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Abstract

The term shared dataspace refers to the general class of models and languages in which

the principal means of communication is a common, content-addressable data structure called

a dataspace. Swarm is a simple language we have used as a vehicle for the investigation of the

shared dataspace approach to concurrent computation. It is the first shared dataspace lan-

guage to have an associated assertional-style proof system. An important feature of Swarm

is its ability to bring a variety of programming paradigms under a single, unified model. In a

series of related examples we explore Swarm’s capacity to express shared-variable, message-

passing, and rule-based computations; to specify synchronous and asynchronous processing

modes; and to accommodate highly dynamic program and data structures. Several illus-

trations make use of a programming construct unique to Swarm, the synchrony relation,

and explain how this feature can be used to construct dynamically structured, partially syn-

chronous computations. The paper has three parts: an overview the Swarm programming

notation, an examination of Swarm programming strategies via a series of related example

programs, and a discussion of the distinctive features of the shared dataspace model. A

formal operational model for Swarm is presented in an appendix.



1 INTRODUCTION

Over the last decade concurrency has been one of the most active and prolific areas of re-

search in computer science. The variety of formal models, languages, and algorithms that have

been proposed attests to the vitality of the field and to its ability to respond to the underlying

technological currents which demand new ways to manage and exploit parallelism. Nevertheless,

despite the multiplicity of forms, much of the work on concurrency is aligned with one of two

basic paradigms:

• communication via shared variables (e.g., Concurrent Pascal [5], UNITY [10]),

• communication via message passing (e.g., CSP [18] and Actors [1]), including remote oper-

ations (e.g., Ada [3] and Argus [23]) which we view as a highly-structured message passing

protocol.

The two paradigms differ in the mechanisms they provide for communication among concurrent

processes. However, both rely upon the use of names to identify (directly or indirectly) the

communicating parties.

Given this state of affairs, one would naturally pose the question: Is naming fundamental to

achieving cooperation among concurrent processes? We believe the answer to be no. To take an

example from nature, it is doubtful that bees making up a swarm have individual names, yet,

they cooperate effectively in performing highly complex tasks. The key to communication is not

naming but, as Lamport [20] points out, the existence of a persistent communication medium (the

beehive, the intruding bear, the bees themselves) and a coherent interpretation of the information

it encodes.

In the programming language arena, there are numerous instances where data access is pri-

marily by content rather than by name: logic programming, rule-based systems, and database

languages. The first concurrent language to make extensive use of a content-addressable commu-

nication medium is Linda [2, 7]. In Linda, processes communicate by examining, inserting, and

deleting (one at a time) tuples stored in a tuple space. Linda’s success has been instrumental in

the emergence of other languages using a similar communication paradigm. Our own work on

language and visualization support for large-scale concurrency led us to propose SDL [27, 31], a

language in which processes use powerful transactions to manipulate abstract views of a virtual,

content-addressable data structure called the dataspace. In related work, Kimura proposed the
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Transaction Network [19], a visual language in which the traditional places and transitions ap-

pearing in Petri nets have been replaced by databases and transactions, respectively. Recently,

we became aware of several other groups working on similar kinds of languages [4, 24].

We use the term shared dataspace to refer to the general class of models and languages in which

the principal means of communication is a common, content-addressable data structure. Because

the investigation of shared dataspace languages is still in its early stages, the body of knowledge

accumulated so far is too limited to reach any decisive conclusions about the paradigm’s long-term

viability. Even so, the Linda-related work, the general trend toward the integration of database

concepts into programming languages, and the growing interest in parallel computation among

artificial intelligence researchers make us highly optimistic about the future of shared dataspace

languages.

Our research group has embarked on a systematic study of the shared dataspace paradigm.

The main vehicle for this investigation is a language called Swarm. Following the example of

Chandy and Misra’s UNITY model [10], the design of Swarm takes a minimalist approach; it

provides only a small number of constructs which we believe to be at the core of a large class of

shared dataspace languages. The shared dataspace encodes the entire state of the computation

using a simple, uniform, content-addressable, tuple-like representation. The transaction construct

reduces both communication and computation to the notion of an atomic transformation of the

dataspace. In addition, the synchrony relation provides a simple mechanism for establishing (at

program initialization or dynamically during execution) a synchronous mode of execution for

selected portions of the computation—a feature unique to Swarm. The result is a very general

model of concurrent computation able to express shared-variable, message-passing, and rule-based

computations; to specify synchronous and asynchronous processing modes, both statically and

dynamically; and to accommodate highly dynamic program and data structures.

