
A UNITY-style Programming Logic
for Shared Dataspace Programs

H. Conrad Cunningham Gruia-Catalin Roman

Department of Computer and Department of Computer Science
Information Science Washington University

University of Mississippi Campus Box 1045, Bryan 509
302 Weir Hall One Brookings Drive

University, Mississippi 38677 Saint Louis, Missouri 63130-4899

(601) 232-5358 (314) 889-6190
cunningham@cs.OLEMISS.edu roman@cs.WUSTL.edu

June 14, 2003

Abstract

The term shared dataspace refers to the general class of programming languages in

which the principal means of communication among the concurrent components of programs

is a common, content-addressable data structure called a dataspace. In the programming lan-

guage and artificial intelligence communities, there is considerable interest in such languages,

e.g., logic-based languages, production rule systems, and the Linda language. However, these

languages have not been the subject of extensive program verification research. This paper

specifies a proof system for a shared dataspace programming notation called Swarm—a pro-

gramming logic similar in style to that of UNITY. The paper then uses the proof system to

reason about a Swarm program to label the equal-intensity regions of a digital image.

Index Terms

Concurrent languages, concurrent programming, program verification,

programming logic, UNITY, shared dataspace, Swarm

1 Introduction

Much of the research on verification of concurrent programs has focused on languages with

semantics similar to Dijkstra’s Guarded Commands [9] or Hoare’s Communicating Sequential

Processes [11]. Programs in such languages normally involve a moderate level of interaction

among largely sequential segments of code, thus limiting the level of parallelism possible. An

executing program accesses data entities (variables) by their names; the computation proceeds by

transforming the state of these entities.

A few recent programming notations, such as UNITY [5], Action Systems [2], and event pred-

icates [12], have banished sequentiality from the languages, but have retained the state-transition

and named-variable concepts. While preserving many of the results of program verification re-

search, these languages make concurrency the normal case, sequentiality the special case.

Interest has also grown in languages which access entities by content rather than by name—

logic-based languages (e.g., Prolog [23]), production rule systems (e.g., OPS5 [3]), and tuple

space languages (e.g., Linda [1, 4]). The content-addressable approach seems to encourage higher

degrees of concurrency and more flexible connections among components. Program verification

techniques for such languages are just beginning to be researched.

Because we desire high degrees of concurrency while preserving the programming and verifi-

cation convenience of the traditional imperative framework, we have focused our research on a

new approach to concurrent computation. We are studying concurrent programming languages

which employ the shared dataspace model [17], i.e., languages in which the primary means for

communication among the concurrent components is a common, content-addressable data struc-

ture called a shared dataspace. Such languages can bring together a variety of programming styles

(synchronous and asynchronous, static and dynamic) within a unified computational framework.

The main vehicle for this investigation is a programming model and notation called Swarm

[20]. The design of Swarm was influenced by the previous work on Linda [1, 4], Associons [15, 16],

OPS5 [3], and UNITY [5]. Following the simple approach taken by the UNITY model, we sought

to base Swarm on a small number of constructs we believe are at the core of a large class of

shared dataspace languages. The state of a Swarm program consists of a dataspace, i.e., a set of

transaction statements and data tuples. Transactions specify a group of dataspace transformations

that are performed concurrently.

1

Swarm is proving to be an excellent vehicle for investigation of the shared dataspace paradigm.

We have defined the Swarm programming notation and specified a formal operational model

based on a state-transition approach [7, 20]. Our research is exploring the implications of the

shared dataspace approach and the Swarm model for algorithm development and programming

methodology [21]. To facilitate formal verification of Swarm programs, we have developed an

assertional programming logic and are devising proof techniques appropriate for the dynamic

structure of Swarm [7, 22]. In a related effort, we are investigating the use of the shared dataspace

model as a basis for a new approach to the visualization of the dynamics of program execution

[18, 19].

In this paper, we specify a proof system for Swarm similar in style to that of UNITY and

illustrate its use by proving the correctness of a program to label the equal-intensity regions of a

digital image. UNITY uses an assertional programming logic built upon its simple computational

model. By the use of logical assertions about program states, the programming logic frees the

program proof from the necessity of reasoning about the execution sequences. Instead of anno-

tating the program text with predicates as many Hoare-style assertional systems do, the UNITY

logic seeks to extricate the proof from the text by relying upon proof of program-wide properties,

e.g., global invariants and progress properties.

With the Swarm logic, we extend these ideas into the shared dataspace framework. Swarm’s

underlying computational model is similar to that of UNITY, but has a few key differences. A

UNITY program consists of a static set of deterministic multiple-assignment statements acting

upon a shared-variable state space. The statements in the set are executed repeatedly in a nonde-

terministic, but fair, order. Swarm is based on less familiar programming language primitives—

nondeterministic transaction statements which act upon a dataspace of anonymous tuples—and

extends the UNITY-like model to a dynamically varying set of statements. To incorporate these

features, we define a proof rule for transaction statements to replace UNITY’s rule for multiple-

assignment statements, redefine UNITY’s ensures relation to accommodate the creation and

deletion of transaction statements, and replace UNITY’s use of fixed-point predicates with other

methods for determining program termination. Otherwise, the programming logics are identical.

This paper has three parts. Section 2 overviews relevant aspects of the Swarm language and

model. Section 3 introduces the Swarm programming logic. In Section 4, we use the Swarm logic

to verify a solution to the region-labeling problem; this program first appeared in [20].

2

2 The Swarm Notation

In this section we introduce the Swarm notation and model by discussing a simple pro-

ducer/consumer program. We first present a program expressed in a familiar imperative notation—

a concurrent dialect of Dijkstra’s Guarded Commands (GC) [9] language. We then construct a

Swarm program to solve the same problem.

Consider a simple producer/consumer scenario where a producer process sends a sequence of

values to a consumer process through a buffer. We want to construct a program which has the

following characteristics:

1. The buffer never contains more than one value.

2. If the buffer is empty, then the next value will eventually be placed into the buffer by the

producer.

3. If the buffer contains a value, then the value will eventually be removed from the buffer by

the consumer.

Requirement 1 is a safety property that the program must satisfy and requirements 2 and 3 are

progress properties.

A simple GC program having these characteristics is not difficult to state. Suppose process

Producer sends a sequence of integer values to process Consumer via one-place buffer buf . If

the integer variable x has been initialized to some integer value and the boolean flag empty to

the value true, then we can express this two-process program as follows:

Producer ::
do empty −→ buf, empty, x := x, false, x+ 1

¬empty −→ skip
od

Consumer ::
do ¬empty −→ y, empty := buf, true

empty −→ skip
od

We assume that each assignment statement and loop test is executed atomically. We further

assume that any execution of this two-process program can be modeled accurately by a fair

interleaving of the atomic actions of the two processes.

Swarm is a shared dataspace programming model. Instead of expressing a computation in

terms of a group of named variables, Swarm uses a finite set of tuples called a dataspace. Each

3

tuple is a pairing of a type name with a finite sequence of values; a program accesses a tuple

by its content—type name and values—rather than by a specific name or address. Swarm pro-

grams execute by deleting existing tuples from and inserting new tuples into the dataspace. The

transactions which specify these atomic dataspace transformations consist of a set of query-action

pairs executed in parallel. Each query-action pair is similar to a production rule in a language

like OPS5 [3].

