
Reasoning about Synchronic Groups?

Gruia-Catalin Roman1 and H. Conrad Cunningham2

1 Department of Computer Science, Washington University, Campus Box 1045, One Brookings
Drive, St. Louis, MO 63130 U.S.A.

2 Department of Computer & Information Science, University of Mississippi, 302 Weir Hall,
University, MS 38677 U.S.A.

Abstract

Swarm is a computational model which extends the UNITY model in three important
ways: (1) UNITY’s fixed set of variables is replaced by an unbounded set of tuples which
are addressed by content rather than by name; (2) UNITY’s static set of statements is
replaced by a dynamic set of transactions; and (3) UNITY’s static ‖-composition is aug-
mented by dynamic coupling of transactions into synchronic groups. This last feature,
unique to Swarm, facilitates formal specification of the mode of execution (synchronous
or asynchronous) associated with portions of a concurrent program and enables compu-
tations to restructure themselves so as to accommodate the nature of the data being
processed and to respond to changes in processing objectives. This paper overviews the
Swarm model, introduces the synchronic group concept, and illustrates its use in the ex-
pression of dynamically structured programs. A UNITY-style programming logic is given
for Swarm, the first axiomatic proof system for a shared dataspace language.

1 Introduction

Attempts to meet the challenges of concurrent programming have led to the emergence of
a variety of models and languages. Chandy and Misra, however, argue that the fragmen-
tation of programming approaches along the lines of architectural structure, application
area, and programming language features obscures the basic unity of the programming
task [4]. With the UNITY model, their goal is to unify seemingly disparate areas of pro-
gramming with a simple theory consisting of a model of computation and an associated
proof system.

Chandy and Misra build the UNITY computational model upon a traditional imper-
ative foundation, a state-transition system with named variables to express the state and
conditional multiple-assignment statements to express the state transitions. Above this
foundation, however, UNITY follows a more radical design: all flow-of-control and com-
munication constructs have been eliminated from the notation. A UNITY program begins
? Several of the concepts presented here appeared earlier in Roman and Cunningham’s paper

“The Synchronic Group: A Concurrent Programming Concept and Its Proof Logic,” Pro-
ceedings of the 10th International Conference on Distributed Computing Systems, IEEE, May
1990.

execution in a valid initial state and continues infinitely; at each step an assignment is
selected nondeterministically, but fairly, and executed atomically.

To accompany this simple but innovative model, Chandy and Misra have formulated
an assertional programming logic which frees the program proof from the necessity of
reasoning about execution sequences. Unlike most assertional proof systems, which rely
on the annotation of the program text with predicates, the UNITY logic seeks to extri-
cate the proof from the text by relying upon proofs of program-wide properties such as
invariants and progress conditions.

Swarm [15] is a model which extends UNITY by permitting content-based access to
data, a dynamic set of statements, and the ability to prescribe and alter the execution
mode (i.e., synchronous or asynchronous) for arbitrary collections of program statements.
The Swarm model is the primary vehicle for study of the shared dataspace paradigm, a
class of languages and models in which the primary means for communication among
the concurrent components of a program is a common, content-addressable data struc-
ture called a shared dataspace. Elements of the dataspace may be examined, inserted,
or deleted by programs. Linda [3], Associons [14], GAMMA [1], and production rule
languages such as OPS5 [2] all follow the shared dataspace approach.

The Swarm design merges the philosophy of UNITY with the methods of Linda.
Swarm has a UNITY-like program structure and computational model and Linda-like
communication mechanisms. The model partitions the dataspace into three subsets: a
tuple space (a finite set of data tuples), a transaction space (a finite set of transactions),
and a synchrony relation (a symmetric relation on the set of all possible transactions).
Swarm replaces UNITY’s fixed set of variables with a set of tuples and UNITY’s fixed
set of assignment statements with a set of transactions.

A Swarm transaction denotes an atomic transformation of the dataspace. It is a
set of concurrently executed query-action pairs. A query consists of a predicate over the
dataspace; an action consists of a group of deletions and insertions of dataspace elements.
Instances of transactions may be created dynamically by an executing program.

A Swarm program begins execution from a specified initial dataspace. On each exe-
cution step, a transaction is chosen nondeterministically from the transaction space and
executed atomically. This selection is fair in the sense that every transaction in the trans-
action space at any point in the computation will eventually be chosen. An executing
transaction examines the dataspace and then, depending upon the results of the exami-
nation, can delete tuples (but not transactions) from the dataspace and insert new tuples
and transactions into the dataspace. Unless a transaction explicitly reinserts itself into
the dataspace, it is deleted as a by-product of its execution. Program execution continues
until there are no transactions remaining in the dataspace.

The synchrony relation feature adds even more dynamism and expressive power to
Swarm programs. It is a relation over the set of possible transaction instances. This
relation may be examined and modified by programs in the same way as the tuple
and transaction spaces are. The synchrony relation affects program execution as follows:
whenever a transaction is chosen for execution, all transactions in the transaction space
which are related to the chosen transaction by (the closure of) the synchrony relation
are also chosen; all of the transactions that make up this set, called a synchronic group,
are executed as if they comprised a single transaction.

By enabling asynchronous program fragments to be coalesced dynamically into syn-
chronous subcomputations, the synchrony relation provides an elegant mechanism for

structuring concurrent computations. This unique feature facilitates a programming style
in which the granularity of the computation can be changed dynamically to accommo-
date structural variations in the input. This feature also suggests mechanisms for the
programming of a mixed-modality parallel computer, i.e., a computer which can simul-
taneously execute asynchronous and synchronous computations. Perhaps architectures
of this type could enable both higher performance and greater flexibility in algorithm
design.

