
 1

WHAT IS COMPUTER SCIENCE ALL ABOUT?

H. Conrad Cunningham and Pallavi Tadepalli
Department of Computer and Information Science

University of Mississippi

COMPUTERS EVERYWHERE
As scientific and engineering disciplines go, computer science is still quite young.
Although the mathematical roots of computer science go back more than a thousand
years, it is only with the invention of the programmable electronic digital computer
during the World War II era of the 1930s and 1940s that the modern discipline of
computer science began to take shape. As it has developed, computer science includes
theoretical studies, experimental methods, and engineering design all in one discipline.

One of the first computers was the ENIAC (Electronic Numerical Integrator and
Computer), developed in the mid-1940s at the University of Pennsylvania. When
construction was completed in 1946, the ENIAC cost about $500,000. In today’s terms,
that is about $5,000,000. It weighed 30 tons, occupied as much space as a small house,
and consumed 160 kilowatts of electric power. Figure 1 is a classic U.S. Army
photograph of the ENIAC. The ENIAC and most other computers of that era were
designed for military purposes, such as calculating firing tables for artillery. As a result,
many observers viewed the market for such devices to be quite small. The observers were
wrong!

Figure 1. ENIAC in Classic U.S. Army Photograph

 2

Electronics technology has improved greatly in 60 years. Today, a computer with the
capacity of the ENIAC would be smaller than a coin from our pockets, would consume
little power, and cost just a few dollars on the mass market. Figure 2 shows the Intel
Pentium M microprocessor. This processor, which was designed for mobile devices such
as laptop computers, is smaller than a dime, draws just 21 watts of power, and costs just a
few hundred dollars. Figure 3 shows a handheld computer (i.e., a personal digital
assistant, PDA), a far cry from the days of the ENIAC.

Figure 2. Intel Pentium M Microprocessor
[Intel Publicity Photo]

Figure 3. PDA
[Microsoft Word Clip Art]

Computers are everywhere. They are, of course, in banks, offices, and dorm rooms. We
use desktop and laptop computers to send and read electronic mail, surf the web, and play
games. We see the dramatic results of the use of computers in the exciting special effects
in movies. But computers are also in less obvious places. They are what make our digital

 3

watches, our cellular phones, and our MP3 players work (e.g., Figure 4). They are in the
cars we drive, the gasoline pumps from which we fuel our cars, and in the traffic signals
that steer us safely as we travel about. They are also in the rockets that are launched into
space, as shown in Figure 5.

Figure 4. Computers Driving an MP3
Player [Microsoft Word Clip Art]

Figure 5. Computers in Action in a Rocket
[Copyright free, http://gimp-savvy.com]

The computer is an enabling technology. It can be combined with preexisting
technologies to enable some combination of increased functionality, decreased costs, and
increased design flexibility. The computer can enable new technologies that might not
have been possible otherwise.

How does a computer accomplish this? It is a device that controls some process, that is,
a series of actions to achieve some desired result. It does so by encoding that process
internally. The process is thus relatively easy to change as the desired result evolves.

Consider the example of traffic signals given above. The process of interest is the safe
and efficient movement of many vehicles through an intersection (e.g., Figure 6).
Because of the driving rules associated with STOP signs, the installation of such signs is
an inexpensive solution for low-volume intersections. Unfortunately, STOP signs are not
very efficient or safe as the traffic volume increases. The replacement of the STOP signs
by traffic lights accommodates higher volumes more efficiently by routing several
vehicles at once through the intersection. The traffic signal controls the process of traffic
movement more explicitly than STOP signs do. However, the early traffic lights did not
work well when the traffic volumes were irregular, changing from minute to minute,
season to season. The installation of an adaptive traffic signal system can improve the
situation. It can detect changes in the traffic patterns and adjust the signal times to enable
more efficient movement of traffic through the intersection. The computer is a
technology that enables an adaptive traffic signal to be designed and implemented in an
effective manner.

 4

Figure 6. Turns at Intersection on Multilane Streets
[http://www.dmv.ca.gov/pubs/hdbk/pgs25thru29.htm#turnexamples]

The professionals who design computers and apply them in ever-expanding ways are the
computer scientists, computer engineers, and information systems technologists. In some
sense, we might describe computer scientists as the professionals who put a process into
the computer and the computer engineers as the professionals who put the computer into
a process. That is, computer engineers design the computers and integrate them into
systems that can control a process of interest. It is the computer scientists who analyze
the process of interest and describe how the process is to be designed and implemented as
computer software. Similarly, it is the information systems technologists who apply the
tools designed by the computer engineers and computer scientists to the needs of an
organization, such as a business. The purpose of this article is to give you a hint of how
computer scientists think and what they do.