Our study of the shared dataspace paradigm has a very broad scope, encompassing the devel-

opment of formal (operational and axiomatic) semantic models [12, 13, 30], novel programming

metaphors specific to the shared dataspace paradigm [29], and new approaches to visualizing

concurrent computations [28]. This paper reports the progress toward the development of the

Swarm model and a few of its programming implications. The paper has three parts. Section 2

informally overviews the Swarm model and programming notation. To illustrate the kinds of

algorithms one can construct in shared dataspace languages, section 3 presents several solutions
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to the problem of labeling equal-intensity regions within a digital image. Section 4 highlights the

distinctive features of the shared dataspace model. In addition, an appendix presents a formal

operational model for Swarm.

2 THE SWARM NOTATION

This section introduces the Swarm model and notation informally. A formal operational

model is relegated to the Appendix. UNITY-like assertional programming logics have also been

developed for Swarm; these programming logics are described in [12], [13], and [30].

The presentation in this section begins with a formal specification of a region-labeling problem.

Next, using a well-known programming notation, Dijkstra’s Guarded Commands (GC) [14], the

section presents a simple program to solve this problem. The GC program is then transformed,

step by step, into a Swarm program. Key aspects of the shared dataspace model are introduced

along the way.

Region labeling is a two-dimensional version of the classical leader election problem [11, 22].

Let us consider an image consisting of N rows and M columns. Each discrete point in the image

is called a pixel. Each pixel is characterized by its coordinates in the image (i.e., row and column

numbers) and intensity (i.e., brightness or color). Two pixels are called neighbors if they have

equal intensities and are no further than one row and one column apart. Connected groups of

neighboring pixels form equal-intensity regions, henceforth called simply regions. The problem

requires all pixels in a region to be labeled with a unique region identifier. If one defines a total

ordering on the set of pixel coordinates, the smallest coordinate of any pixel in each region can

be used as the region’s unique identifier.

Before giving the formal specification for the problem, we need to introduce a few basic con-

cepts and some related notation. A pixel is identified by its coordinates in the image. The

predicate Pixel(P ) returns true if the coordinate P is within the image space, i.e.,

Pixel(P ) ≡ 〈∃x, y : P = (x, y) :: 1 ≤ x ≤ N ∧ 1 ≤ y ≤M〉.
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The intensity of each pixel is given by the array of constants called Intensity. The range of valid

intensity values is constrained by two constants, Hi and Lo, such that

〈∀ ρ : Pixel(ρ) :: Lo ≤ Intensity(ρ) ≤ Hi 〉.

The array PixLabel, the same size as Intensity, associates a label with each pixel. We assume that

a label must be a valid coordinate in the image space, i.e.,

〈∀ ρ : Pixel(ρ) :: Pixel(PixLabel(ρ)) 〉.

For reasons of generality, we do not refer directly to the array PixLabel. Instead, we introduce

the predicate is labeled which, for the moment, is defined such that

is labeled(P,L) ≡ (PixLabel(P ) = L).

Next, we formalize the concept of neighbor by introducing two predicates, adjacent and neigh-

bors, defined as follows:

adjacent(P,Q) ≡ Pixel(P ) ∧ Pixel(Q) ∧ (0, 0) < |P −Q| ≤ (1, 1)

neighbors(P,Q) ≡ adjacent(P,Q) ∧ Intensity(P ) = Intensity(Q)

Here we assume that addition and subtraction of coordinates is done component-wise as follows:

(x, y) + (a, b) = (x+ a, y + b)

(x, y)− (a, b) = (x− a, y − b)

Further, we assume coordinates are totally ordered by the < relation, such that

(x, y) < (a, b) ≡ x < a ∨ (x = a ∧ y < b).

The predicate neighbors defines a symmetric, irreflexive relation on the set of pixels. Thus,

the region containing a pixel P , denoted by R(P ), can be specified as the set of all pixels related

to P via the reflexive transitive closure of this neighbors relation1, i.e.,

1We use the notation Rτ to denote the reflexive transitive closure of relation R.
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R(P ) = {ρ : neighborsτ (P, ρ) :: ρ}.

If the function min is defined for a set of pixels such that 〈∀ p : p ∈ S :: min(S) ≤ p〉, then

min(R(P )) designates the smallest pixel coordinate in the region containing pixel P .

Given these definitions, a program is said to solve the region-labeling problem if it satisfies

the following properties for every pixel P and intensity ι:

constant (Intensity(P ) = ι),

i.e., if the intensity of P is ι, it remains ι throughout the remainder of the computation;

is labeled(P, P ) leads to is labeled(P,min(R(P ))),

i.e., when starting with an initial labeling where P is labeled with its own coordinate, the

computation eventually reaches a state in which P is labeled by the minimum coordinate in

the region;

stable is labeled(P,min(R(P ))),

i.e., once P is labeled by the minimum coordinate in the region, its label will never change

again.

There is no requirement for the program to terminate. (For formal definitions of constant,

leads to, and stable, the reader should refer to [10].)