This paper shows how to add this powerful capability to Swarm without compromising
the ability to formally verify the resulting programs. The presentation is organized as
follows. Section 2 reviews the basic Swarm notation. Section 3 introduces the notation for
the synchrony relation and discusses the concept of a synchronic group. Section 4 reviews
a UNITY-style assertional programming logic for Swarm without the synchrony relation
and then generalizes the logic to accommodate synchronic groups. Section 5 illustrates
the use of synchronic groups by means of a proof of an array summation program. Section
6 discusses some of the rationale for the design decisions.

2 Swarm Notation

The name Swarm evokes the image of a large, rapidly moving aggregation of small,
independent agents cooperating to perform a task. This section introduces a notation for
programming such computations. Beginning with an algorithm expressed in a familiar
imperative notation, a parallel dialect of Dijkstra’s Guarded Commands [6] language, we
construct a Swarm program with similar semantics.

The program fragment given in Figure 1 (similar to the one given in [10]) sums an
array of N integers. For simplicity of presentation, we assume that N is a power of 2.
We also assume that elements 1 through N of the constant array A contain the values
to be summed. The program introduces variables x, an N -element array of partial sums,
and j, a control variable for the summing loop. The preamble of the loop initializes x to
equal A and j to equal 1. Thus, the precondition Q of the program’s loop is the assertion

pow2(N) ∧ j = 1 ∧ 〈∀ i : 1 ≤ i ≤ N :: x(i) = A(i)〉

where

pow2(k) ≡ 〈∃ p : p ≥ 0 :: k = 2p〉.

At termination, x(N) is required to contain the sum of the N elements of A. Thus the
postcondition R of the program is the assertion

x(N) = sumA(0, N)

where

sumA(l, u) = 〈Σ k : l < k ≤ u :: A(k)〉.

The loop computes the sum in a tree-like fashion as shown in the diagram: adjacent
elements of the array are added in parallel, then the same is done for the resulting values,
and so forth until a single value remains. The construct

〈‖ k : predicate :: assignment 〉

x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8)

j = 1
@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@∑1

1

∑2

1

∑3

3

∑4

3

∑5

5

∑6

5

∑7

7

∑8

7

j = 2

HH
HHHH

HH

HH
HHHH

HH∑1

1

∑2

1

∑3

3

∑4

1

∑5

5

∑6

5

∑7

7

∑8

5

j = 4

XXXXXXXXXXXXXXXX∑1

1

∑2

1

∑3

3

∑4

1

∑5

5

∑6

5

∑7

7

∑8

1

j : integer ;
x(i : 1 ≤ i ≤ N) : array of integer ;

j := 1 ;
〈 k : 1 ≤ k ≤ N :: x(k) := A(k)〉 ;
{ Q }
do j < N −→ { P }

〈‖ k : 1 ≤ k ≤ N ∧ kmod (j ∗ 2) = 0 :: x(k) := x(k − j) + x(k)〉 ;
j := j ∗ 2

od
{ R }

Fig. 1. A Parallel Array-Summation Algorithm using Guarded Commands

is a parallel assignment command. The assignment is executed in parallel for each value
of k which satisfies the predicate; the entire construct is performed as one atomic action.
An invariant P for the program’s loop is the assertion

pow2(N) ∧ pow2(j) ∧ 1 ≤ j ≤ N ∧ 〈∀ i : node(i, j) :: x(i) = sumA(i−j, i)〉

where

node(k, l) ≡ (1 ≤ k ≤ N ∧ kmod l = 0).

(Clearly Q ⇒ P and P ∧ j ≥ N ⇒ R.) The integer function N
j − 1 (call it vf) is an

appropriate variant function to show the termination of the loop.
Swarm is a shared dataspace programming model. Instead of expressing a compu-

tation in terms of a group of named variables, Swarm uses a set of tuples stored in a
dataspace. Each tuple is a pairing of a type name with a finite sequence of values; a pro-
gram accesses a tuple by its content—type name and values—rather than by a specific
name or address. Swarm programs execute by deleting existing tuples from and inserting
new tuples into the dataspace. The transactions which specify these atomic dataspace
transformations consist of a set of query-action pairs executed in parallel. Each query-
action pair is similar to a production rule in a language like OPS5 [2].

How can we express the array-summation algorithm in Swarm? To represent the array
x, we introduce tuples of type x in which the first component is an integer in the range 1
through N , the second a partial sum. We can express an instance of the array assignment
in the do loop as a Swarm transaction in the following way:

v1, v2 : x(k − j, v1), x(k, v2) −→ x(k, v2)†, x(k, v1 + v2)

The part to the left of the −→ is the query; the part to the right is the action. The
identifiers v1 and v2 designate variables that are local to the query-action pair. (For
now, assume that j and k are constants.)

The execution of a Swarm query is similar to the evaluation of a rule in Prolog
[16]. The above query causes a search of the dataspace for two tuples of type x whose
component values have the specified relationship—the comma separating the two tuple
predicates is interpreted as a conjunction. If one or more solutions are found, then one
of the solutions is chosen nondeterministically and the matched values are bound to the
local variables v1 and v2 and the action is performed with this binding. If no solution is
found, then the transaction is said to fail and none of the specified actions are taken.