How can we express the producer/consumer algorithm in Swarm? First, consider the repre-

sentation of the data in the algorithm. To represent the buffer we introduce the tuple type buf .

We let the single component of a buf tuple hold an integer value currently in-transit between the

producer and the consumer. Since tuples of this type need only exist in the dataspace when there

is a value that has been produced but not yet consumed, we do not need to introduce a Swarm

analogue of the GC program’s boolean flag empty.

Now we can focus on the representation of the processing actions. Consider the consumer

process. We can specify the removal of a value from the buffer in the following way:

v : buf(v)−→ buf(v)†

In this notation, the part of the construct to the left of the “−→” is the query; the part to the

right is the action. The identifier v designates a variable local to the query-action pair.

The execution of a Swarm query is similar to the evaluation of a clause in Prolog [23]. The query

shown in the previous paragraph causes a search of the dataspace for a tuple of type buf . If one

or more solutions to the query are found, then one of the solutions is chosen nondeterministically,

the matched value is bound to the local variable v, and the action is performed with this binding.

If no solution is found, then the query is said to fail and the specified action is not taken.

In the query-action pair shown above, the action part specifies that the tuple buf(v), where v

has the value bound by the query, is to be deleted from the dataspace. Swarm uses the † symbol

to mark a tuple for deletion. An unmarked tuple form appearing in the action part indicates

that the corresponding tuple is to be inserted. Several tuples may be deleted and inserted in

one action; the appropriate tuple forms are separated by commas. Although the execution of a

query-action pair is atomic, the effect of an action is as if all deletions are performed first, then

all insertions.

In Swarm there is no concept of a process and there are no sequential programming constructs.

Only transactions are available. Like data tuples, transactions are represented as tuple-like entities

4

in the dataspace. (We thus partition the dataspace into two finite subsets, the tuple space and

the transaction space.) A transaction has a type name and a finite sequence of values called

parameters. Transaction instances can be queried and inserted in the same way that data tuples

are, but cannot be explicitly deleted.

The consumer process can be expressed by a transaction of type Consumer having one pa-

rameter, the value of the integer most recently read from the buffer. If the buffer contains a value,

the transactions of this type can read the value, delete the buf tuple, and insert the appropriate

Consumer transaction needed to continue the computation. If the buffer is empty, then the trans-

action reinserts itself—thus waiting for a value to appear in the buffer. We define the Consumer

transaction type as follows:

Consumer(Y) ≡
v : buf(v) −→ buf(v)†, Consumer(v)

‖ [∀ v :: ¬buf(v)] −→ Consumer(Y)

Note that we use the values of parameters as constants throughout the body of transaction. We

call each individual query-action pair a subtransaction and the overall parallel construct connected

by ‖-operators a transaction.

We model the execution of a Swarm program in the following way. The program begins

execution with the specified initial dataspace. On each execution step, a transaction is chosen

nondeterministically from the transaction space and executed atomically. The cumulative effect

of executing a transaction is as if the subtransactions are executed synchronously: all queries

are evaluated first, then the indicated tuples are deleted, and finally the indicated tuples and

transactions are inserted. Unless the transaction explicitly reinserts itself into the dataspace, it is

deleted as a by-product of its own execution—regardless of the success or failure of its component

queries. Program execution continues until there are no transactions remaining in the dataspace.

Taking advantage of two other Swarm features, we can also express the Consumer transaction

in the following equivalent, but more compact, way:

Consumer(Y) ≡
v : buf(v)† −→ Consumer(v)

‖ NOR −→ Consumer(Y)

In this transaction type definition we have moved the † operator into the query part. As before, the

tuple marked by the † is deleted if the entire query is successful. The NOR used in this definition

is one of the special built-in predicates provided in Swarm. A NOR predicate succeeds if none

5

program P1 C1 B1
tuple types

[V ::
buf(V)

]
transaction types

[X,Y ::
Producer(X) ≡

v : buf(v) −→ Producer(X)
‖ NOR −→ buf(X), P roducer(X+1) ;

Consumer(Y) ≡
v : buf(v)† −→ Consumer(v)

‖ NOR −→ Consumer(Y)
]

initialization
Producer(0) ; Consumer(0)

end

Figure 1: A Simple Producer/Consumer Program with a One-Place Buffer

of the other queries involving only regular predicates succeeds. In this example, NOR succeeds

if the query involving buf(v), the only regular query in the transaction, fails. The special built-in

predicates are OR, AND, NOR, and NAND, meaning any, all, none, and not-all, respectively.

In a manner similar to the Consumer transaction, we can define a Producer transaction type

to represent the producer process. Transactions of this type have one parameter, the value of

the next integer to place into the buffer. The Producer transaction repeatedly “waits” until

the buffer is empty, then inserts the next value. The full producer/consumer program is shown

in Figure 1. Note that the program is initialized with the tuple space empty and transaction

instances Producer(0) and Consumer(0) in the transaction space.

For this producer/consumer computation to make progress, i.e., pass a sequence of integer

values from producer to consumer through the buffer, one constraint must be placed upon the

selection of transactions for execution: every transaction present in the transaction space at any

point in the computation must eventually be executed. That is, Swarm transactions must be

selected for execution in a (weakly) fair manner [10].

To illustrate other characteristics of the Swarm model and notation, we can now modify the

producer/consumer program in various ways. Figure 2 shows a producer/consumer program which

6

program P1 C1 Bn(N : N > 0)
tuple types

[I, V : 0 ≤ I < N ::
buf(I, V)

]
transaction types

[I,X, Y : 0 ≤ I < N ::
Producer(I,X) ≡

v : buf(I, v) −→ Producer(I,X)
‖ NOR −→ buf(I,X), P roducer((I+1) mod N,X+1) ;

Consumer(I, Y) ≡
v : buf(I, v)†−→ Consumer((I+1) mod N, v)

‖ NOR −→ Consumer(I, Y)
]

initialization
Producer(0, 0) ; Consumer(0, 0)

end

Figure 2: A Producer/Consumer Program with an N-Place Buffer

uses an N -place buffer. For this program we add a component to the buf tuple to record the buffer

position at which the value is stored. A parameter is also added to each of the transactions to

record the next buffer position to be operated upon. Note that the values of the first components

of each are restricted to the range 0 through N − 1 inclusive.

To enable several producers to supply a single consumer through an N -place buffer, the next

sequence number for an element of the buffer must be shared by all of the producer transactions.

In Figure 3 we add a tuple of type next to coordinate the sequencing among the producers. (A

comma separating predicates is interpreted as a logical and connective.) To allow differentiation

among the producers, we also add parameter K to both the Producer transaction and the buf

tuple.

