Abstract

BoxScript 1s a Java-based, component-oriented programming language
whose design seeks to address the needs of teachers and students for a
clean, simple language. This paper briefly describes BoxScript and
presents the authors' preliminary i1deas on specification of components and
their compositions.

BoxScript

Goal: To develop a simple, Java-based, component-oriented language that
enables students to "think in components" and build simple systems.

A box 1s a strongly encapsulated component with:
. Interfaces represented by interface handles and Java interface types
1114 provided interfaces give operations available to clients
- required interfaces give operations used on other boxes
. Three types
] - abstract box declares interfaces to be implemented by child boxes
- atomic box implements provided interfaces as Java classes
- compound box composes other boxes to form composite box and uses
their interface implementations

abstract box DateAbs
{ provided interface DayCal Dc; //Dc is handle of interface DayCal }

abstract box CalendarAbs
{ provided interface Display Dis;
required interface DayCal DayC,;

}
Figure 1. Abstract boxes DateAbs and CalendarAbs

box Date implements DateAbs
{ provided interface DayCal Dc; }

box Calendar implements CalendarAbs
{ provided interface Display Dis;
required interface DayCal DayC,;

}

Figure 2. Atomic boxes Date and Calendar

Composition of boxes into a compound box

. hides all provided interfaces that are not explicitly exposed

. must expose every required interface that 1s not wired to a provided
interface of a box

Toward Specification and Composition of BoxScript Components

H. Conrad Cunningham, Yi Liu, and Pallavi Tadepalli
University of Mississippi, University, MS 38677

For a box B, let I(B) be its box invariant, C(B) be the coupling invariant that ties

BuildCalendar DayCal
~>PayC | required
interfaces
DateAbs CalendarAbs
~ boxD A~ phoxC
provided provided
interfaces interfaces | Display
~Pis
DayCal
“>Dc
provided
interfaces
DisplayﬁD

Figure 3. Compostion

abstract box BuildCalendarAbs
{ provided interface Display D; }
Figure 4a. Abstract box BuildCalendarAbs

box BuildCalendar implements BuildCalendarAbs

{ composed from DateAbs boxD, CalendarAbs boxC;
//boxD is box handle for DateAbs and boxC is box handle for CalendarAbs
provided interface Display D from boxC.Dis;
connect boxC.DayC to boxD.Dc;

Figure 4b. Compound box CalendarAbs

Specification

An interface information model consists of pair (V,I):
. V 1s a set of abstract variables representing state of component instance
. | 1s an invariant that must hold in all client-visible states

Preconditions and postconditions specify the semantics of operations.

Box interface X satisfies interface y when X provides at least the operations
of y and the corresponding operations of X and y have equivalent meanings.

pre(x,m)<pre(y,m) A C(x,y) A l(y)

X extends -y

post(x,m) A C(x,y) A I(X) =post(y,m)
1(x) A C(xy)=1(y)

Figure 5. Interface X with operation m satisfies interface y. I(x) is the invariant
for x. pre(x,m) is the precondition for operation m on interface X. post(x,m) is the
postcondition for operation m on interface X. C(X,y) is a coupling invariant that links
the information models of interfaces x and vy.

_The Ulniversity of Mississippi

it to the interface information models, and prov(B) be the provided interfaces.
For any box B, it must be the case that:

(Vp: p € prov(B) : I(p)) A C(B) = I(B)

An atomic box must implement its provided interfaces as a cluster of Java classes.

All of its provided interfaces must have the same information model (V,I).

plLA p2A

B qlA q3¢ q2 $q4
D E

sTA s34 szT
flA ¢r3 rZT

Figure 6. Compound box B with provided interfaces p1 and p2, required
interfaces r1, r2, and r3, and constituent boxes D and E. If the arrow for an
interfae X 1s linked to the one for interface y, then X must satisfy V.

I

T

Figure 7. Box B with provided interfaces p, g, and r and required interface s
implements abstract box A.

S

Current and Future Work

Current plans are to:

. Implement BoxScript

. specify several examples

. relate to other formalisms

. Integrate with JML or other tools

. Investigate alternative required interface semantics (e.g., callbacks)
. develop decompostion techniques