The action of the above transaction consists of the deletion of one tuple and the
insertion of another. The † operator indicates that the tuple x(k, v2), where v2 has the
value bound by the query, is to be deleted from the dataspace. The unmarked tuple
form x(k, v1 + v2) indicates that the corresponding tuple is to be inserted. Although
the execution of a transaction is atomic, the effect of an action is as if all deletions are
performed first, then all insertions.

The parallel assignment command of the algorithm can be expressed similarly in
Swarm:

[‖ k : 1 ≤ k ≤ N ∧ kmod (j ∗ 2) = 0 ::
v1, v2 : x(k − j, v1), x(k, v2) −→ x(k, v2)†, x(k, v1 + v2)]

Each individual query-action pair is called a subtransaction and the overall parallel con-
struct a transaction. As with the parallel assignment, the entire transaction is executed
atomically. The cumulative effect of executing a transaction is as if the subtransactions
are executed synchronously: all queries are evaluated first, then the indicated tuples are
deleted, and finally the indicated tuples are inserted.

In Swarm there is no concept of a process and there are no sequential programming
constructs or recursive function calls. Only transactions are available. Like data tuples,
transactions are represented as tuple-like entities in the dataspace. A transaction has
a type name and a finite sequence of values called parameters. Transaction instances
can be queried and inserted in the same way that data tuples are, but cannot be ex-
plicitly deleted. A Swarm dataspace thus has two components, the tuple space and the
transaction space.

We model the execution of a Swarm program in the following way. The program begins
execution with the specified initial dataspace. On each execution step, a transaction is
chosen nondeterministically from the transaction space and executed atomically. This
selection is fair in the sense that every transaction present in the transaction space at any
point in time must eventually be executed (i.e., weak fairness [8]). Unless the transaction
explicitly reinserts itself into the transaction space, it is deleted as a by-product of its
own execution—regardless of the success or failure of its component queries. Program
execution continues until there are no transactions remaining in the transaction space.

We still have two aspects of the array-summation program’s do command to express
in Swarm—the doubling of j and the conditional repetition of the loop body. Both of these
actions can be incorporated into the transaction shown above. We define transactions of
type Sum having one parameter as follows:

Sum(j) ≡
[‖ k : 1 ≤ k ≤ N ∧ kmod (j ∗ 2) = 0 ::

v1, v2 : x(k − j, v1), x(k, v2) −→ x(k, v2)†, x(k, v1 + v2)]
‖ j ∗ 2 < N −→ Sum(j ∗ 2)

Note that the transaction above uses parameter j as a constant throughout its body.
A transaction instance Sum(j)—representing the jth iteration of the loop—updates the
set of x tuples to reflect the newly computed partial sum and inserts an appropriate
transaction to continue the computation.

For a correct computation of array A’s sum, the Swarm program must initialize the
tuple space to contain the N elements of the array represented as x tuples, i.e., to be the
set

{ x(1, A(1)), x(2, A(2)), · · · , x(N,A(N)) }.

Similarly, the transaction space must consist of the single transaction Sum(1).
Figure 2 shows a complete array-summation program. Since each x tuple is only ref-

erenced once during a computation, we modify the definition of the Sum subtransactions
to delete both x tuples that are referenced. If a tuple form in a query is marked by the
dagger operator, then, if the overall query succeeds, the marked tuple is deleted as a part
of the action.

The first sentence in this section describes a Swarm computation with the following
metaphor: “a large, rapidly moving aggregation of small, independent agents cooperating

program ArraySum(N,A : [∃ p : p ≥ 0 :: N = 2p], A(i : 1 ≤ i ≤ N))
tuple types

[i, s : 1 ≤ i ≤ N :: x(i, s)]
transaction types

[j : 1 ≤ j < N ::
Sum(j) ≡

[‖ k : 1 ≤ k ≤ N ∧ kmod (j ∗ 2) = 0 ::
v1, v2 : x(k − j, v1)†, x(k, v2)† −→ x(k, v1 + v2)]

‖ j < N −→ Sum(j ∗ 2)
]

initialization
Sum(1); [i : 1 ≤ i ≤ N :: x(i, A(i))]

end

Fig. 2. A Parallel Array-Summation Program in Swarm

to perform a task.” So far we have taken a microscopic view of Swarm computations—
focusing on the small, rapidly moving, independent agents (i.e., transactions and tuples).
We should not, however, ignore the macroscopic view—losing sight of the large aggrega-
tion of agents cooperating to perform a task. Although the ArraySum program does not
define a process in the sense of the CSP [11] model, the evolving “swarm” of transactions
does embody a distinct, purposeful activity: computing the sum of an array. Using the
assertional programming logics given in Section 4, we can specify and verify such “macro-
scopic” properties of Swarm computations. As we see in the next section, the synchrony
relation enables us to organize simple transactions into complex groups which work on
portions of the overall task.

3 Synchronic Groups

The discussion in the previous section ignored the third component of a Swarm program’s
dataspace—the synchrony relation. The interaction of the synchrony relation with the
execution mechanism provides a dynamic form of the ‖ operator. The synchrony rela-
tion is a symmetric, irreflexive relation on the set of valid transaction instances. The
reflexive transitive closure of the synchrony relation is thus an equivalence relation. (The
synchrony relation can be pictured as an undirected graph in which the transaction in-
stances are represented as vertices and the synchrony relationships between transaction
instances as edges between the corresponding vertices. The equivalence classes of the
closure relation are the connected components of this graph.) When one of the transac-
tions in an equivalence class is chosen for execution, then all members of the class which
exist in the transaction space at that point in the computation are also chosen. This
group of related transactions is called a synchronic group. The subtransactions making
up the transactions of a synchronic group are executed as if they were part of the same
transaction.