We might ask whether the Consumer transaction in Figure 3 receives a fair merge of the

sequences generated by the producers. Unfortunately, the fairness in selection of a transaction

for execution is insufficient to guarantee fair merging of the sequences. For example, consider two

producers, P1 and P2, consumer C, and a one-place buffer (N = 1). The cyclical scheduling P1→

P2 → C of the three transactions satisfies the fairness requirement for transaction scheduling,

but C never receives a value generated by P2. Similar problem schedules can be found for any

7

program P2 C1 Bn(N : N > 0)
tuple types

[I,K, V : 0 ≤ I < N, K ≥ 0 ::
buf(I,K, V) ;
next(I)

]
transaction types

[I,K,X, Y : 0 ≤ I < N, K ≥ 0 ::
Producer(K,X) ≡

i, j, v : next(i), buf(i, j, v) −→ Producer(K,X)
‖ i : NOR, next(i)† −→ buf(i,K,X), P roducer(K,X+1),

next((i+1) mod N) ;

Consumer(I, Y) ≡
j, v : buf(I, j, v)† −→ Consumer((I+1) mod N, v)

‖ NOR −→ Consumer(I, Y)
]

initialization
next(0) ; Producer(1, 0) ; Producer(2, 0) ; Consumer(0, 0)

end

Figure 3: Two Producers Using an N-Place Buffer

bounded-length buffer. However, if an unbounded buffer is used, the fairness of the transaction

scheduling will guarantee that the consumer will receive a fair merge of the sequences from the

two producers.

3 A Programming Logic

This section presents an assertional programming logic for Swarm, building upon the formal

model given in [7] and [20]. The model and logic presented here focus on the Swarm notation as

described in the previous section.

Execution Model. A Swarm dataspace can be partitioned into a finite tuple space and a

finite transaction space. For a dataspace d, Tp.d denotes the tuple space of d, Tr.d the transaction

space. The tuple types and transaction types sections of a program define the set of all possible

tuple instances TPS and all possible transaction instances TRS.

We model a Swarm program as a set of execution sequences, each of which is infinite and

denotes one possible execution of the program. Let e denote one of these sequences. Each element

8

ei, i ≥ 0, of sequence e is an ordered pair consisting of a program dataspace Ds.ei and a set

Sg.ei containing a single transaction chosen from Tr.Ds.ei. (If Tr.Ds.ei = ∅, then Sg.ei = ∅.)

The transition relation predicate step expresses the semantics of the transactions in TRS;

the values of this predicate are derived from the query and action parts of the transaction body.

The predicate step(d, S, d′) is true if and only if the transaction in set S is in dataspace d and the

transaction’s execution can transform dataspace d to a dataspace d′. (The predicate step(d, ∅, d′)

is true if and only if Tr.d = ∅ and d = d′.)

We define Exec to be the set of all execution sequences e, as characterized above, which satisfy

the following criteria:

• Ds.e0 is a valid initial dataspace of the program.

• For i ≥ 0, step(Ds.ei,Sg.ei,Ds.ei+1) is true.

• e is fair, i.e., 〈∀ i, t : 0 ≤ i ∧ t ∈ Tr.Ds.ei ::

〈∃ j : j ≥ i :: Sg.ej = {t} ∧ 〈∀ k : i ≤ k ≤ j :: t ∈ Tr.Ds.ek〉〉〉.

Terminating computations are extended to infinite sequences by replication of the final dataspace.

Although we could use this formalism directly to reason about Swarm programs, we prefer to

reason with assertions about program states rather than with execution sequences. The Swarm

computational model is similar to that of UNITY [5]; hence, a UNITY-like assertional logic seems

appropriate. However, we cannot use the UNITY logic directly because of the differences between

the UNITY and Swarm frameworks.

In this paper we follow the notational conventions for UNITY in [5]. We use Hoare-style asser-

tions of the form {p} t {q} where p and q are predicates over the dataspace and t is a transaction

instance. Properties and inference rules are often written without explicit quantification; these

are universally quantified over all the values of the free variables occurring in them. We use the

notation p(d) to denote the evaluation of predicate p with respect to dataspace d and the notation

(p∧¬q)(ei) to denote the evaluation of the predicate p ∧¬q with respect to Ds.ei. Below we also

use the notation [t] to denote the predicate “transaction instance t is in the transaction space.”

Transaction Rule. UNITY’s basic construct is the assignment statement. Hence, its pro-

gramming logic is built around the well-known proof rule for the assignment statement. Similarly,

the programming logic for Swarm is built around a proof rule for its basic construct—the trans-

9

action. However, because of the nature of the transaction, the formulation of the transaction rule

differs from that of the assignment.

Swarm transaction statements are nondeterministic; execution of a transaction from a given

state (i.e., dataspace) may result in any one of potentially many next states. This arises because

a transaction’s query may have many possible solutions with respect to a given dataspace. When

multiple solutions exist, the execution mechanism chooses one of the solutions nondeterministi-

cally. (The Swarm model requires that transactions be selected for execution fairly, but does not

require that the choice among alternative solutions to a transaction’s query be fair.)

Accordingly, we define the meaning of the assertion {p} t {q} for a given Swarm program in

terms of the transition relation predicate step as follows:

{p} t {q} ≡ 〈∀ d, d′ : step(d, {t}, d′) :: p(d)⇒ q(d′)〉.

Informally this means that, whenever the dataspace satisfies the precondition predicate p and

transaction instance t is in the transaction space, all dataspaces which can result from execution

of transaction t satisfy postcondition q. In terms of the execution sequences this rule means

〈∀ e, i : e ∈ Exec ∧ 0 ≤ i :: p(ei) ∧ Sg.ei = {t} ⇒ q(ei+1)〉.

Safety Properties. As in UNITY’s logic, the basic safety properties of a program are specified

in terms of unless relations. The Swarm unless rule mirrors the UNITY rule [14]:

〈∀ t : t ∈ TRS :: {p ∧ ¬q} t {p ∨ q}〉
p unless q

Informally, p unless q means that, if predicate p is true at some point in the computation and q

is not, then, after the next step, p remains true or q becomes true. (Remember TRS is the set of

all possible transactions, not a specific transaction space.) In terms of the sequences, the premise

of this rule means

〈∀ e, i : e ∈ Exec ∧ 0 ≤ i :: (p ∧ ¬q)(ei)⇒ (p ∨ q)(ei+1)〉.

From this we can deduce

〈∀ e, i : e ∈ Exec ∧ 0 ≤ i ::
p(ei)⇒ 〈∀ j : j ≥ i :: (p ∨ ¬q)(ej)〉 ∨

〈∃ k : i ≤ k :: q(ek) ∧ 〈∀ j : i ≤ j ≤ k :: (p ∧ ¬q)(ej)〉〉〉.

10

In other words, p unless q means that, if p becomes true, then either (1) p ∧ ¬q continues to

hold indefinitely or (2) q holds eventually and p continues to hold at least until q holds.

Stable and invariant properties are key notions of the proof theory. If a stable predicate

becomes true at any point during an execution of a program, then it continues to hold throughout

the remainder of the execution. An invariant is a stable predicate which is true initially and,

hence, holds invariantly throughout the execution of the program. Both can be defined easily as

follows:

stable p ≡ p unless false

invariant p ≡ (INIT ⇒ p) ∧ (stable p)

The predicate INIT is a predicate which characterizes the valid initial states of the program. Note

that the stable rule can be restated as

〈∀ t : t ∈ TRS :: {p} t {p}〉.

That is, stable property p is preserved by all possible transactions of the program.

If both p and ¬p are stable, we call p a constant property. That is,

constant p ≡ (stable p) ∧ (stable ¬p).

