure of the elevator and also those properties dictating when the elevator door
should be opened.

b.j ∧ pos = j ∧ dir 6= HOLD ∧ novisit unless door.j in Elev (36)
up.j ∧ pos = j ∧ dir = UP ∧ novisit unless door.j in Elev (37)
dn.j ∧ pos = j ∧ dir = DOWN ∧ novisit unless door.j in Elev (38)
dir = d ∧ d 6= HOLD unless ¬req+.d.p ∧ novisit ∧

((dir = HOLD ∧ ¬req.(−d).pos) ∨
(dir = −d ∧ req.(−d).pos)) in Elev (39)

pos = j unless dir 6= HOLD ∧ req+.dir.j ∧
pos = j + dir ∧ novisit in Elev (40)

With this, the specification for the single elevator is nearly complete. The elevator
has all the functionality it is required to have, and we have effectively blocked the envi-
ronment from causing any problems with the elevator. The only remaining addition to
this specification is the emergency stop button.

The functionality of the emergency stop button is simple. As soon as the emergency
button is pressed, nothing about the physical condition of the elevator should change until
the button is cleared. Thus, the dir, pos, and door variables need to be kept constant for
the duration of the emergency. To formalize this, we utilize two properties, a constant
property and an unless property.

constant emstop in Elev (41)
pos = j ∧ door = p ∧ dir = d unless ¬emstop (42)

The emergency stop button was easy to specify since it does not interact with any of
the other units; rather, it supersedes the other units during the time period in which it
is pressed. Such units should always be left till the end as they are relatively simple to
add on to an existing specification.

This was the specification for the single elevator system. Using this we can construct
the specification for a multi-elevator system.

4 Multiple Elevators

The single elevator specification in Section 3 served to focus our attention on the
fundamental properties, actions and functionality of an elevator. Now that these have
been specified within the single elevator specification, we can use it as a foundation upon
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which to construct the specification for the overall multi-elevator problem. It allows us
to concentrate on functionality that is a step higher than that which we examined in the
previous sections.

It will be necessary to extend the specification arrived at in Section 3 to a slight
degree, in order to be able to use it in a multi-elevator system. The process of extending
the specification will involve mapping the original variables to other variables, so as to
allow for multiple elevators. The changes are trivial and will not diminish the effectiveness
of the single-elevator specification. While, in Section 3, there were only two programs,
Elev and User , we now have three programs, namely the actual user (User′), the manager
(Mgr), and the elevators(Elev.i). The programs User′ and Mgr made up the User module
discussed in Section 3. We will also need to change the variables up.j and dn.j to up.i.j
and dn.i.j, where i refers to the elevator being referred to, and j stands for the floor the
button is on.

M : integer constant, M ≥ 1, #floors
N : integer constant, N ≥ 1, #elevators
up[1..N ][1..M − 1] : booleans where up.i.j is up.j of Elev.i
dn[1..N ][2..M ] : booleans where dn.i.j is dn.j of Elev.i

Also, in this section, we will be looking at up and dn from a slightly different per-
spective. In the previous section both variables were assumed to have been direct rep-
resentations of the actual up and down buttons. Now, however, we have an additional
component in the system, namely the manager, that acts as the liaison between the user
and each of the elevators. Owing to the fact that the link between the elevators and the
user goes through the manager, the functionality of the up and dn buttons has to change.
They no longer represent the physical floor buttons but, in fact, become virtual buttons
that are an interface between the elevators and the manager.

Due to this development, we need to have variables representing the real up and down
buttons. We declare these as shown.

rup[1..M − 1] : boolean, real external up button/light on if true
rdn[2..M ] : boolean, real external down button/light on if true

As needed for all new variables, we impose constraints on them, as well as upon the
up and dn buttons.

stable rup.j in User′ (43)
constant rup.j in Elev .i (44)
stable rdn.j in User′ (45)
constant rdn.j in Elev .i (46)
constant up.j in User′ (47)
constant dn.j in User′ (48)

We also need to ensure that the manager cannot conjure up a request.
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stable ¬rup.j in Mgr (49)
inv up.i.j ⇒ rup.j in Mgr (50)

The working of the entire elevator system also needs to be modified to accommodate
the new developments. Each elevator will still respond to the pressing of its own internal
buttons. However, the method for fulfilling up and down requests (i.e. floor requests)
will have to change. It is now the manager that decides which elevator satisfies each
floor button request. Whenever a floor button request is made, i.e, a rup.j or rdn.j
button is pressed, the manager, using an allocation algorithm, will signal the appropriate
elevator(s) to fulfill that request. As soon as the request is satisfied by an elevator, the
manager clears all the signals it had sent to the elevators and also clears the appropriate
rup.j or rdn.j button.