The synchrony relation can be examined and modified in much the same way as the
tuple and transaction spaces can. The predicate

Sum(i) ∼ Sum(j)

in the query of a subtransaction examines the synchrony relation for a transaction in-
stance Sum(i) that is directly related to an instance Sum(j). Neither transaction instance
is required to exist in the transaction space. The operator ≈ can be used in a predicate
to examine whether transaction instances are related by the closure of the synchrony
relation.

Synchrony relationships between transaction instances can be inserted into and deleted
from the relation. (The dynamic creation of a synchrony relationship between two trans-
actions can be pictured as the insertion of an edge in the undirected graph noted above,
and the deletion of a relationship as the removal of an edge.) The operation

Sum(i) ∼ Sum(j)

in the action of a subtransaction creates a dynamic coupling between transaction in-
stances Sum(i) and Sum(j), where i and j have bound values. If i equals j, the insertion
is simply ignored. If two instances are related by the synchrony relation, then

(Sum(i) ∼ Sum(j))†

deletes the relationship. Note that both the synchrony relation ∼ and its closure ≈ can be
tested in a query, but that only the base synchrony relation ∼ can be directly modified
by an action. Initial synchrony relationships can be specified by putting appropriate
insertion operations into the initialization section of the Swarm program.

Figure 3 shows a version of the array-summation program which uses synchronic
groups. The subtransactions of Sum(j) have been separated into distinct transactions
Sum(k, j) coupled by the synchrony relation. For each phase j, all transactions associated
with that phase are structured into a single synchronic group. The computation’s effect
is the same as that of the earlier program.

4 Programming Logics

The Swarm computational model is similar to that of UNITY [4]; hence, a UNITY-style
assertional logic seems appropriate. However, we cannot use the UNITY logic directly
because of the differences between the UNITY and Swarm frameworks.

This paper follows the notational conventions for UNITY as used in [4]. Properties and
inference rules are written without explicit quantification; these are universally quantified
over all the values of the free variables occurring in them. This paper also introduces the
notation “[t]” to denote the predicate “transaction instance t is in the transaction space,”
TRS to denote the set of all possible transactions (not a specific transaction space), and
Initial to denote the initial state of the program.

First we review the proof rules for the subset of Swarm without the synchrony relation
then look at how these rules can be generalized to support the synchrony relation. (For
more detail on the proof rules see [5] and on the formal operational model see [15]). The
Swarm programming logics have been defined so that the theorems proved for UNITY
in [4] can also be proved for Swarm.

program ArraySumSynch(N,A : [∃ p : p ≥ 0 :: N = 2p], A(i : 1 ≤ i ≤ N))
tuple types

[i, s : 1 ≤ i ≤ N :: x(i, s)]
transaction types

[k, j : 1 ≤ k ≤ N, 1 ≤ j < N ::
Sum(k, j) ≡

v1, v2 : x(k − j, v1)†, x(k, v2)† −→ x(k, v1 + v2)
‖ k 6= N −→ (Sum(k, j) ∼ Sum(N, j))†
‖ j < N, kmod (j ∗ 4) = 0

−→ Sum(k, j ∗ 2),
Sum(k, j ∗ 2) ∼ Sum(N, j ∗ 2)

]
initialization

[i : 1 ≤ i ≤ N :: x(i, A(i))];
[k : 1 ≤ k ≤ N, kmod 2 = 0 :: Sum(k, 1) ; Sum(k, 1) ∼ Sum(N, 1)]

end

Fig. 3. A Parallel Array Summation Program Using Synchronic Groups

The “Hoare triple”

{p} t {q} (1)

means that, whenever the dataspace satisfies the precondition predicate p and transaction
instance t is in the transaction space, all dataspaces which can result from execution of
transaction t satisfy the postcondition predicate q.

We define Swarm’s unless relation with an inference rule similar to that given for
UNITY’s unless in [13]:

〈∀ t : t ∈ TRS :: {p ∧ ¬q} t {p ∨ q}〉
p unless q

. (2)

The premise of this rule means that, if p is true at some point in the computation and q
is not, then, after the next step, p remains true or q becomes true.

Stable predicates and invariants are important for reasoning about Swarm programs.
For a predicate p to be stable means that, if p becomes true at some point in a compu-
tation, it remains true thereafter. On the other hand, a predicate p is invariant if p is
true at all points in the computation.

stable p ≡ p unless false (3)

invariant p ≡ (Initial ⇒ p) ∧ (stable p). (4)

Following UNITY’s definition in [13], we define Swarm’s ensures relation with an
inference rule:

p unless q , 〈∃ t : t ∈ TRS :: (p ∧ ¬q ⇒ [t]) ∧ {p ∧ ¬q} t {q}〉
p ensures q

. (5)

The premise of this rule means that, if p is true at some point in the computation, then
(1) p will remain true as long as q is false, and (2) if q is false, there is at least one
transaction in the transaction space which can, when executed, establish q as true. The
“p∧¬q ⇒ [t]” requirement generalizes the UNITY definition of ensures to accommodate
Swarm’s dynamic transaction space.