For an example of a safety property, consider the producer/consumer program P1 C1 B1 from

Section 2. The first requirement given was that “the buffer never contains more than one value.”

Using the Swarm logic, we can state this requirement formally as follows:

invariant 〈#v :: buf(v)〉 ≤ 1

In this invariant the # operator denotes the operation of counting the number of elements (buf

tuples) satisfying the quantification predicate (true is this case).

To prove this predicate (call it p) to be invariant we must:

• show that INIT ⇒ p holds,

• show that p is stable, i.e., for all transactions t, {p}t{p} holds.

Because the tuple space is empty at initialization, INIT ⇒ p clearly holds. Consider the stability

part of the proof. Consumer transactions never insert buf tuples. Neither do Producer trans-

actions when buf tuples are already present in the tuple space and then only a single buf tuple.

Thus p is an invariant of the P1 C1 B1 program.

11

Progress Properties. As with the UNITY logic, program progress (liveness) properties

are stated in terms of the ensures and leads-to relations. The Swarm logic uses an ensures

relation to characterize small-scale progress, i.e., the progress achieved by the execution of indi-

vidual transactions. The logic uses a leads-to relation to characterize larger-scale computational

progress, i.e., the progress achieved by sequence of transaction executions.

UNITY programs consist of a static set of assignment statements. In contrast, Swarm programs

consist of a dynamically varying set of transactions. The dynamism of the Swarm transaction

space requires a reformulation of the UNITY ensures relation. For a given program in the

Swarm notation considered in this paper, the ensures relation is defined with the following rule

of inference:

p unless q , 〈∃ t : t ∈ TRS :: (p ∧ ¬q ⇒ [t]) ∧ {p ∧ ¬q} t {q}〉
p ensures q

Informally, p ensures q, means that, if p is true at some point in the computation, then (1) p

will remain true as long as q is false and (2) if q is false, there is at least one transaction in the

transaction space which can, when executed, establish q as true. Because of the fairness criterion

for Swarm execution sequences, the second part of this definition guarantees q will eventually

become true. The only way transaction t can be removed from the dataspace is as a by-product

of its execution; the fairness criterion guarantees that if transaction t is in the transaction space

it will eventually be executed.

In terms of the execution sequences, the premise of the ensures rule means

〈∀ e, i : e ∈ Exec ∧ 0 ≤ i :: p(ei)⇒ 〈∃ j : i ≤ j :: q(ej) ∧ 〈∀ k : i ≤ k < j :: p(ek)〉〉〉.

The Swarm definition of ensures is a generalization of UNITY’s definition. If 〈∀ t : t ∈ TRS ::

[t]〉 is assumed to be invariant, then the Swarm ensures definition can be restated in a form similar

to UNITY’s ensures.

As with UNITY program proofs, the leads-to relation, denoted by the symbol 7−→, is com-

monly used in Swarm proofs. The assertion p 7−→ q is true if and only if it can be derived by a

finite number of applications of the following inference rules:

• p ensures q
p 7−→ q

• p 7−→ q, q 7−→ r
p 7−→ r

(transitivity)

• For any set W ,
〈∀ m : m ∈ W :: p(m) 7−→ q〉
〈∃ m : m ∈ W :: p(m)〉 7−→ q

(disjunction)

12

In terms of the execution sequences, from p 7−→ q, we can deduce

〈∀ e, i : e ∈ Exec ∧ 0 ≤ i :: p(ei)⇒ 〈∃ j : i ≤ j :: q(ej)〉〉.

Informally, p 7−→ q means once p becomes true, q will eventually become true. However, p is not

guaranteed to remain true until q becomes true.

For an example of a progress property, again consider the program P1 C1 B1 from Section 2.

The second requirement given was that “if the buffer is empty, then a new value will eventually

be placed into the buffer by the producer.” Using the Swarm logic, we can formally state the

essence of this requirement as follows:

Producer(i) ∧ 〈#v :: buf(v)〉 = 0 7−→ buf(i) ∧ 〈#v :: buf(v)〉 = 1.

In this property, variable i is universally quantified over all integers. For convenience, we call the

predicates on the left- and right-hand sides of this leads-to p(i) and q(i), respectively.

The above leads-to property can be directly derived from the property p(i) ensures q(i). To

prove this ensures property we must:

• show that p(i) unless q(i) holds,

• show that there is a transaction instance t such that p(i)∧¬q(i)⇒ [t] and {p(i)∧¬q(i)} t {q(i)}

hold.

The unless part of the proof is easy to see. Neither Producer nor Consumer transactions

falsify p(i) without making q(i) true.

For the existential part of the proof, we must show prove that, when p(i) holds, there is always

a transaction in the transaction space which will always establish q(i) upon execution. But the

Producer(i) transaction will do this. Since p(i)⇒ Producer(i), we thus conclude the existential

part.

Termination. UNITY programs do not terminate in the traditional sense. However, most

useful UNITY programs will reach a fixed point, i.e., a state in which further statement executions

will not change the values of any of the variables. A fixed-point predicate, FP, can be derived

syntactically from the program text.

Swarm programs may also reach fixed points, but, unfortunately, FP predicates cannot be

defined syntactically from the transaction definitions. Thus, proofs of Swarm programs must

formulate program postconditions differently—often in terms of other stable properties. But,

13

unlike UNITY programs, we have defined termination in the Swarm model: a Swarm program

terminates when the transaction space becomes empty. A termination predicate termination

can thus be defined as follows:

termination ≡ 〈∀ t : t ∈ TRS :: ¬[t]〉.

Other than the cases pointed out above (i.e., transaction rule, ensures, and FP), the Swarm

logic is identical to UNITY’s logic. The theorems (not involving FP) developed in Section 3 of

[5] can be proved for Swarm as well. We use the Swarm analogues of various UNITY theorems in

the proof in the next section.

4 A Region-Labeling Example

This section applies the programming logic given in Section 3 to the verification of a nontrivial

Swarm program. The program shown is a solution to a region-labeling problem, one of the

alternative Swarm solutions given in [20]. In this section, we formally define the problem and

correctness criteria, elaborate the program data structures, and then state the program and argue

that it satisfies the correctness criteria.

4.1 The Correctness Criteria

Region labeling is a two-dimensional variant of the classical leader election problem [6, 13]. A

region-labeling program receives as input a digitized image. Each point in the image is called a

pixel. The pixels are arranged in a rectangular grid of size N pixels in the x-direction and M pixels

in the y-direction. An xy-coordinate on the grid uniquely identifies each pixel. Also provided as

input to the program is the intensity (brightness) attribute associated with each pixel. The size,

shape, and intensity attributes of the image remain constant throughout the computation.

The concepts of neighbor and region are important in this discussion. Two different pixels

in the image are said to be neighbors if their x-coordinates and their y-coordinates each differ

by no more than one unit. A connected equal-intensity region is a set of pixels from the image

satisfying the following property: for any two pixels in the set, there exists a path with those pixels

as endpoints such that all pixels on the path have the same intensity and any two consecutive

pixels are neighbors. For convenience, we use the term region to mean a connected equal-intensity

region.

14

The goal of the computation is to assign a label to each pixel in the image such that two

pixels have the same label if and only if they are in the same region. Furthermore, we require the

program to label all the pixels in a region with the smallest coordinates of a pixel in that region.