THE SCIENCE OF COMPUTING
At its core, the science of computing involves the rigorous study of process, in particular,
the study of processes that can be carried out by the devices we call computers. The
scientific (and practical) questions of interest include: How do we carry out a process
methodically? How do we describe what we do so that computers can carry out the
process? How do we describe the objects that we are processing? How do know that we
are doing it correctly? How do we do it efficiently? Are there some things we cannot do
efficiently? Are there some things we cannot do at all? How do we carry out the process
if we can do many things at the same time? How do we organize our work to describe a
process, especially as the process becomes large and complex? And so forth.

Consider a different example, the process of baking chocolate chip cookies. If a person
wishes to bake a batch of chocolate chip cookies (at least for the first time), he or she
consults a recipe, such as the famous recipe for Toll House cookies shown in Figure 7
[http://www.VeryEasyBaking.com]. The recipe assumes that there is a human baker and
a kitchen available that is equipped with an oven and appropriate baking utensils. The

 5

recipe also assumes that the needed ingredients have been collected. The recipe then
describes exactly what needs to happen for the baker to take the ingredients and use the
equipment available to bake the cookies. The recipe gives a sequence of instructions that
are meaningful to a baker in the kitchen: preheat, combine, beat, add, stir, drop, bake, and
cool. The recipe also gives some indication of the amount of time it takes to bake the
batch of cookies and how many cookies to expect.

In computer science terminology, the recipe for the process of baking chocolate chip
cookies is called an algorithm. The inputs to the algorithm are the ingredients and the
batch of cookies is the output of the algorithm. A program is the description of the recipe
written in a specific language. This is the software for carrying out the process. The
person who writes the program is called a programmer. The specialized language in
which the program is written is the programming language. The hardware supporting the
process consists of the oven, the baking utensils, and, of course, the baker. The process of
applying the recipe to bake cookies is called execution of the program.

Original Nestlé Toll House Chocolate Chip Cookies

Estimated Times:
Preparation - 15 min | Cooking - 9 min | Cooling Time - 15 min cooling | Yields - 60

Ingredients:
• 2 1/4 cups all-purpose flour
• 1 teaspoon baking soda
• 1 teaspoon salt
• 1 cup (2 sticks) butter or margarine, softened
• 3/4 cup granulated sugar
• 3/4 cup packed brown sugar
• 1 teaspoon vanilla extract
• 2 large eggs
• 2 cups (12-ounce package) NESTLÉ TOLL HOUSE Semi-Sweet Chocolate Morsels
• 1 cup chopped nuts

Directions:
PREHEAT oven to 375° F.

COMBINE flour, baking soda and salt in small bowl. Beat butter, granulated sugar,
brown sugar and vanilla extract in large mixer bowl until creamy. Add eggs, one at a
time, beating well after each addition. Gradually beat in flour mixture. Stir in morsels and
nuts. Drop by rounded tablespoon onto ungreased baking sheets.

BAKE for 9 to 11 minutes or until golden brown. Cool on baking sheets for 2 minutes;
remove to wire racks to cool completely.

Figure 7. Recipe for Nestlé Toll House Chocolate Chip Cookie
[http://www.VeryBestBaking.com]

 6

ENGINEERING OF COMPUTER PROGRAMS
Computers may have been called “giant brains” in old science fiction movies, but that is
nonsense. At their basic level, computers are incredibly dumb. They need to be given
very precise instructions with no room for ambiguity. The only language understood by a
computer’s hardware directly is its machine language. Each instruction in the machine
language is just a sequence of 0’s and 1’s encoded as strings of bits (Figure 8) in the
computer’s memory. The data that these instructions act upon are themselves just strings
of bits that encode numbers, letters, and other values. The instructions describe simple
actions such as to add two integers or move data from one memory location to another.

Figure 8. Computer and Its Bits

[Microsoft Word Clip Art]

A process that a human programmer wishes to encode within a computer is typically
stated in much different terms than sequences of bits. How can we bridge the gap
between the high-level concepts in the process as understood by humans and the low-
level actions that can be carried out by a computer?

Let’s look back at the recipe in Figure 7. It gives the direction to “stir in the morsels and
nuts.” Think about this for a moment. This is really a high-level description of a whole
bunch of small actions such as: pick up 10 morsels and 3 nuts, put these in the mixing
bowl, pick up a spatula, insert the spatula into the batter in the bowl, move spatula in a
circular motion for 7 revolutions, remove the spatula (do not lick it!), put down the
spatula, and then repeat this sequence again until all morsels and nuts are evenly
distributed in the batter. Then, if we think about each of these smaller actions, we see
that they are also high-level descriptions of even lower-level sequences of actions. And
so forth.