The leads-to relation, written

p 7−→ q (6)

means that, once p becomes true, q will eventually become true. (However, p is not
guaranteed to remain true until q becomes true.) As in UNITY, the assertion p 7−→ q is
true if and only if it can be derived by a finite number of applications of the following
inference rules:

–
p ensures q
p 7−→ q

(basis)

–
p 7−→ q, q 7−→ r

p 7−→ r
(transitivity)

– For any set W , (disjunction)
〈∀ m : m ∈ W :: p(m) 7−→ q〉
〈∃ m : m ∈ W :: p(m)〉 7−→ q

Unlike UNITY programs, Swarm programs terminate when the transaction space is
empty, that is

Termination ≡ 〈∀ t : t ∈ TRS :: ¬[t]〉. (7)

How can we generalize the above logic to accommodate synchronic groups? We need
to add a synchronic group rule and redefine the unless and ensures relations. The other
elements of the logic are the same.

We define the “Hoare triple” for synchronic groups

{p} S {q} (8)

such that, whenever the precondition p is true and S is a synchronic group of the data-
space, all dataspaces which can result from execution of group S satisfy postcondition
q.

A key difference between this logic and the previous logic is the set over which the
properties must be proved. For example, the previous logic required that, in proof of an
unless property, an assertion be proved for all possible transactions, i.e., over the set
TRS. On the other hand, this generalized logic requires the proof of an assertion for all
possible synchronic groups of the program, denoted by SG.

For the synchronic group logic, we define the logical relation unless with the following
rule:

〈∀S : S ∈ SG :: {p ∧ ¬q} S {p ∨ q}〉
p unless q

(9)

If synchronic groups are restricted to single transactions, this definition is the same as
the definition given for the earlier subset Swarm logic.

We define the ensures relation as follows:

p unless q ,
〈∃ t : t ∈ TRS :: (p ∧ ¬q ⇒ [t]) ∧ 〈∀S : S ∈ SG ∧ t ∈ S :: {p ∧ ¬q} S {q}〉〉

p ensures q
(10)

This definition requires that, when p ∧ ¬q is true, there exists a transaction t in the
transaction space such that all synchronic groups which can contain t will establish q
when executed from a state in which p ∧ ¬q holds. Because of the fairness criterion,
transaction t will eventually be chosen for execution, and hence one of the synchronic
groups containing t will be executed. In the logic for the Swarm subset, the ensures rule
requires that a single transaction be found which will establish the desired postcondition
when executed. In the synchronic group logic, on the other hand, instead of requiring that
a single synchronic group be found which will establish the desired state, the ensures
rule requires that a set of synchronic groups be identified such that any of the groups
will establish the desired state and that one of the groups will eventually be executed. If
synchronic groups are restricted to single transactions, this definition is the same as the
definition for the subset Swarm logic.

5 Example Proof

In Sections 2 and 3 we derived a Swarm program for summing an array from a simi-
lar program expressed with the Guarded Commands (GC) notation. Figure 3 gives the
Swarm program ArraySumSynch which uses synchronic groups to compute the sum of an
array. This section sketches a proof for this array sum program using the logic presented
in Section 4.

The precondition for ArraySumSynch, call it Initial, is similar to Q, the precondition
of the GC program’s loop given in Section 2. Of course, modifications are needed to
account for the differences in data and program representation. (As in the previous
section, we assume that all assertions are universally quantified over all the values of the
free variables occurring in them.) Using the predicates pow2 and node defined in Section
2, Initial can be stated as follows:

pow2(N) ∧ (x(i, v) ≡ 1 ≤ i ≤ N ∧ v = A(i)) ∧
(Sum(i, j) ≡ node(i, 2∗j) ∧ j = 1) ∧
(Sum(i, j) ∼ Sum(k, l) ∧ i ≤ k ≡ node(i, 2∗j) ∧ k = N ∧ j = l = 1)

The second, third, and fourth conjuncts specify the structure of the tuple space, trans-
action space, and synchrony relation, respectively. Here the tuple and transaction forms,
e.g., x(i, v) and Sum(i, j), represent predicates which are true when there is a match-
ing entity in the dataspace and false otherwise. Likewise, predicates using the ∼ and ≈
connectives represent predicates over the synchrony relation.

The postcondition of ArraySumSynch, call it Post, is similar to R, the postcondition
of the GC program. Using the sumA expression defined in Section 2, it can be stated as

x(i, v) ≡ (i = N ∧ v = sumA(0, N)).

To verify that the program satisfies this specification we must prove that, when the
program begins execution in a state satisfying Initial, it eventually reaches a state satis-
fying Post and, once such a state is reached, any further execution will not falsify Post .

That is, we must prove a progress property and a safety property—the Sum Completion
and Sum Stability properties, respectively.

Property 1 (Sum Completion) Initial 7−→ Post

Property 2 (Sum Stability) stable Post

To prove these properties, another property is needed which characterizes the un-
changing relationships among the elements of the dataspace. This “structure invariant”
serves a role in the Swarm proof similar to the role the loop invariant Q does in a proof
of the GC program. The statement of the Structure Invariant below uses the function
Wx, which is N divided by the number of x-tuples present in the dataspace, i.e.,

Wx =
N

〈# i, v :: x(i, v)〉
.

Wx represents the “width” of the segment of array A whose sum is in each x-tuple—a
role served by the variable j in the GC program.

Property 3 (Structure Invariant)

invariant
pow2(N) ∧ pow2(Wx) ∧ (x(i, v) ≡ node(i,Wx) ∧ v = sumA(i−Wx, i)) ∧
(Sum(i, j) ≡ node(i, 2∗j) ∧ j = Wx) ∧
(Sum(i, j) ∼ Sum(k, l) ∧ i ≤ k ≡ node(i, 2∗j) ∧ k = N ∧ j = l = Wx)

The Structure Invariant is relatively complex. This complexity arises from the mutual
dependencies among the data tuples and transactions of this highly synchronous program.
¶ Proof of the Structure Invariant. Call this property I. To prove the invariance

of I, we have to show that I holds initially and that it is stable. Since initially Wx =
N/N = 1, Initial⇒ I. Hence, I holds initially.