(Comparisons of pixel coordinates are in terms of the lexicographic ordering where, for example,

(x, y) < (a, b) ≡ x < a ∨ (x = a ∧ y < b).)

Since the number of pixels in the image is finite, there are a finite number of regions. Without

loss of generality, we identify the regions with the integers 1 through Nregions. We define function

R such that R(i) denotes all of the pixels in region i, i.e.,

R(i) = {p : pixel p is in region i :: p}.

From the graph theoretic properties of the image, we see that the R(i) sets are disjoint. We also

define the “winning” pixel on each region, i.e., the pixel with the smallest coordinates, as follows:

w(i) = 〈min p : p ∈ R(i) :: p〉

We represent the input intensity values for the pixels in the image by the array of constants

Intensity(p).

We define the predicates INIT and POST. INIT characterizes the valid initial states of the

computation, POST the desired final state, i.e., the state in which each pixel is labeled with the

smallest pixel coordinates in its region. More formally, we define POST such that

POST ≡ 〈∀ i : 1 ≤ i ≤ Nregions :: 〈∀ p : p ∈ R(i) :: p is labeled w(i)〉〉.

The key correctness criteria for a region-labeling program are as follows:

1. the characteristics of the problem and solution strategy are represented faithfully by the

program structures,

2. the computation always reaches a state satisfying POST,

3. after reaching a state satisfying POST, subsequent states continue to satisfy POST.

In terms of our programming logic, we state the latter two criteria as the Labeling Completion

and Labeling Stability properties defined below. As we specify the problem further, we elaborate

the first criterion.

Property 1 (Labeling Completion) INIT 7−→ POST

15

Property 2 (Labeling Stability) stable POST

In this section we specify a program to solve the region-labeling problem. The RegionLabel

program uses a dynamic set of transactions. Each transaction “carries” a pixel’s label to a

neighbor; the transaction does not reinsert itself. New transactions are created whenever a label

changes. A region’s winning label eventually propagates throughout the region.

4.2 The Data Structures

To develop a programming solution to the region-labeling problem, we need to define data

structures to store the information about the problem. In Swarm, data structures are built from

sets of tuples (and transactions). Thus we define the tuple types has intensity and has label:

tuple has intensity(P, I) associates intensity value I with pixel P ; tuple has label(P,L) associates

label L with pixel P . These types are defined over the set of all pixels in the image. To be faithful

to the region-labeling problem, we constrain the relationships among the pixels and tuples by

means of invariants.

To simplify the statement of properties and proofs, we implicitly restrict the values of variables

that designate region identifiers and pixel coordinates. If not explicitly quantified, region identifier

variables (e.g., i) are implicitly quantified over the set of region identifiers 1 through Nregions,

and pixel coordinate variables (e.g., p and q) over all the pixels in the image. Because of this

simplification, we do not prove any properties of areas “outside” of the image.

Each pixel p can have only one associated intensity value; this value is equal to the constant

Intensity(p) throughout the computation. In terms of the Swarm programming logic, the program

must satisfy the intensity invariant defined below.

Property 3 (Intensity Invariant)

invariant 〈# b :: has intensity(p, b)〉 = 1 ∧ has intensity(p, Intensity(p))

The first conjunct of this invariant guarantees that only one intensity attribute is associated

with each pixel, i.e., there is a single has intensity tuple for each pixel p. The second conjunct

guarantees the constancy of the attribute.

Only one label (has label tuple) can be associated with each pixel. This label is the coordinates

of some pixel within the same region. We also require a pixel’s label to be no larger than the

pixel’s own coordinates. These three requirements are captured in the Labeling Invariant stated

below.

16

Property 4 (Labeling Invariant)

invariant 〈# q :: has label(p, q)〉 = 1 ∧
(p ∈ R(i) ∧ has label(p, l)⇒ l ∈ R(i) ∧ w(i) ≤ l ≤ p)

Our strategy for solving the region-labeling problem is to exploit the Labeling Invariant to

achieve the desired postcondition: initially every pixel is labeled with its own coordinates; each

label is decreased toward the w(i) for the region i around the pixel.

We can now restate the predicate POST in terms of the data structures as follows:

POST ≡ 〈∀ i : 1 ≤ i ≤ Nregions :: 〈∀ p : p ∈ R(i) : has label(p, w(i))〉〉

For convenience we define the function excess on regions such that excess(i) is the total

amount the labels on region i exceed the desired labeling (all pixels in the region labeled with the

“winning” pixel). More formally,

excess(i) = 〈Σ p, l : p ∈ R(i) ∧ has label(p, l) :: l − w(i)〉

where the “Σ” and“−” operators denote component-wise summation and subtraction of the co-

ordinate pairs. Using excess, the predicate POST can be restated as

POST ≡ 〈∀ i : 1 ≤ i ≤ Nregions :: excess(i) = 0〉

where 0 denotes the coordinates (0,0).

We consider a region labeling program which uses the tuple types has intensity and has label

to be correct if it satisfies the Labeling Completion, Labeling Stability, Intensity Invariant, and

Labeling Invariant properties.

4.3 A Swarm Program

We now state a “dynamic” program to solve the region-labeling problem and show that it

meets the correctness criteria. By dynamic, we mean that the contents of the transaction space

vary during the computation. An alternative solution with a “static” transaction space is studied

in [7] and [8]. A program for an image which is “growing” on one side is studied in [7] and [22].

The program RegionLabel (shown in Figure 4) initially associates a transaction instance with

each pixel in the image. When an executing transaction detects that the pixel’s label may need

to be propagated to a neighbor, it inserts transactions to “carry” the label to that neighbor.

When the image is labeled as desired, all transactions will “fail”—resulting in termination of the

program.

17

program RegionLabel(M,N,Lo,Hi, Intensity :
1 ≤M, 1 ≤ N,Lo ≤ Hi, Intensity(ρ : Pixel(ρ)),
[∀ ρ : Pixel(ρ) :: Lo ≤ Intensity(ρ) ≤ Hi])

definitions
[P,Q,L ::

Pixel(P) ≡
[∃x, y : P = (x, y) :: 1 ≤ x ≤ N, 1 ≤ y ≤M] ;

neighbors(P,Q) ≡
Pixel(P), P ixel(Q), (0, 0) < |P −Q| ≤ (1, 1) ;

R neighbors(P,Q) ≡
neighbors(P,Q), [∃ ι :: has intensity(P, ι), has intensity(Q, ι)]

]
tuple types

[P,L, I : Pixel(P), P ixel(L), Lo ≤ I ≤ Hi ::
has label(P,L) ;
has intensity(P, I)

]
transaction types

[P,L : Pixel(P), P ixel(L) ::
Label(P,L) ≡

[‖ δ : P = L, neighbors(P, δ) ::
ι : has intensity(P, ι), has intensity(δ, ι)

→ Label(δ, P)
]

‖
λ : has label(P, λ)†, λ > L

→ has label(P,L)
‖

[‖ δ : δ 6= L, neighbors(P, δ) ::
λ, ι : has intensity(P, ι), has intensity(δ, ι), has label(P, λ), λ > L

→ Label(δ, L)
]

]
initialization

[P : Pixel(P) ::
has label(P, P) ;
has intensity(P, Intensity(P)) ;
Label(P, P)

]
end

Figure 4: A Dynamic Region-Labeling Program in Swarm

18

A Label transaction has three groups of subtransactions. The first group starts the propagation

of the pixel’s label to neighbors in the same region. When a smaller label is propagated to

the transaction’s associated pixel from a neighbor, the second group relabels the pixel. When

the associated pixel is relabeled, the third group of subtransactions propagates the new label

to neighbors by inserting the appropriate transaction instances. In Figure 4 we use Swarm’s

subtransaction generator construct to specify the groups of subtransactions in a compact form.