Similarly, if we wish to design a computer program for a process, we start with a high-
level, but precise, description of the process and its data (i.e., the requirements) and
decompose each action or type of data into simpler actions and data. We then focus on
each simpler item and decompose it further. We continue this technique until we can
express the actions and data in terms that are meaningful to the computer hardware. We
often organize the resulting software design into a layered architecture as show in Figure
9. One layer provides small processes that can be used to implement the larger processes

 7

at the level above it. The layer, in turn, is implemented in terms of the processes in the
layer below. We can think of a layer as a virtual machine of software instructions
available to implement programs in the higher layer.

Of course, programmers don’t have to go all the way to the machine language layer every
time. They can reuse a lower layer that has been designed and implemented previously.
They can also use specialized software tools (i.e., programs) to help develop the desired
new program. For example, consider Figure 9 again. Suppose Layer 1 represents a high-
level programming language. A programmer might then use that programming language
to write a new program in Layer 2. Then the programmer can use a software tool called a
compiler to translate this high-level language program to a machine language program
that is supported by the machine (Layer 0). This is illustrated by Figure 10.

Although computers are superb at handling an enormous number of details at one time,
human beings are overwhelmed when the number and complexity of the details get
beyond the capacity of our finite minds. To be productive, we must simplify the situation.
A layered architecture, as described above, illustrates a more general approach to dealing
with complexity in computer programs—abstraction.

Abstraction means to ignore the unimportant details and focus on the essential features.
We must look for common patterns and represent groups of low-level entities and actions
as higher level entities and actions. For example, a novice baker may need to refer the
detailed recipe for chocolate chip cookies given in Figure 7. A more experienced
apprentice baker may be comfortable with a (more abstract) sequence of higher level
instructions such as “combine ingredients into batter and drop on ungreased baking
sheet.” A master baker might only need abstract instructions such as “bake a batch of
chocolate chip cookies” and “bake an apple pie.” The abstractions enable the baker to
handle many complex processes that must be done in conjunction with each other.

Layer 2

Layer 1

 Layer 0

Figure 9. Layered Architecture

High-level language
program

Compiler Machine
language
program

Computer

Figure 10. Translating between Layers

 8

There are two kinds of abstractions at work here. Procedural abstractions are
abstractions of actions, for example, “bake.” Data abstractions are abstractions of objects
that are acted upon, for example, “a batch of chocolate chip cookies.” Both kinds of
abstraction are important in the engineering of computer programs.

THE PROFESSIONAL DISCIPLINE OF COMPUTER SCIENCE
Computer science is a scientific and engineering discipline. Although computer scientists
may play computer games, surf the web, use word processors and spreadsheets, and even
open up the case on a PC and tinker with the hardware from time to time, those are not
activities that describe what it means to be a computer scientist. Like other scientific and
engineering disciplines, computer science involves a body of knowledge (i.e., a set of
facts and theories), a set of practices that guide work in the field, and (perhaps more
importantly) a way of thinking. We described some aspects of the way of thinking in the
previous sections—understanding processes and the engineering of a layered architecture
of appropriate abstractions to encode the processes for execution by a computer.

What computer scientists do can be characterized in two ways. First, there are the purely
scientific activities noted in a previous section—the study of processes and how
processes can be represented as algorithms and programs. Computer science researchers
work to extend and deepen our understanding of these fundamentals. Second, there are
the more practical activities of using an understanding of the science of computing to
design and implement algorithms and programs to solve real-world problems using
computers. The real-world problem might be an automated bakery, an adaptive traffic
signal, a chess-playing computer, the special effects for the next blockbuster movie, or
the operation of a global system to detect earthquakes and tsunamis.

The various scientific and practical activities have their bases in the different topics
studied by computer science students. Well-educated computer scientists must have an
understanding of what processes can be represented as algorithms for a computer and
what cannot. This topic is called the theory of computation. They should also be able to
determine how efficient an algorithm is, that is, how much time and storage space does
the algorithm take to run in proportion to the size of its inputs. This topic is known as the
analysis of algorithms. To keep track of the data needed for algorithms to work
efficiently, a computer scientist must organize that data in an appropriate manner within
the computer. This topic is known as the study of data structures. If the set of data is
diverse, huge, long-lived, or used by several different processes, then a database may be
needed to organize and store the data. That is another major topic of study for computer
science students.