One way to solve the region-labeling problem is to associate with each pixel P a process

GLabel(P ). Its task is to check (forever) whether some pixel Q, adjacent to P , is in the same

region as P and has a smaller label. If this is the case, Q’s label is adopted also by P .

GLabel(P ) ::
do

〈 Q : adjacent(P,Q) ::
Intensity(Q) = Intensity(P ) ∧ PixLabel(P ) > PixLabel(Q)

−→ PixLabel(P ) := PixLabel(Q) 〉
true −→ skip

od

The process GLabel(P ) consists of one guarded iteration. The first eight guards are stated com-

pactly in a single statement, parameterized by Q. The value of Q ranges over the eight pixels

immediately adjacent to P . These guards implement the labeling activity. The true guard ensures
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non-termination; otherwise, a pixel having the smallest coordinate in its immediate vicinity could

stop the labeling prematurely. As the execution proceeds, the smallest label gradually spreads

across the entire region. Nevertheless, all processes continue to execute by taking the true guard

on each iteration of the loop. Since the pixel coordinates are distinct, the region labels are also

distinct.

Of course, for this program to compute the desired result, we must impose some constraints

upon its execution. First, the selection of a guard for execution must be fair (i.e., any guard which

remains continuously true will eventually be chosen on some iteration of the loop2); otherwise,

the true guard could be always selected and progress may never occur. We also require that any

read overlapping a write operation obtains the value either before or after the write. One inter-

esting consequence of this last requirement is that the program defined above executes correctly

whether processes execute asynchronously or synchronously! Unfortunately, there is nothing in

the GC notation that would allow us to specify such a choice. In the remainder of this section we

incrementally transform the GC program into the Swarm program shown in Figure 1.

Data representation. The first transformation involves data representation. In the GC

program above, data are represented by a fixed set of shared variables. There are 2∗N∗M variables

logically organized into two arrays: Intensity and PixLabel. In Swarm, data are represented as

data tuples stored in a set called the dataspace. The tuple-based representation is more general

than the variable-based approach; it is the first step toward enabling Swarm to accommodate

content-based addressing needed to model rule-based computations. Each data tuple consists

of a type name and a sequence of values. For the region-labeling program, we introduce two

tuple types, has intensity and has label, corresponding to the two arrays. Each array entry is

represented by a sequence consisting of the entry’s index and value. The values are restricted to

valid intensities and labels, respectively. In Swarm, the following tuple type declaration states

this restriction:

[P,L, I : Pixel(P ), P ixel(L), Lo ≤ I ≤ Hi ::
has intensity(P, I);
has label(P,L)

]

In the Swarm syntax, a comma which separates two logical expressions has the same meaning as

the ∧ (logical and) operator.

2This type of fairness is called weak fairness [16] or justice [21].
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The correctness requirements remain essentially the same as for the GC program. The defi-

nitions for is labeled, adjacent, neighbors, and R require only trivial changes to accommodate the

new representation. However, because in the Swarm representation more than one intensity or

label value could be associated with a pixel, we add a new correctness requirement—an invariant

requiring that each pixel have precisely one intensity and one label. As this invariant makes clear,

the two tuple types implement the two arrays from the GC program.

Computation/communication. In Swarm, both computation and communication are re-

duced to atomic transformations of the dataspace. These transformations result from the execu-

tion of transactions. A transaction execution involves two steps. (1) A query over the dataspace is

evaluated; if successful, values are bound to the transaction’s local variables. (2) Successful queries

may cause deletions from and insertions into the dataspace. Since multiple sets of dataspace enti-

ties may satisfy the same query, the query evaluation manifests nondeterminism. However, once

the variables are bound, the dataspace changes are fully specified and deterministic.

Each guarded command in GLabel has a simple, direct representation in Swarm. For each Q

adjacent to P , one can create a transaction such as the following:

λ1, λ2 : neighbors(P,Q), has label(P, λ1), has label(Q,λ2), λ1 > λ2
→ has label(P, λ1)†, has label(P, λ2)

In this transaction, a guard of the do is replaced by a query; the assignment is simulated by the

deletion (indicated by the † symbol) of the old label for P followed by the insertion of a new label

for P .