We also use predicates defined in the definitions section to simplify expression of the transaction

queries.

Verifying the correctness of RegionLabel requires the proof of the four properties noted pre-

viously: the Intensity Invariant, Labeling Invariant, Labeling Stability, and Labeling Completion

properties. The proofs of these properties require us to define and prove other properties.

¶ Proof of the Intensity Invariant. Prove

〈# b :: has intensity(p, b)〉 = 1 ∧ has intensity(p, Intensity(p))

is invariant. Clearly the assertion holds at initialization. Also no transaction deletes or inserts

has intensity tuples. Hence, the invariant holds for the program.

Because Label transactions “carry” the neighbor’s label as a parameter rather than examining

both has label tuples, the proof of the Labeling Invariant requires a similar property defined for

Label transactions, the Transaction Label Invariant shown below.

Property 5 (Transaction Label Invariant)

invariant p ∈ R(i) ∧ Label(p, l)⇒ l ∈ R(i) ∧ w(i) ≤ l

¶ Proof of the Transaction Label Invariant. The only transactions existing initially

are the Label(p, p) transactions for each pixel p. Thus the left-hand-side (LHS) of the invariant

implication is false for p 6= l; for p = l both the LHS and the RHS (right-hand-side) are true.

Thus the invariant holds initially. A transaction Label(p, l) can only create transactions of the

form Label(q, l) where q is a neighbor of p in the same region. Thus the invariant is preserved.

¶ Proof of the Labeling Invariant. We must prove

〈# q :: has label(p, q)〉 = 1 ∧ (p ∈ R(i) ∧ has label(p, l)⇒ l ∈ R(i)) ∧ w(i) ≤ l ≤ p)

is invariant. Initially each pixel p is uniquely labeled p, hence the first conjunct holds. For the

initial dataspace the LHS of the implication in the second conjunct is false for p 6= l; for p = l

19

both the LHS and the RHS are true. Thus the assertion holds initially. We prove the stability

of each conjunct separately.

(1) Consider the first conjunct of the invariant assertion. No transaction deletes a has label(p, ∗)

tuple without inserting a has label(p, ∗) tuple, and vice versa. Thus the number of tuples

has label(p, ∗) remains constant.

(2) Consider the second conjunct of the invariant. Because of the Transaction Label Invariant,

any transaction which changes pixel p’s label sets it to the smaller coordinates of another pixel in

the same region.

To prove the stability of the “winning” label assignment for the image as a whole (the Labeling

Stability property), we first prove the stability of the “winning” label assignment for individual

pixels. This more basic property is the Pixel Label Stability property shown below.

Property 6 (Pixel Label Stability) stable p ∈ R(i) ∧ has label(p, w(i))

¶ Proof of Pixel Label Stability. No transaction increases a label. By the Labeling

Invariant no transaction decreases the label of a pixel in region i below w(i).

Given the Pixel Label Stability property we can now prove the Labeling Stability property.

¶ Proof of Labeling Stability. We must prove the property stable POST . The stability

of the assertion excess(i) = 0, for any region i, follows from the Pixel Label Stability property for

each pixel in the region, the unless Conjunction Theorem from [5], and the definition of excess.

Applying the Conjunction Theorem again for the regions in the image, we prove the stability of

POST.

The remaining proof obligation for RegionLabel is the Labeling Completion property, a

progress property using leads-to. We use the following methodology: (1) focus on the completion

of labeling on a region-by-region basis, (2) find and prove an appropriate low-level ensures prop-

erty for pixels in a region, (3) use the ensures property to prove the completion of labeling for

regions, and (4) combine the regional properties to prove the Labeling Completion property for

the image.

To prove Labeling Completion, we first seek to prove excess(i) ≥ 0 7−→ excess(i) = 0. How-

ever, a stronger formulation of this property may be easier to prove. Initially there does not exist

any transaction which can change a label anywhere in the region. The Label(p, p) transactions

initiate the label propagation from each pixel p. However, once transaction Label(w(i), w(i)) has

executed for each region, there are transactions in the transaction space that decrease excess(i).

20

Moreover, Label(w(i), w(i)) is never regenerated by the computation (because of the δ 6= P re-

striction in the transaction definition). Thus we seek to prove the property ¬Label(w(i), w(i))

∧ excess(i) ≥ 0 7−→ excess(i) = 0. We can prove this property using the Incremental Labeling

ensures property defined later.

We evoke the following metaphor to set up the proof for the Incremental Labeling property.

An area of w(i)-labeled pixels grows around the w(i) pixel for each region; at the boundary of

this growing area is a wavefront of Label transactions labeling pixels with w(i).

The following definition is convenient for expression of the properties that follow:

BOUNDARY (i, p, q) = p ∈ R(i) ∧ q ∈ R(i) ∧ neighbors(p, q) ∧ has label(p, w(i)) ∧
〈∃ l : l > w(i) :: has label(q, l)〉

The predicate BOUNDARY (i, p, q) is true if and only if p and q are neighboring pixels in

region i such that p is labeled with the winning pixel and q has a greater label.

The Incremental Labeling ensures property guarantees that, when the assertion excess(i) > 0

is true under appropriate conditions, there is a transaction in the dataspace which will decrease

excess(i).

Property 7 (Incremental Labeling)

¬Label(w(i), w(i)) ∧ BOUNDARY (i, p, q) ∧ 0 < excess(i) = k ensures excess(i) < k

From the definition of ensures given in Section 3, we must prove:

1. LHS unless RHS (where LHS and RHS denote the left- and right-hand-sides of the

ensures relation);

2. when LHS ∧ ¬RHS, there is a transaction in the transaction space which will, when exe-

cuted, establish the RHS (if not already established).

Accordingly, we divide the proof into an unless-part and an exists-part.

¶ Proof of the Incremental Labeling Property (unless part). All transactions either

leave the labels unchanged or decrease one label by some amount. No transaction creates a

Label(w(i), w(i)) transaction. Hence, LHS unless RHS holds for the program.

To prove the existential part of the Incremental Labeling property, we need to show there

exists a transaction in the transaction space which, when executed, will decrease excess(i). We

21

evoke the wavefront metaphor described above. The Transaction Wavefront invariant guarantees

the existence of Label(∗, w(i)) transactions along the boundary of the wavefront.

Property 8 (Transaction Wavefront)

invariant ¬Label(w(i), w(i)) ∧ BOUNDARY (i, p, q)⇒ Label(q, w(i))

To prove this property, we need to prove (1) the wavefront gets started and (2) the wavefront

remains in existence until the region is completely labeled with w(i). More formally, we state

these concepts as the Startup and Boundary Stability properties defined below.