As a practical matter, computer scientists must have a mastery of the fundamental
methods and technologies of computing. They must be able to develop an algorithm for a
problem and describe it in a representation appropriate to execute on a computer. This
basic task is called programming and the notation used for describing programs is a
programming language. The programmer should verify that the program correctly solves
the problem and test it to discover any defects. Program development and execution
depend upon other technologies. To use computers effectively, programmers must

 9

understand the basics of the computer organization and network architectures. They
must also have a working knowledge of key system-level software technologies. These
include the operating system that manages and controls a computer’s basic operation,
networking software that enables many computers to communicate and coordinate their
activities, and programming language compilers, interpreters, and runtime systems that
translate the programming notations to instructions the computer can execute directly.

Although computer science practitioners work with computers, they must also consider
the human and social aspects of computing. While programming develops a computer
program to solve a problem, systems analysis helps determine what problem needs to be
solved to meet the human needs. While the theory of computation deals with what can be
done with computers, the topic of computing ethics is concerned with what should (and
should not!) be done from ethical, social, and legal perspectives. While analysis of
algorithms and data structures deal with the effectiveness of the computer algorithms, the
topic of human-computer interaction is concerned with the effectiveness of the human
users of the computer program. While programming deals with the software
development activities of a single human, the topic of software engineering is concerned
with the situation where the software becomes too large and complex for one person to
master. It deals with both the technical and the organization challenges of large software
development projects.

Although computer hardware and software are interesting objects on their own, it is the
application of computers to real-world problems that have the most practical significance.
Many emerging applications of computers are areas of study and research by computer
scientists in conjunction with other scientists, engineers, mathematicians, and subject
matter specialists. For example, the field of bioinformatics looks at how to gather, store,
process, and interpret huge sets of scientific data drawn from biological, biochemical, and
medical experiments and tests. It seeks to use computing tools to understand life and
develop cures for diseases. Another active area of application is digital media that looks
at effective ways to gather, store, present, and interact with information consisting of a
multimedia mix of text, two- and three-dimensional graphics, animation, sound, and
touch. Digital media include such technologies as computer games, training simulators,
and interactive Web sites.

PREPARING TO PRACTICE THE PROFESSION
How should a person prepare to practice this exciting and important discipline called
computer science?

At the high school level, the preparation is almost the same as for any other scientific or
engineering discipline. It is important to have a grasp of the fundamental pre-calculus
mathematics (algebra, geometry, and trigonometry). Some study of calculus or discrete
mathematics concepts would be helpful but is not essential. The ability to think logically
and reason about quantitative concepts is more important than a lot of rote learning of
facts or methods. It is important to understand the scientific method and have a good
understanding of the basic principles of chemistry, physics, biology, and earth science.
As should be the case with all well-educated citizens, it is also important to be able to

 10

communicate clearly and effectively in both written and oral forms. It is important to
have an understanding of human society that can come from the study of history,
government, and other social studies. It is not essential to have previous computer
programming experience, but it is helpful if you are comfortable using computers.

At the college level, you should study in a program in computer science. An ABET-
accredited professional program in computer science typically includes:

• five or six courses in mathematics including differential and integral calculus, discrete

mathematics, linear algebra, and probability and statistics
• four courses in the natural sciences
• two courses in English composition
• one course in speech
• seven other courses in the humanities, social sciences, and fine arts
• a number of courses in computer science including introductory concepts,

programming in a high-level language such as Java or C++, data structures, computer
organization, digital logic, operating systems and networks, theory of computation,
analysis of algorithms, programming language organization, databases, software
engineering, and professional ethics.

In addition to the formal coursework, it is important for you to obtain practical
experiences in computing through internships, co-operative education experiences, part-
time jobs, and general tinkering with the technologies being studied.

PRACTICING THE PROFESSION (OR ANOTHER)
The study of computer science at the college level is a good preparation for many fields
of professional endeavor. It encourages the development of problem-solving skills,
logical reasoning, attention to detail, and abstraction abilities. These serve the graduate
well in his or her future studies, career, and life.

After study of computer science at the undergraduate level, some graduates will go on to
graduate study in computer science to become a more skilled practitioner, a researcher, or
a college professor. Other graduates move on to professional studies in medicine,
dentistry, law, and management. Others may directly enter areas such as sales or
management.

Most computer science graduates go on to technical careers in computing, at least
initially. They may assume various professional positions (as illustrated in Figure 11) in
business, industry, academia, government, or research institutions. The computer
professional may sometimes work alone, but often they will be part of a multidisciplinary
team that must analyze a problem, devise approaches to a solution, select the best
solution, and then design, implement, test, install, and support a computer-based product
that solves the problem. Figure 12 illustrates how various job roles might cooperate in the
development of a software product. Figure 13 shows the relationship between various
support roles and software product development.