A more interesting alternative might be to allow Q to be bound in the query as well. Thus

eight of the alternatives of the do command can be replaced by the single transaction:

ρ, λ1, λ2 : neighbors(P, ρ), has label(P, λ1), has label(ρ, λ2), λ1 > λ2
→ has label(P, λ1)†, has label(P, λ2)

The query part searches the dataspace for any neighbor ρ of P which has a smaller label; the

action part remains the same. The nondeterminism in this pattern match is substituted for the

nondeterminism in transaction selection used earlier to simulate the nondeterminism in the guard

selection of GLabel. However, there is one important difference. For the GC do, we assumed that

a guard is selected for execution fairly, but we cannot assume the same for the dataspace pattern

match. The Swarm design does not impose any fairness constraint upon the selection of data to

satisfy queries. Although in this program the lack of data selection fairness is not a problem, in

others it may cause difficulties.
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Process representation. In Swarm there is no concept of process and there are no sequential

programming constructs. Transaction types and transaction instances are available instead. A

transaction specifies an atomic transformation of the dataspace. Transaction instances appear in

the dataspace as tuple-like entities consisting of a transaction type name and a sequence of fully

instantiated parameters. Transactions present in the dataspace are selected fairly and executed

atomically. (A transaction present in the dataspace at any point in the computation will eventually

be executed.) Each transaction is automatically removed from the dataspace whenever it is

executed, regardless of the success or failure of its query evaluation. Transactions can query the

dataspace for the existence of particular tuples and transactions and can insert new tuples and

transactions, but cannot delete other transactions from the dataspace. Since Swarm lacks any

sequential constructs, sequencing is accomplished by defining continuations in the form of new

transactions to be inserted into the dataspace. The counterpart of the process GLabel(P ) is a

transaction of type Label with parameter P , i.e., transaction instance Label(P ). Transactions

of type Label are defined as having the same behavior as the anonymous relabeling transaction

introduced earlier, with the added provision that the executing transaction reinserts itself.

[P : Pixel(P ) ::
Label(P ) ≡

ρ, λ1, λ2 : neighbors(P, ρ), has label(P, λ1), has label(ρ, λ2), λ1 > λ2
→ has label(P, λ1)†, has label(P, λ2), Label(P )

]

Because insertions follow any deletions, the effect of successfully executing a Label(P ) transac-

tion is to relabel pixel P and to reinsert the transaction. What happens, however, if the query

fails? The action part is not executed and the transaction is not reinserted! To avoid premature

termination, we need something equivalent to the true guard used in the GC program:

true −→ Label(P ).

The static parallel composition operator ‖ may be used to add this “guard” to the transaction

above, giving the following new definition for transactions of type Label:

[P : Pixel(P ) ::
Label(P ) ≡

ρ, λ1, λ2 : neighbors(P, ρ), has label(P, λ1)†, has label(ρ, λ2), λ1 > λ2
→ has label(P, λ2)

‖
true → Label(P )

]
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(Note that in redefining Label(P ) the dagger has been moved inside the query. This is a shorthand

notation useful when the tuples to be deleted appear already in the query.) The query-action

components composed by the ‖ operator are called subtransactions. The entire construct is called

a transaction. The interpretation mechanism requires that the evaluations of all subtransaction

queries precede any deletions and that all deletions precede any insertions. The result is an

interference-free synchronous execution of the subtransactions of a transaction. Such an execution

is not generally serializable, i.e., there may not exist any serial execution of the subtransactions

resulting in the same dataspace configuration as the parallel execution.

Composing several subtransactions by means of the ‖ operator is akin to forming a multiple

assignment statement from simple assignment statements. Each component involved in the com-

position is executed every time the compound statement is executed. By contrast, in a guarded

selection only one guarded command is executed even if all guards are true. The static parallel

composition of Swarm also provides a mechanism for several special queries whose success depends

upon the success/failure status of the set of “regular” queries (as described above). For instance,

in the following redefinition of Label(P ), if none of the subtransactions executing regular queries

(only one in this case) have succeeded, the second subtransaction’s query succeeds and it’s action

reinserts the transaction.

Label(P ) ≡
ρ, λ1, λ2 : neighbors(P, ρ), has label(P, λ1)†, has label(ρ, λ2), λ1 > λ2

→ has label(P, λ2), Label(P )
‖

NOR → Label(P )

The built-in special predicates are OR, AND, NOR, and NAND, meaning any, all, none, and

not-all, respectively. These predicates may be combined with regular predicates to form spe-

cial queries. During transaction execution, the success or failure of predicates in special queries

does not affect the evaluation of any other special query in the transaction. The regular predi-

cates in a special query act as filters that may inhibit the actions associated with the respective

subtransaction.

Initialization. The last step in our series of transformations is the initialization of the data-

space. For each pixel P , we need to create a data tuple to store the pixel intensity, another data

tuple to store the starting label, and a transaction of type Label, as shown below.

[P : Pixel(P ) :: has intensity(P, Intensity(P ));has label(P, P );Label(P )]
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program RegionLabel(M,N,Lo,Hi, Intensity :
1 ≤M, 1 ≤ N,Lo ≤ Hi, Intensity(ρ : Pixel(ρ)),
[∀ ρ : Pixel(ρ) :: Lo ≤ Intensity(ρ) ≤ Hi] )

definitions
[P,Q,L ::

Pixel(P ) ≡
[∃x, y : P = (x, y) :: 1 ≤ x ≤ N, 1 ≤ y ≤M ];

adjacent(P,Q) ≡
Pixel(P ), P ixel(Q), (0, 0) < |P −Q| ≤ (1, 1);

neighbors(P,Q) ≡
adjacent(P,Q), [∃ ι :: has intensity(P, ι), has intensity(Q, ι)]

]
tuple types

[P,L, I : Pixel(P ), P ixel(L), Lo ≤ I ≤ Hi ::
has label(P,L);
has intensity(P, I)

]
transaction types

[P : Pixel(P ) ::
Label(P ) ≡

ρ, λ1, λ2 :
neighbors(P, ρ), has label(P, λ1)†, has label(ρ, λ2), λ1 > λ2

→ has label(P, λ2), Label(P )
‖ NOR → Label(P )

]
initialization

[P : Pixel(P ) ::
has label(P, P );
has intensity(P, Intensity(P ));
Label(P )

]
end

Figure 1: A Nonterminating Region-Labeling Program in Swarm
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The final program is shown in Figure 1. The reader interested in how one might verify this

program with respect to the earlier problem specification may turn to [12] or [13].

Synchronous execution. As indicated above, the GC solution would execute correctly un-

der both asynchronous and synchronous assumptions. This is also true of the Swarm version if

we define synchronous execution as having the semantics of ‖: two or more transactions are said

to execute synchronously if they complete all regular query evaluations before any deletions and

all deletions before any insertions. However, in Swarm, synchrony is not treated as an opera-

tional assumption, but as a relation between transactions. If synchronous execution of multiple

transactions is desired, one needs to specify the fact explicitly. The information regarding which

transactions must be executed synchronously is stored in a third component of the dataspace, the

synchrony relation. Because the synchrony relation is a part of the dataspace, it can be examined

by queries and be modified dynamically by the insertion and deletion of entries in the synchrony

relation.

The interaction of the synchrony relation with the execution mechanism provides a dynamic

form of the operator ‖. The synchrony relation is a symmetric, irreflexive relation on the set of

valid transaction instances. The reflexive transitive closure of the synchrony relation is thus an

equivalence relation. When one of the transactions in an equivalence class is chosen for execution,

then those members of the class which exist in the transaction space are executed synchronously

as if they were a single transaction. This group of related transactions is called a synchronic

group. (The scope of the special predicates, e.g., AND, extends to all regular subtransaction

queries in the synchronic group.)

The synchrony relation can be examined and modified in much the same way as the tuple and

transaction spaces can. The predicate

Label(p) ∼ Label(Q)

(where p is a variable and Q is a constant) in the query of some subtransaction examines the

synchrony relation for a transaction instance Label(p) that is directly related to an instance

Label(Q). Neither transaction instance is required to exist in the transaction space. The operator

≈ can be used in a predicate to examine whether transaction instances are related by the closure

of the synchrony relation.
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Synchrony relationships between transaction instances can be inserted into and deleted from

the relation. The operation

Label(p) ∼ Label(q)

in the action of a subtransaction creates a synchrony relationship between transaction instances

Label(p) and Label(q) (where p and q must have bound values). If two instances are related by

the synchrony relation, then

(Label(p) ∼ Label(q))†

deletes the relationship. Note that both the base synchrony relation and its closure can be tested

in a query, but only the base synchrony relation can be directly modified by the action.

By default, the synchrony relation is empty. Initial couplings can be specified by putting

insertion operations into the initialization section. For instance, by adding

[P : Pixel(P ), P ixel(Q) :: Label(P ) ∼ Label(Q) ]

to the initialization section of the program shown in Figure 1, we transform it, as discussed later,

into a correct synchronous version.

In summary, underlying the Swarm language is a state-transition model similar to that of

UNITY, but recast into the shared dataspace framework. In the model, the state of a computation

is represented by the contents of the dataspace, a set of entities addressed by their values. The

model partitions the dataspace into three subsets: the tuple space, a finite set of data tuples;

the transaction space, a finite set of transactions; and the synchrony relation. An element of the

dataspace is a pairing of a type name with a sequence of values. In addition, a transaction has

an associated behavior specification. The execution of a transaction is modeled as a transition

between dataspaces. An executing transaction examines the dataspace, then deletes itself from

the transaction space and, depending upon the results of the dataspace examination, modifies the

dataspace by inserting and deleting tuples and synchrony relation entries and by inserting (but

not deleting) other transactions. A Swarm program begins executing from a valid initial dataspace

and continues until the transaction space is empty. On each execution step a transaction is chosen

nondeterministically from the transaction space along with all other transactions belonging to the

same synchronic group. The entire synchronic group is executed. The transaction selection is fair

in the sense that each transaction in the transaction space will eventually be chosen.
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3 PROGRAMMING METAPHORS

In this section we illustrate the kinds of programming strategies made possible by the proposed

Swarm constructs. The region-labeling problem introduced in section 2 serves as a vehicle for

explaining the various programming alternatives available in Swarm. Most of the programs in

this section are variations of the RegionLabel program given in Figure 1. To distinguish among

similar transactions in the various solutions, we append unique extensions (numbers and letters)

to the base transaction names.

Reasoning about concurrent computations is generally done in terms of progress (i.e., liveness)

and safety properties (e.g., stability). Progress is achieved by effecting changes in the computa-

tion’s state; stable properties are useful in detecting the completion of a particular phase of the

computation. For these reasons our discussion is logically divided into two parts: computational

progress and stable state detection.

3.1 Computational Progress Metaphors

The manner in which progress is accomplished depends upon the computational style sup-

ported by the underlying model. Swarm supports both asynchronous and synchronous compu-

tation in the context of either a static or dynamic transaction space. These capabilities are

illustrated below by considering the region-labeling problem. Throughout this section we will

ignore the issue of termination detection and assume that any transaction which cannot change

the labeling result is harmless. We could inhibit the creation of such transactions, but we prefer

to keep the presentation simple.

Static asynchronous computation. This mode of computation is characterized by a static

set of transactions whose execution must be serializable. In general, the static processing struc-

ture is attractive because it often simplifies analysis while the asynchronous execution lends itself

to operational models based on the interleaving of atomic actions. Here we present three solu-

tions that employ this mode of computation. Each program is justified by adopting a distinct

programming philosophy. Our intent is, in part, to demonstrate Swarm’s ability to accommodate

the traditional concurrent programming paradigms (i.e., message passing and shared variables)

as well as the emerging interest in rule-based computing.
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For the first solution we turn to the program shown in Figure 1. The transaction space consists

of one transaction per pixel renamed Label1(P ) and with the special query NOR replaced by

true:

[P : Pixel(P ) ::
has label(P, P );has intensity(P, Intensity(P ));
Label1(P )

]

Each Label1 transaction is anchored at a pixel; the transaction repeatedly relabels its pixel to

smaller labels held by neighbor pixels:

[P : Pixel(P ) ::
Label1(P ) ≡

ρ, λ1, λ2 : neighbors(P, ρ), has label(P, λ1)†, has label(ρ, λ2), λ1 > λ2
→ has label(P, λ2)

‖ true → Label1(P )
]

Eventually the winning label propagates throughout the entire region. Because each Label1(P )

transaction reinserts itself, the transaction space is left unchanged. Also, recall that has label

and has intensity tuples implement two fixed-size arrays indexed by P . The program is clearly

a shared-variable solution of the type one would implement in UNITY.

By contrast, a message-passing solution would have to permit only the analog of Label1(P ),

say Label1a(P ), to access the intensity and label of P . This requires the introduction of com-

munication channels. We use a tuple of type channel associated with a pair of pixels P and Q

to transmit the label and intensity of P between Label1a(P ) and Label1a(Q). The destination

Label1a(Q) acknowledges receipt of the data by deleting the tuple and stops future transmissions

between different regions by leaving the tuple untouched. The labels received from channels within

the same region are used to update the local label as before.
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[P : Pixel(P ) ::
Label1a(P ) ≡

[‖ δ : adjacent(P, δ) ::
λ1, ι1 :

has label(P, λ1), has intensity(P, ι1), (∀λ2, ι2 :: ¬channel(P, δ, λ2, ι2))
→ channel(P, δ, λ1, ι1) ]

‖
ρ, λ1, λ2, ι :

channel(ρ, P, λ2, ι)†, has label(P, λ1)†, has intensity(P, ι), λ1 > λ2
→ has label(P, λ2)

‖
ρ, λ1, λ2, ι :

channel(ρ, P, λ2, ι)†, has label(P, λ1), has intensity(P, ι), λ1 ≤ λ2
→ skip

‖ true → Label1(P )
]

The initial dataspace configuration remains unchanged, except for the transaction renaming, since

the channel tuples are created when needed.

Yet another solution can be generated if one approaches the same problem from a rule-based

perspective. The dataspace can be viewed as the working memory of an OPS5-like program

with transactions functioning as production rules. The first rule is a generalization of the Label1

transaction type. It states that if two pixels, ρ and δ, are in the same region and have different

labels, the smaller of the two labels should be applied to both pixels. The result is a transaction

which, instead of being anchored at some pixel P , may be applied to any pixel pair satisfying the

query:

[ ::
Label1b() ≡

ρ, δ, λ1, λ2 : has label(δ, λ1)†, neighbors(δ, ρ), has label(ρ, λ2), λ1 > λ2
→ has label(δ, λ2)

‖ true → Label1b()
]

By exploiting transitivity, a second rule could be added. It states that if ρ1 has the label ρ2

and ρ2 has the label ρ3, then we can change the label of ρ1 to be ρ3. This is possible because all

three pixels must be in the same region and ρ3 is the smallest of the three:

[::
Label1c() ≡

ρ1, ρ2, ρ3 : has label(ρ1, ρ2)†, has label(ρ2, ρ3), ρ1 > ρ2, ρ2 > ρ3
→ has label(ρ1, ρ3)

‖ true → Label1c()
]
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Clearly, the last two transactions introduced use the pattern matching power available to

Swarm queries. By contrast, the transactions discussed earlier use the tuples in highly structured

ways which may be formally characterized. This suggests a general approach to the development of

multiparadigm concurrent software. Starting with a validated Swarm solution, through successive

refinements one can restructure the solution so that different groups of transactions exhibit data

access patterns specific to one of the three paradigms above. The result is a program whose

components can be readily mapped to a heterogeneous group of languages and machines.

Dynamic asynchronous computation. A very different kind of solution may be obtained

if we allow a dynamic transaction space. As before, we can start with one transaction associated

with each pixel in the image:

[P : Pixel(P ) :: · · · ;Label2(P, P )]

Each transaction, however, has two arguments. The first argument is the pixel the transaction is

attempting to label; the second is the label it is attempting to place on that pixel:

[P,L : Pixel(P ), P ixel(L) ::
Label2(P,L) ≡

[‖ δ : P = L, adjacent(P, δ) ::
ι : has intensity(P, ι), has intensity(δ, ι)

→ Label2(δ, P )
]

‖
λ : has label(P, λ)†, λ > L

→ has label(P,L)
‖

[‖ δ : δ 6= L, adjacent(P, δ) ::
λ, ι : has intensity(P, ι), has intensity(δ, ι), has label(P, λ), λ > L

→ Label2(δ, L)
]

]

Each Label2(P,L) transaction consists of three groups of subtransactions. For P = L, the

first group of subtransactions includes a subtransaction for each pixel δ such that adjacent(P, δ);

otherwise, the group is null. This group of subtransactions starts the propagation of a pixel’s

label to its neighbors. The second subtransaction group is a single subtransaction which relabels

pixel P when it has a label larger than L. When a label is changed, the third subtransaction

group propagates the relabeling activity to the pixel’s neighbors.

A wavefront of transactions working on behalf of the pixel having the smallest coordinate in

the region, i.e., the winning pixel, will expand until it reaches the region boundaries where, having
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completed the region labeling, it dissipates. This kind of solution maps straightforwardly into a

network architecture which supports dynamic process creation and migration. One can think of

Label2(P,L) as a having identity L and executing at location P . The migratory pattern for these

transactions is highly structured and predefined. This need not be the case. Less differentiated

transactions could be designed to move across the dataspace in search of work. This kind of

programming style has been used very effectively in Linda. In the following example we extend

this metaphor one step further by initially creating a single transaction, Label2a((1, 1)), which,

upon succeeding in relabeling one pixel, clones itself. Each continuation, in turn, seeks work and

clones itself when successful:

[P : Pixel(P ) :
Label2a(P ) ≡

ρ, δ, λ1, λ2 : has label(δ, λ1)†, neighbors(δ, ρ), has label(ρ, λ2), λ1 > λ2
→ has label(δ, λ2), Label2a(ρ), Label2a(δ)

]

Note that the parameter P has no impact on which data are used by the transaction. It simply

provides a distinct identity and places some control on the potential explosion in concurrency

caused by successfully executing transactions. Of course, when the labeling is completed, all

transactions eventually fail, causing the transaction space to become empty.

Static synchronous computation. The synchronous version of the static transaction space

is a highly unpleasing one. It demands the creation of a supertransaction that covers the entire

image:

[ ::
Label3( ) ≡

[‖ ρ : Pixel(ρ) ::
δ, λ1, λ2 : neighbors(ρ, δ), has label(ρ, λ1)†, has label(δ, λ2), λ1 > λ2

→ has label(ρ, λ2)
]

‖ true → Label3( )
]

This kind of solution, typical for many SIMD machines such as the Connection Machine, creates

an unnecessary coupling between independent regions of the image. Because the structure of the

image varies, one cannot conceive of a transaction which processes a single region, independently

of all the other regions.