To prove I is stable we must show that I is preserved by all possible synchronic
groups G, i.e., { I } G { I } is true for arbitrary G. For any synchronic group which
does not satisfy I, this predicate is trivially true. Thus, we only need to consider those
synchronic groups which satisfy I. Since the value of N is not altered by any transaction,
the pow2(N) conjunct is preserved trivially. We now must show that each of the remaining
four conjuncts is preserved.

To see that the second and third conjuncts are preserved, we note that each executing
transaction deletes two x-tuples and inserts back a single x-tuple. The “indexes” (first
components) of the deleted tuples are adjacent multiples of j (i.e., of Wx). The inserted
tuple is positioned at the index of the rightmost deleted tuple—at a multiple of 2 ∗ j.
The value (the second component) of the inserted tuple is equal to the sum of the values
of the two deleted tuples. Furthermore, the precondition I guarantees that each of the
transactions in the group operate upon different tuples.

We now consider the fourth conjunct. All transactions (allowed by I) have the same
“phase” parameter j. Furthermore, the values of the “index” parameter i for these trans-
actions are multiples of 2 ∗ j. Only half of the transactions, i.e., those whose index is a
multiple of 4∗ j, insert successor transactions. The phase for all the inserted transactions
is 2 ∗ j (i.e., 2 ∗Wx). As argued above, Wx is also doubled in value by the synchronic
group’s execution. Thus the fourth conjunct is preserved.

The only synchrony relationship for a transaction Sum(i, j), for i < N , is with
transaction Sum(N, j). Upon execution, a transaction deletes this relationship. For each
new transaction inserted (into phase 2 ∗ j), a synchrony relationship is created with
Sum(N, 2 ∗ j). Thus the fifth conjunct is also preserved.
¶ Proof of Sum Stability. We must show that the predicate Post is preserved by

all synchronic groups allowed by the Structure Invariant I. We note that Post ∧ I ⇒
Wx = N . But Wx = N ∧ I ⇒ 〈∀ i :: ¬node(i, 2 ∗Wx)〉. Thus, when Post is true, because
of the fourth conjunct of I, the transaction space must be empty. Therefore, Post is
clearly stable.

Now we can now turn our attention to the Sum Completion progress property. This
large-grained progress property can be proved by induction using a finer-grained progress
property corresponding to the execution of a single synchronic group. The Sum Step
property is stated as an ensures relation.

Property 4 (Sum Step)

Wx = k < N ensures Wx = 2 ∗ k.

¶ Proof of the Sum Step property. The proof of an ensures property has two
parts: an existential part and an unless part.

The existential part requires us to prove that, whenever Wx = k < N , there is a
transaction in the transaction space such that any synchronic group containing that
transaction will establish Wx = 2 ∗ k. But, in accordance with the Structure Invariant
I, at most one synchronic group exists at a time. (Particularly, Wx = k < N ∧ I ⇒
Sum(N,Wx).) As argued in the proof of the Structure Invariant, this synchronic group
will double Wx, i.e., decrease the number of x-tuples by half.

The unless part requires us to prove Wx = k < N unless Wx = 2 ∗ k. That is, we
must show for all synchronic groups G,

{ Wx = k < N ∧ I } G { Wx = k ∨Wx = 2 ∗ k }

is valid. As argued above, the only synchronic groups allowed by I will double Wx.
Therefore, the ensures property holds.
¶ Proof of Sum Completion. To prove Sum Completion, we must show that

¬Post 7−→ Post . We note that ¬Post ∧ I ⇒ Wx < N and Wx = N ∧ I ⇒ Post .
We choose the well-founded metric N

Wx
− 1. (N

Wx
is the count of the x-tuples present

in the dataspace. The metric is similar to the variant function vf in the GC program
proof.) Using this metric, the Leads-to Induction Principle [4] applied to the Sum Step
property allows us to deduce that Wx < N 7−→ Wx = N . Therefore, we deduce that
¬Post 7−→ Post by the Leads-to Implication Theorem [4] and the Leads-to transitivity
rule.

We have thus proved the Sum Stability and Sum Completion properties of the Swarm
program ArraySumSynch. Therefore, the program satisfies its specification. Also it is true
that Post ∧ I ⇒ Termination (as we argued in the proof of Sum Stability). ArraySum-
Synch terminates immediately upon completing the computation of the desired sum.

6 Discussion

Content-based access to data, dynamic statements (i.e., transactions), and the synchrony
relation are three key features which distinguish Swarm [5, 15] from UNITY [4]. Previous

papers justified the first two extensions on three grounds. First, even though the Swarm
programming logic is more complex than the UNITY logic, the additional complexity
is not evident in proofs unless the new features are actually used. The Swarm inference
rules reduce to those employed in UNITY if we restrict the usage of Swarm to a UNITY-
like subset. In such a subset, we can represent UNITY’s variables as tuples, UNITY’s
assignments as transactions which delete and reinsert these tuples, and UNITY’s static set
of statements as transactions which reproduce themselves without introducing additional
transactions into the dataspace. Second, for problems whose precise structure and space
requirements (in terms of number of variables and statements) cannot be determined
a priori, Swarm allows one to tailor the dataspace appropriately. Scaling all the values
of a sparse matrix in parallel, for instance, does not require the presence of tuples and
statements for the zero entries. Third, Swarm was the first notational system to make
assertional-style proofs of rule-based programs feasible [9]. Moreover, since tuples can
easily simulate both variables and messages, Swarm makes it possible to write and prove
programs that employ these three programming paradigms.