 11

Figure 11. Selected Job Roles for Computer Science Graduates

Some computing careers require considerable software development. These are mainly
programmers, system analysts, and software engineers. While programmers are
individuals with varied educational backgrounds whose main task is programming,
system analysts and software engineers are more concerned with the analysis and design
of the entire system. A related job that requires considerable software knowledge is a
tester who is part of the quality assurance team in product development. A detailed
description of the various job responsibilities is given in the table in Figure 14.

Software
Tester

Faculty/
Training

Researcher

Software
Engineer

Database
Administrator

Systems
Analyst

Network and
System

Administrator
-Security

 Specialist

Programmer
 -Systems
 -Applications
 -Scientific
 -Business

COMPUTER
SCIENCE

JOBS

 12

Figure 12. Computer Professionals in Software Product Development

[Microsoft Word Clip Art Components]

Figure 13. Computing Jobs in a Company [Microsoft Word Clip Art Components]

 13

Figure 14. Software Development Jobs

Typically system analysts and software engineers begin their careers with an initial focus
on programming and as they gain more experience, they move into the more planning
oriented roles. A doctorate in computer science may enable one to move directly into
system design roles based on research experience. These roles require a thorough
understanding of system and software design principles that can be gained through
experience or research.

Other computing careers require technical hardware and software knowledge but do not
require extensive software development. These include network and systems
administrators, database administrators, security specialists, and support specialists as
shown in Figure 15.

At this point, it is important to consider the difference between an education in computer
science and engineering and technical training. The former, in the setting of a four-year
college, seeks to lay the foundation of attitudes, methods, knowledge, and skills for a
long, productive career as a scientist and engineer. The latter seeks to prepare the students
for jobs as technologists or technicians by teaching them the practical skills and
knowledge needed for an immediate job. Good technicians are needed to keep society
functioning, but it is the scientists and engineers who help design the future.

Job Title Responsibilities

Systems Analyst

• Discuss system requirements with users
• Define system to satisfy user needs; specify hardware and

software requirements for system
• Possess good communication skills
• Have extensive knowledge of both technical capabilities

and business organization

Software Engineer

• Design and build software using existing models
• Analyze user’s needs; design, implement, test, and

maintain large software systems
• Apply software practices to ensure product reliability,

cost effectiveness, and security
• Responsible for entire "life cycle" of a software system

Programmer
• Design, write, test, and maintain programs for a variety of

applications

Software Tester

• Design and implement new test cases to test product
functionality

• Assess functionality and integrity of product by carrying
out testing on different platforms

• Identify errors and report required changes in software

 14

Job title Responsibilities

Network and System Administrators

• Design, install, and maintain organization’s
computer network

• Maintain network hardware and software
• Implement and maintain network security

measures
• Install computer systems software
• Manage computer systems
• Plan for future network growth

Security Specialists

• Install and maintain secure systems
• Specify security rules and procedures
• Develop methods and install software to

prevent unauthorized access
• Monitor log files for suspicious activities

Database Administrators
• Maintain large data bases
• Responsible for performance, access control,

data integrity, and database security

Support Specialists

• Provide technical assistance, support, and
advice to customers and other users

• Answer telephone calls; analyze problems
using automated diagnostic programs, and
resolve recurrent difficulties

• Present as help desk technicians or customer
service representatives

Figure 15. Other Technical Computing Jobs

There has been considerable concern in recent years that all the good computing jobs are
leaving the United States to go to off-shore locations. This concern is exaggerated. It is
the case that jobs have been “out-sourced” to such locations. This will continue to be the
case because the general computing infrastructures, knowledge, and skills have greatly
improved in a number of countries in the world and will continue to do so. However,
many of these “off-shored” jobs are in areas such as customer support centers and well-
defined programming and testing tasks. Jobs that require physical presence and/or an
intense understanding of the business and national culture cannot be readily out-sourced.
These include jobs such as systems and network administration, systems analysis, and
database administration. Businesses are less likely to out-source high-profile roles that
are of strategic importance to the future success of the company. These highly skilled
positions will likely stay close to the home office of the company. These are jobs such as
security specialists, system architects, and the software engineers who define and manage
the work undertaken on an out-sourced basis. Also a number of new areas are developing
at the interface between computing and other disciplines in which the developed world
will continue to have an advantage for some time—areas such as bioinformatics and
multimedia technologies. American programmers can no longer rely on simple
knowledge of a programming language and a few other technologies to assure them of
high paying jobs. However, strong high-level systems analysis and software engineering
skills will continue to be in demand in the United States.