For static data, Swarm’s synchrony relation may be used to create an initial configuration of

the transaction space which is tailored to the initial structure of the tuple space. Using the earlier
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definition of the Label1(P ) transaction type, we can redefine the initial configuration to be as

follows:

[P : Pixel(P ) ::
has label(P, P );has intensity(P, Intensity(P ));
Label1(P )

] ;
[P,Q : adjacent(P,Q), Intensity(P ) = Intensity(Q) ::

Label1(P ) ∼ Label1(Q)
]

All the transactions working on the same region form a synchronic group which reinserts itself

after each step.

Dynamic synchronous computation. Synchronic groups can also be formed during pro-

gram execution in response to dynamically created data. This brings us to the case of a syn-

chronous solution in a dynamic transaction space. This approach can be illustrated by altering

the definition of Label1(P ) so that it couples itself to those transactions that are associated with

its neighbors in the same region:

[P : Pixel(P ) ::
Label4(P ) ≡

ρ, λ1, λ2 : neighbors(P, ρ), has label(P, λ1)†, has label(ρ, λ2), λ1 > λ2
→ has label(P, λ2)

‖ ρ : neighbors(P, ρ),¬(Label4(P ) ∼ Label4(ρ))
→ Label4(P ) ∼ Label4(ρ)

‖ true → Label4(P )
]

Gradually, the Label4(P ) transactions associated with the same region are brought into synchrony

with each other. As discussed in more detail in the next section, the computation could be made

to terminate when no relabeling takes place anywhere in the region and the synchronic group can

not expand any further. To accomplish this we would need to replace the true query with the

special query OR. This solution is particularly interesting because it illustrates the kind of power

and flexibility that can be gained by exploiting the dynamic nature of the synchrony relation.

3.2 Stable State Detection Metaphors

Having considered several alternative ways of accomplishing the labeling, we turn now to

the issue of detecting the completion of the process on a region-by-region basis. We examine

four distinct detection paradigms and relate them to the different computing strategies discussed

above.
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program RegionLabel5(M,N,Lo,Hi, Intensity :
1 ≤M, 1 ≤ N,Lo ≤ Hi, Intensity(ρ : Pixel(ρ)),
[∀ ρ : Pixel(ρ) :: Lo ≤ Intensity(ρ) ≤ Hi] )

definitions
[P,Q,L ::

Pixel(P ) ≡ [∃x, y : P = (x, y) :: 1 ≤ x ≤ N, 1 ≤ y ≤M ] ;
adjacent(P,Q) ≡

Pixel(P ), P ixel(Q), (0, 0) < |P −Q| ≤ (1, 1);
neighbors(P,Q) ≡

adjacent(P,Q), [∃ ι :: has intensity(P, ι), has intensity(Q, ι)]
]

tuple types
[P,Q,L, I : Pixel(P ), P ixel(Q) ∨Q = nil, P ixel(L), Lo ≤ I ≤ Hi ::

has label(P,L) ; has intensity(P, I) ; is a child of(P,Q) ; wins(P )
]

transaction types
[P : Pixel(P ) ::

Label5(P ) ≡
ρ, λ1, λ2 :

neighbors(P, ρ), has label(P, λ1)†, has label(ρ, λ2), λ1 > λ2
→ has label(P, λ2)

‖ ρ, δ, λ1, λ2 :
neighbors(P, ρ), has label(P, λ1), has label(ρ, λ2), λ1 > λ2,
is a child of(P, δ)†

→ is a child of(P, ρ)
‖ true → Label5(P ) ;

Track1(P ) ≡
δ, λ : has label(P, λ), is a child of(P, δ)†,

[∀ ρ : neighbors(P, ρ) :: has label(ρ, λ),¬is a child of(ρ, P ) ]
→ is a child of(P,nil)

‖ has label(P, P ), is a child of(P,nil) → wins(P )
‖ λ : has label(P, λ),¬wins(λ) → Track1(P )

]
initialization

[P : Pixel(P ) ::
has intensity(P, Intensity(P ));has label(P, P ); is a child of(P, P );
Label5(P );Track1(P )

]
end

Figure 2: A Region-Labeling Program with Termination Detection
Using a Classic Algorithm to Detect the Termination of a Diffusing Computation
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Coordinated detection. The first paradigm could be called coordinated detection, a com-

putation which executes a special protocol to detect the desired condition. Termination [15],

quiescence [9], and global snapshot algorithms [8] are representative of this paradigm. Algorithms

for detecting the termination of a diffusing computation may be adapted to detecting the comple-

tion of the region-labeling process. To do this we modify the program given in Figure 1 to form the

program shown in Figure 2. The key modification is the introduction of a tuple is a child of(ρ, δ)

which is used to construct a spanning tree of pixels—a pixel becomes a child of that neighbor

whose label it acquired last. During labeling the tree grows from the winning pixel and gradually

attaches all pixels in the region to the winning pixel. Trees rooted at losing pixels are eventually

destroyed. The growth is coded as part of the Label5(P ) transaction. