
Toward Specification and Composition of BoxScript Components
 H. Conrad Cunningham, Yi Liu, and Pallavi Tadepalli
 University of Mississippi, University, MS 38677

Abstract
BoxScript is a Java-based, component-oriented programming language
whose design seeks to address the needs of teachers and students for a
clean, simple language. This paper briefly describes BoxScript and
presents the authors' preliminary ideas on specification of components and
their compositions.

BoxScript
Goal: To develop a simple, Java-based, component-oriented language that
 enables students to "think in components" and build simple systems.
A box is a strongly encapsulated component with:
 . Interfaces represented by interface handles and Java interface types
					- provided interfaces give operations available to clients
 - required interfaces give operations used on other boxes
 . Three types
	 - abstract box declares interfaces to be implemented by child boxes
 - atomic box implements provided interfaces as Java classes
 - compound box composes other boxes to form composite box and uses
 their interface implementations

abstract box DateAbs
{ provided interface DayCal Dc; //Dc is handle of interface DayCal }

abstract box CalendarAbs
{ provided interface Display Dis;
 required interface DayCal DayC;
}
 Figure 1. Abstract boxes DateAbs and CalendarAbs

box Date implements DateAbs
{ provided interface DayCal Dc; }

box Calendar implements CalendarAbs
{ provided interface Display Dis;
 required interface DayCal DayC;
}
 Figure 2. Atomic boxes Date and Calendar

abstract box BuildCalendarAbs
{ provided interface Display D; }
 Figure 4a. Abstract box BuildCalendarAbs

box BuildCalendar implements BuildCalendarAbs
{ composed from DateAbs boxD, CalendarAbs boxC;
 //boxD is box handle for DateAbs and boxC is box handle for CalendarAbs
 provided interface Display D from boxC.Dis;
 connect boxC.DayC to boxD.Dc;
}
 Figure 4b. Compound box CalendarAbs

Specification
An interface information model consists of pair (V,I):
 . V is a set of abstract variables representing state of component instance
 . I is an invariant that must hold in all client-visible states
Preconditions and postconditions specify the semantics of operations.

Current plans are to:
 . implement BoxScript
 . specify several examples
 . relate to other formalisms
 . integrate with JML or other tools
 . investigate alternative required interface semantics (e.g., callbacks)
 . develop decompostion techniques

Box interface x satisfies interface y when x provides at least the operations
of y and the corresponding operations of x and y have equivalent meanings.

Composition of boxes into a compound box
 . hides all provided interfaces that are not explicitly exposed
 . must expose every required interface that is not wired to a provided interface of a box

x y
extends

	I(x) C(x,y) I(y)
post(x,m) C(x,y) I(x) post(y,m)

Figure 5. Interface x with operation m satisfies interface y. I(x) is the invariant
for x. pre(x,m) is the precondition for operation m on interface x. post(x,m) is the
postcondition for operation m on interface x. C(x,y) is a coupling invariant that links
the information models of interfaces x and y.

p1

q1 q3

s1

r1

p2

q2 q4

D

s2

r2

E

s3

r3
Figure 6. Compound box B with provided interfaces p1 and p2, required
interfaces r1, r2, and r3, and constituent boxes D and E. If the arrow for an
interfae x is linked to the one for interface y, then x must satisfy y.

B

Figure 7. Box B with provided interfaces p, q, and r and required interface s
implements abstract box A.

B
A

p q r

s

t

pre(x,m) pre(y,m) C(x,y) I(y)

For a box B, let I(B) be its box invariant, C(B) be the coupling invariant that ties
it to the interface information models, and prov(B) be the provided interfaces.
For any box B, it must be the case that:
 (∀p: p ∈ prov(B) : I(p)) C(B) I(B)

An atomic box must implement its provided interfaces as a cluster of Java classes.
All of its provided interfaces must have the same information model (V,I).

BuildCalendar

DateAbs CalendarAbs
boxD boxC

provided
interfaces

provided
interfaces

DayCal
Dc

provided
interfaces

required
interfaces

 DayC
DayCal

Display

Display
D

Dis

Figure 3. Compostion

Current and Future Work