There are several algorithms that can be used by the manager for allocation of re-
quests. The simplest way would be to propagate a floor button request to all elevators,
and clear the signals as soon as the first elevator going in the right direction visits the
floor. This is a rather simplistic and inefficient routine. Another method would be for
the manager to send the request to the elevator which is in a situation to satisfy the
request the fastest. This could be done by examining various aspects of each elevator
such as its proximity to the request generating floor, its direction, the number of requests
outstanding for that elevator, and other such relevant factors.

These allocation routines will differ according to the implementation chosen, and as
such, they should not be decided upon at this stage. The purpose of a formal specification,
such as the present one, is to arrive at a set of properties that act as a skeleton which
the implementors can flesh out according to the requirements of the situation. Thus,
we need to build a specification for the manager which will ensure that it will do its
job, and one that will not narrow the options available to the implementors. Once an
implementation policy has been decided upon, the specification can be augmented to
reflect the implementation-specific details by adding or modifying properties. Based on
this, we need to select properties that allow a degree of flexibility in the implementation
of the manager.

The best course seems to be to allow the manager to signal as many elevators as it
wants to. We also allow the manager to arbitrarily clear an elevator’s up and dn buttons,
even though the corresponding rup or rdn button has not been cleared. This gives the
manager the ability to dynamically change the request allocation to the elevators. We
formalize the above for the up floor requests, as seen below. The properties for down
floor requests are similar.

rup.j unless (∃i :: up.i.j) in Mgr (51)
rup.j 7−→ (∃i :: up.i.j) in Mgr Elev ′ User ′ (52)
stable (∃i :: up.i.j) in Mgr (53)

These three properties state that when a rup.j button is pressed, there will eventually
be an elevator for which the up.i.j button is set. Thus there will eventually be at least
one elevator responding to that request. Also, once the manager sends the signal to an
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elevator, the manager must ensure that until the request is fulfilled, there is always at
least one elevator which has that request pending.

We now address the question of how, once a request has been satisfied, the manager
should propagate the result to the other elevators as well as to the appropriate floor
button. In order to do so, the manager needs to have some way to keep track of the
allocations that it makes. The most convenient way to do this is by maintaining a
boolean array that maps the virtual up and dn buttons to the real rup and rdn buttons.
We shall discuss the variables needed for only the up floor requests, since the variables
needed for down floor requests are similar.

For the up and rup buttons, we declare a variable called mup.

mup[1..N ][1..M − 1] : boolean, true if up.i.j mapped to rup.j

inv mup.i.j ≡ up.i.j in Mgr (54)

The above property states that the mapping in mup will always represent the actual
state of the corresponding up buttons. We also want to make sure that mup remains
internal to the manager. This is done by making mup a constant in User′ and Elev.i .

constant mup.i.j in User′ (55)
constant mup.i.j in Elev .i (56)

Once a floor button request has been satisfied, the elevator involved clears its appro-
priate up button, and the manager needs to propagate this to the rup button, as well as
to the other elevators.

mup.i.j ∧ ¬up.i.j unless ¬rup.j in Mgr (57)
mup.i.j ∧ ¬up.i.j 7−→ ¬rup.j in Mgr (58)

The above specification is still not complete. While it allows the manager to do what
we require, namely to dynamically change allocations, it does not constrain it enough.
Given the above properties, it is conceivable that the manager could keep changing the
allocations in such a manner as would prevent the request from ever being satisfied. This
would violate the progress properties within the specification. We need to come up with
a general solution to this that would enable the specification to be as flexible as we want.
To solve this, we introduce another auxiliary variable lup. This variable implements a
locking functionality in mup.

lup[1..N ][1..M − 1] : boolean, true if up.i.j mapping is locked

We want to ensure that the progress properties hold. So, we need to make certain
that ultimately there will be one elevator that will stay allocated to a request until that
request has been satisfied. We use lup to perform this function, which is namely that of,
after an arbitrary amount of time, locking one elevator to a particular request.
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inv lup.i.j ⇒ mup.i.j in Mgr (59)
lup.i.j unless ¬rup.j in Mgr (60)
(∃i :: up.i.j) 7−→ (∃i :: lup.i.j) ∨

(∃i :: ¬up.i.j ∧mup.i.j) (61)

The down floor requests have mdn and ldn as their counterparts to mup and lup.
Each of the above properties concerning mup and lup is also duplicated for mdn and ldn.
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