Property 9 (Startup) Label(w(i), w(i)) unless (BOUNDARY (i, p, q)⇒ Label(q, w(i)))

¶ Proof of the Startup Property. To prove this property, we must show

{LHS ∧ ¬RHS} t {LHS ∨RHS}

is true for all transactions t ∈ TRS. (LHS and RHS are the left- and right-hand-sides of the

unless assertion.) The precondition can only be true for p = w(i) and q a neighbor of w(i) because

of the Winning Label Initiation invariant (proved below). Label(w(i), w(i)) creates Label(q, w(i)),

thus establishing the RHS of the unless assertion. All other transactions leave Label(w(i), w(i))

true.

In the proof above we needed to know that when Label(w(i), w(i)) transactions exist the

wavefront has not been started; this is the Winning Label Initiation property.

Property 10 (Winning Label Initiation)

invariant Label(w(i), w(i)) ∧ p ∈ R(i) ∧ p 6= w(i)
⇒ ¬has label(p, w(i)) ∧ ¬Label(p, w(i))

¶ Proof of Winning Label Initiation. The invariant is trivially true for single pixel regions.

Consider multi-pixel regions. Both the LHS and RHS are true initially. Label(w(i), w(i)) falsifies

the LHS. No transaction can make the LHS true.

Property 11 (Boundary Stability) stable BOUNDARY (i, p, q)⇒ Label(q, w(i))

¶ Proof of Boundary Stability. We need to prove 〈∀ t : t ∈ TRS :: {I} t {I}〉 where I is

the implication in the property definition. We need only consider cases in which I is true as the

precondition.

For pixels p and q which are not equal-intensity neighbors or for single pixel regions, the

predicate BOUNDARY (i, p, q) is always false. Thus I is always true and, hence, the stable

property holds.

22

Let p and q be neighbor pixels in a multi-pixel region. There are the two cases to consider.

(1) LHS of I false. In this case, only transactions which make the LHS true can violate the prop-

erty. Because of the Labeling Invariant and Pixel Label Stability properties, the only transaction

that can make BOUNDARY (i, p, q) true is Label(p, w(i)). This transaction creates Label(q, w(i)),

thus establishing the RHS of the implication.

(2) Both LHS and RHS of I true. Only transactions which falsify the RHS can violate the

property. The only transaction that can falsify the RHS is Label(q, w(i)). This transaction also

changes the label of q to w(i), thus falsifying the predicate BOUNDARY (i, p, q).

¶ Proof of the Transaction Wavefront Invariant. We must show the assertion

¬Label(w(i), w(i)) ∧ BOUNDARY (i, p, q)⇒ Label(q, w(i))

is invariant. The property holds initially because INIT ⇒ Label(w(i), w(i)). From the Startup

property, we know

Label(w(i), w(i)) unless (BOUNDARY (i, p, q)⇒ Label(q, w(i))).

From the Boundary Stability property we know

(BOUNDARY (i, p, q)⇒ Label(q, w(i))) unless false.

Using the Cancellation Theorem for unless [5], we conclude the invariant, i.e.,

Label(w(i), w(i)) ∨ (BOUNDARY (i, p, q)⇒ Label(q, w(i))) unless false.

¶ Proof of the Incremental Labeling Property (exists part). We must show there is

a transaction t ∈ TRS such that

(PRE ⇒ [t]) ∧ {PRE} t {excess(i) < k}

where PRE is

¬Label(w(i), w(i)) ∧ BOUNDARY (i, p, q) ∧ 0 < excess(i) = k.

Because of the Transaction Wavefront invariant, we know Label(q, w(i)) is in the transaction

space. Execution of this transaction establishes excess(i) < k.

Thus the Incremental Labeling property holds for program RegionLabel. We now use this

property to prove Labeling completion for each region in the image. More formally, we prove the

Regional Progress property defined below.

23

Property 12 (Regional Progress)

¬Label(w(i), w(i)) ∧ excess(i) ≥ 0 7−→ excess(i) = 0

The proof of the Regional Progress property needs an additional property, the Boundary In-

variant. The Boundary Invariant guarantees the existence of the boundary between the completed

(labeled with w(i)) and uncompleted areas.

Property 13 (Boundary Invariant)

invariant excess(i) > 0⇒ 〈∃ p, q :: BOUNDARY (i, p, q)〉

¶ Proof of the Boundary Invariant. For single pixel regions excess(i) = 0 holds invari-

antly; hence the Boundary Invariant holds.

Consider multi-pixel regions. Initially excess(i) > 0. Because of the Pixel Label Stability

property, the invariance of has label(w(i), w(i)) is clear. When excess(i) > 0, because of the

definition of excess and the Labeling Invariant, there must be some pixel x in region i which has

a label greater than w(i). Thus along any neighbor-path from x to w(i) within region i, there

must be two neighbor pixels, p and q, such that p has label w(i) and q a larger label.

¶ Proof of the Regional Progress Property. The progress property excess(i) = 0 7−→

excess(i) = 0 is obvious, thus the only remaining proof obligation is

¬Label(w(i), w(i)) ∧ excess(i) > 0 7−→ excess(i) = 0.

From the Incremental Labeling progress property we know

¬Label(w(i), w(i)) ∧ BOUNDARY (i, p, q) ∧ 0 < excess(i) = k ensures excess(i) < k.

Because of the Boundary Invariant we also know

excess(i) > 0⇒ 〈∃ p, q :: BOUNDARY (i, p, q)〉

Using the disjunction rule for leads-to over the set of neighbor pixels p and q in region i, we deduce

¬Label(w(i), w(i)) ∧ 0 < excess(i) = k 7−→ excess(i) < k.

Since ¬Label(w(i), w(i)) is stable, we can rewrite the assertion above as

¬Label(w(i), w(i)) ∧ excess(i) > 0 ∧ excess(i) = k 7−→
(¬Label(w(i), w(i)) ∧ excess(i) > 0 ∧ excess(i) < k) ∨ excess(i) = 0.

24

The metric excess(i) is well-founded. Thus, using the induction principle for leads-to, we conclude

the Regional Progress property.

Given the Regional Progress and Labeling Stability properties, the proof the Labeling Com-

pletion property is straightforward.

¶ Proof of Labeling Completion. Prove the assertion INIT 7−→ POST . Clearly,

INIT ⇒ 〈∀ i :: excess(i) ≥ 0 ∧ Label(w(i), w(i))〉.

Hence, for each region i,

INIT ensures excess(i) ≥ 0 ∧ Label(w(i), w(i)).

From the transaction definition, it is easy to see

Label(w(i), w(i)) ensures ¬Label(w(i), w(i)).

Hence,

Label(w(i), w(i)) ∧ excess(i) ≥ 0 ensures

excess(i) = 0 ∨ (¬Label(w(i), w(i)) ∧ excess(i) > 0).

From the Regional Progress property,

¬Label(w(i), w(i)) ∧ excess(i) ≥ 0 7−→ excess(i) = 0.

The Cancellation Theorem for leads-to [5] allows us to deduce

Label(w(i), w(i)) ∧ excess(i) ≥ 0 7−→ excess(i) = 0.

The Labeling Stability property, the Completion Theorem for leads-to [5], and the transitivity of

leads-to allow us to conclude INIT 7−→ POST .

Above we have shown program RegionLabel satisfies the four criteria for correctness of region-

labeling programs. However, we can also prove this program terminates. We define the predicate

termination such that

termination ≡ 〈∀ p, l :: ¬Label(p, l)〉.

Since we have already established the Labeling Completion property, we need only prove POST 7−→

termination. Again we can prove this leads-to property using an ensures property, the Trans-

action Flushing property below.

25

Property 14 (Transaction Flushing)

POST ∧ Label(p, l) ∧ 0 < 〈# q,m :: Label(q,m)〉 = k ensures 〈# q,m :: Label(q,m)〉 < k

¶ Proof of the Transaction Flushing Property. By the Transaction Label Invariant,

we know q ∈ R(i) ∧ Label(q,m) ⇒ m ∈ R(i) ∧ w(i) ≤ m The POST predicate means all Label

transactions will fail. Thus the RHS of the ensures property is established.

¶ Proof of Termination. POST 7−→ termination. The Transaction Flushing property

and the disjunction rule for leads-to allow us to deduce

POST ∧ 0 < 〈# q,m :: Label(q,m)〉 = k 7−→ 〈# q,m :: Label(q,m)〉 < k.

The count of the transactions in the transaction space is a well-founded metric, thus we deduce

POST 7−→ termination by induction.

5 Conclusion

In this paper, we have specified a proof system for the shared dataspace programming notation

called Swarm. To our knowledge, this is the first such proof system for a shared dataspace

language. To illustrate the proof system, we used it to verify the correctness of a program for

labeling connected equal-intensity regions of a digital image.

Like UNITY, the Swarm proof system uses an assertional programming logic which relies upon

proof of program-wide properties, e.g., global invariants and progress properties. We define the

Swarm logic in terms of the same logical relations as UNITY (unless, ensures, and leads-to),

but must reformulate several of the concepts to accommodate Swarm’s distinctive features. We

define a proof rule for transaction statements to replace UNITY’s well-known rule for multiple-

assignment statements, redefine the ensures relation to accommodate the creation and deletion

of transaction statements, and replace UNITY’s use of fixed-point predicates with other methods

for determining program termination. We have constructed our logic carefully so that most of the

theorems developed for UNITY can be directly adapted to the Swarm logic.

We have generalized the programming logic presented in this paper to handle another unique

feature of Swarm, the synchronic group [7, 22]. Synchronic groups are dynamically constructed

groups of transactions which are executed synchronously as if they were a single atomic trans-

action. We believe synchronic groups enable novel approaches to the organization of concurrent

26

computations, particularly in situations where the desired computational structure is dependent

upon the data.

The Swarm programming model, notation, and logic provide a foundation for several other

promising research efforts. We believe visualization can play a key role in exploration of con-

current computation. Companion papers [18, 19] outline a declarative approach to visualization

of the dynamics of program execution—an approach which represents properties of an executing

program’s state as visual patterns on a graphics display. We are also studying the relationship of

Swarm to other approaches, e.g., rule-based systems [8], UNITY, and Linda. Swarm is proving

to be an excellent research vehicle.

Acknowledgements

This work was supported by the Department of Computer Science, Washington University,

Saint Louis, Missouri. The authors express their gratitude to Jerome R. Cox, department chair-

man, for his support and encouragement. We thank the editor, the referees, Jayadev Misra, Jan

Tijmen Udding, Ken Cox, Howard Lykins, Wei Chen, Will Gillett, Michael Kahn, and Liz Hanks

for their suggestions concerning this article. We also thank the Department of Computer and

Information Science at The University of Mississippi for enabling the first author to continue this

work.

References

[1] S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. Computer, 19(8):26–34, August

1986.

[2] R. J. R. Back and R. Kurki-Suonio. Distributed cooperation with Action Systems. ACM

Transactions on Programming Languages and Systems, 10(4):513–554, October 1988.

[3] L. Brownston, R. Farrell, E. Kant, and N. Martin. Programming Expert Systems in OPS5: An

Introduction to Rule-Based Programming. Addison-Wesley, Reading, Massachusetts, 1985.

[4] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM, 32(4):444–458,

April 1989.

27

[5] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,

Reading, Massachusetts, 1988.

[6] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in

circular configurations of processes. Communications of the ACM, 22(5):281–283, May 1979.

[7] H. C. Cunningham. The Shared Dataspace Approach to Concurrent Computation: The Swarm

Programming Model, Notation, and Logic. PhD thesis, Washington University, Department

of Computer Science, St. Louis, Missouri, August 1989. Advisor: G.-C. Roman.

[8] H. C. Cunningham and G.-C. Roman. Toward formal verification of rule-based systems:

A shared dataspace perspective. Technical Report WUCS–89–28, Washington University,

Department of Computer Science, St. Louis, Missouri, June 1989.

[9] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, New Jersey,

1976.

[10] N. Francez. Fairness. Springer-Verlag, New York, 1986.

[11] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,

21(8):666–677, August 1978.

[12] S. S. Lam and A. U. Shankar. A relational notation for state transition systems. Technical

Report TR–88–21, University of Texas at Austin, Department of Computer Sciences, Austin,

Texas, May 1988. Revised August 1988.

[13] G. LeLann. Distributed systems, towards a formal approach. In Information Processing 77,

pages 155–160. North-Holland, New York, 1977.

[14] J. Misra. Soundness of the substitution axiom. Notes on UNITY 14–90, Department of

Computer Sciences, University of Texas at Austin, Austin, Texas, March 1990.

[15] M. Rem. Associons: A program notation with tuples instead of variables. ACM Transactions

on Programming Languages and Systems, 3(3):251–262, July 1981.

[16] M. Rem. The closure statement: A programming language construct allowing ultraconcurrent

execution. Journal of the ACM, 28(2):393–410, April 1981.

28

[17] G.-C. Roman. Language and visualization support for large-scale concurrency. In Proceedings

of the 10th International Conference on Software Engineering, pages 296–308. IEEE, April

1988.

[18] G.-C. Roman and K. C. Cox. A declarative approach to visualizing concurrent computations.

Computer, 22(10):25–36, October 1989.

[19] G.-C. Roman and K. C. Cox. Declarative visualization in the shared dataspace paradigm.

In Proceedings of the 11th International Conference on Software Engineering, pages 34–43.

IEEE, May 1989.

[20] G.-C. Roman and H. C. Cunningham. A shared dataspace model of concurrency—Language

and programming implications. In Proceedings of the 9th International Conference on Dis-

tributed Computing Systems, pages 270–279. IEEE, June 1989.

[21] G.-C. Roman and H. C. Cunningham. Mixed programming metaphors in a shared dataspace

model of concurrency. Technical Report WUCS–90–1, Washington University, Department

of Computer Science, St. Louis, Missouri, February 1990. To appear in IEEE Transactions

on Software Engineering.

[22] G.-C. Roman and H. C. Cunningham. The synchronic group: A concurrent programming

concept and its proof logic. In Proceedings of the 10th International Conference on Distributed

Computing Systems. IEEE, May 1990.

[23] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge, Massachusetts, 1986.

29