Why introduce the synchrony relation? Consider UNITY’s synchronous composition
operator. The ‖-operator binds a group of assignments into a single statement; the assign-
ments in the group are executed synchronously as a single atomic action. Syntactically,
the ‖ is placed between the assignments making up the UNITY statement. Swarm’s
‖-operator is similar both syntactically and semantically. However, the Swarm model
generalizes the notion of synchronous execution. While UNITY statements are static,
anonymous entities, Swarm transactions are dynamically created entities which have
unique identifiers (i.e., the type name and parameter values). This led to a more dynamic
notion of synchronous execution: the atomic execution of a group of related transactions
where the relation between transactions is an entity subject to examination and modi-
fication by the program. As a result, Swarm separates the definition of statements (i.e.,
state transformations) from the specification of their processing mode (i.e., synchronous
or asynchronous). The former appears in the transaction type definitions while the latter
is captured by the synchrony relation present in the dataspace. Finally, the syntactic
restriction regarding the use of the ‖-operator (i.e., no simultaneous assignments to the
same variable) had to be removed to allow for synchronous execution of any group of
transactions. This was accomplished by giving precedence to dataspace insertions over
deletions.

Among all these changes, the ability to alter the definition of the synchrony relation
is clearly the most radical departure from UNITY. Thus, the static synchrony offered by
UNITY is augmented in Swarm by dynamic synchrony. This processing mode is unique
to Swarm and cannot be simulated easily in UNITY. There are strong indications that
dynamic synchrony will be helpful in modeling reconfigurable or heterogeneous computer
architectures and will lead to new kinds of solutions to a variety of programming tasks.
A related concept is also proving useful in parallel program refinement. Liu and Singh
[12] have subsequently applied a complementary concept, the asynchrony relation, to
the problem of refining a UNITY program toward architectures with different synchrony
structures.

The capacity to model a variety of computer architectures makes Swarm attractive
as a specification language for software which, because of performance considerations, is
targeted to a specific and often heterogeneous hardware organization. In such cases, the
software designer first derives a software specification expressed in the Swarm notation—

verifying that it is correct with respect to the application’s requirements and is compat-
ible with the chosen architecture. Subsequently, programmers use the specification as
the basis for implementing the software modules allocated to the individual architec-
tural components. To illustrate the kinds of architectures envisioned, let us consider an
application in which a three-dimensional geometric model is created, manipulated, and
displayed. Furthermore, let us assume that the underlying architecture consists of a pro-
ducer, a transformer, and a mapper. The producer, which could be a typical workstation,
runs asynchronously, generating various objects in the 3D model. The transformer is a
processor pipeline that can be dynamically reconfigured and activated by the producer.
When active, the transformer takes objects from the producer’s memory, applies a series
of transformations to them, and places the result in a very large buffer accessible to the
mapper. The mapper, in turn, is an SIMD machine whose task is to copy sections of
the buffer to the refresh memories of a number of display units. In Swarm, the producer
activities would be specified as a set of transactions which are asynchronous with respect
to each other and to the other components. The pipeline reconfiguration would involve
the formation of a synchronic group consisting of transactions which manipulate, object
by object, the geometric model. Finally, the SIMD machine might be captured by yet
another synchronic group, one that is not subject to change. Although the sketch of the
solution might be overly simplistic, this example illustrates that the synchrony relation
is a convenient construct for modeling certain kinds of architectures.

Turning now to programming considerations, the first thing that must be noted is
the use of the synchronic group to control the granularity of the computation. Because
each synchronic group execution represents an atomic transformation of the dataspace,
by adjusting the size of each group the programmer can switch between fine-grained and
course-grained operations or can combine the two in a single program. Let us consider,
for instance, the earlier 3D model and let us assume that it depicts a platform which
holds several machines with moving parts. At each moment the position of a point in
the model is affected by the combined movement of the platform, the machine to which
the point belongs, and the moving part involved. Any parallel implementation of the 3D
model dynamics must maintain proper consistency in the model, i.e., the effects of each
movement must be perceived as a series of small atomic changes in the positions of all
points on some part, on some machine, or on the entire contents of the platform. An
obvious Swarm solution associates with each point three transactions, each a member of
a different synchronic group. The platform group includes one transaction for each point
in the model and ensures the atomicity of the coordinate transformation resulting from
the platform movement. Similar synchronic groups are formed for each machine and part.

The solution is elegant because it separates the implementation of the three indepen-
dent movements and requires no synchronization code. Could we have the same solution
in UNITY? If the contents of the platform does not change and if moving parts do
not fall off, the answer is yes. Swarm, however, can accommodate without loss of ele-
gance the materialization and dematerialization of machines or parts, and, in general,
any arbitrary structural changes in the 3D model. This is accomplished by means of
appropriate restructuring of the synchronic groups. The ability to mold the computation
to the changing structure of the problem at hand, through the creation and restructur-
ing of arbitrary atomic transformations, is yet another reason for introducing synchronic
groups in Swarm.

Often the capability to exchange some information among the constituent transactions
of a synchronic group would make programming more convenient. Toward this end, five
special predicates have been added to Swarm: OR, AND, NOR, NAND, and TRUE,
meaning any, all, none, not-all, and no-matter-how-many, respectively [15]. Upon ex-
ecution, each regular query (i.e., a query not containing special predicates) makes it’s
success/failure status available to other queries in the synchronic group. When a query
which contains a special predicate is executed, this set of boolean values is accessed to
determine its outcome. The result is the convenient capability to detect certain kinds of
“consensus” [7] among the subtransactions of a synchronic group. Since many common
programming problems involve agreement among a set of participants, this capability
can be very useful. For example, quiescence within a synchronic group involving only
regular queries can be detected by introducing a NOR query into the group. The NOR
succeeds only when all the regular queries have failed and, therefore, no further activity
can originate within the group. Of course, an OR query is needed to recreate the syn-
chronic group when quiescence is not yet reached. The definition below shows the basic
code structure for transactions participating in some quiescence detection activity:

Worker(n) ≡
any work for me? −→ do the work

‖ OR −→ Worker(n)
‖ NOR −→ follow-up activities

In contrast to the Swarm solution, classical quiescence detection algorithms are quite
complex.

The updating of local clocks in a distributed simulation is another example of the use
of special queries. All local clocks are placed in the same synchronic group and execute
the following logic:

Clock(n) ≡
is current step completed? −→ skip

‖ t: AND, local time(n, t)†−→ local time(n, t +1)
‖ TRUE −→ Clock(n)

Components that complete their simulation early can terminate by simply removing
their clock from the synchronic group. The addition and removal of one clock is hidden
from all others; the only interactions among the clocks are through the special predicate
“consensus” mechanism.

Although experience indicates that the synchronic group is a useful concept, a number
of questions remain open. Among them, three are of immediate concern. First, does the
programming convenience arising from the synchronic group feature compensate for the
additional complexity of proofs of programs that employ them? Although proofs involving
synchronic groups have shown, in general, to be more difficult than initially expected,
drastic simplifications in program logic brought about by the use of synchronic groups
may ultimately ease the verification task. Second, will the study of dynamic synchrony
lead to interesting new distributed algorithms for some classical problems? Finally, how
can Swarm’s apparent ability to model complex architectures be put to practical benefit?
On-going research will likely yield at least partial answers to these questions.

7 Conclusions

The Swarm programming logic was the first axiomatic proof system for a shared data-
space “language.” Subsequently to and independently from this work, Waldinger and
Stickel developed a proof theory for rule-based systems [17]. Banâtre and Le Métayer
have done the same for GAMMA [1]. As far as the authors can determine, no axiomatic-
style proof systems have been published for Linda.

The Swarm programming logic exploits the similarities between the Swarm and
UNITY computational models. It uses the same logical relations as UNITY, but the def-
initions of the relations have been generalized to handle the dynamic nature of Swarm,
i.e., dynamically created transactions and the synchrony relation. This paper has shown
how one can extend the proof logic to accommodate the dynamic formation of synchronic
groups specified by the runtime redefinition of the synchrony relation.

Acknowledgements

This work was supported by the Department of Computer Science, Washington Univer-
sity, Saint Louis, Missouri. The first author was also supported in part by the National
Science Foundation under the Grant CCR-9015677. The Government has certain rights
in this material. The second author thanks the Department of Computer and Information
Science at the University of Mississippi for enabling him to continue this work.

References

1. J.-P. Banâtre and D. Le Métayer. The GAMMA model and its discipline of programming.
Science of Computer Programming, 15:55–77, 1990.

2. L. Brownston, R. Farrell, E. Kant, and N. Martin. Programming Expert Systems in OPS5:
An Introduction to Rule-Based Programming. Addison-Wesley, Reading, Massachusetts,
1985.

3. N. Carriero and D. Gelernter. Linda in context. Communications of the ACM, 32(4):444–
458, April 1989.

4. K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,
Reading, Massachusetts, 1988.

5. H. C. Cunningham and G.-C. Roman. A UNITY-style programming logic for shared data-
space programs. IEEE Transactions on Parallel and Distributed Systems, 1(3):365–376,
July 1990.

6. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, New Jersey,
1976.

7. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

8. N. Francez. Fairness. Springer-Verlag, New York, 1986.
9. R. F. Gamble, G.-C. Roman, and W. E. Ball. Formal verification of pure production sys-

tem programs. In Proceedings of the Ninth National Conference on Artificial Intelligence
(AAAI-91), pages 339–334, July 1991.

10. W. D. Hillis and G. L. Steele Jr. Data parallel algorithms. Communications of the ACM,
29(12):1170–1183, December 1986.

11. C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666–677, August 1978.

12. Y. Liu and A. K. Singh. Parallel programming: Achieving portability through abstraction.
In Proceedings of the 11th International Conference on Distributed Computing Systems
(ICDCS-11), pages 634–640. IEEE, May 1991.

13. J. Misra. Soundness of the substitution axiom. Notes on UNITY 14–90, Department of
Computer Sciences, University of Texas at Austin, Austin, Texas, March 1990.

14. M. Rem. Associons: A program notation with tuples instead of variables. ACM Transac-
tions on Programming Languages and Systems, 3(3):251–262, July 1981.

15. G.-C. Roman and H. C. Cunningham. Mixed programming metaphors in a shared data-
space model of concurrency. IEEE Transactions on Software Engineering, 16(12):1361–73,
December 1990.

16. L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge, Massachusetts,
1986.

17. R. J. Waldinger and M. E. Stickel. Proving properties of rule-based systems. Technical
Note 494, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025-3493, De-
cember 1990.

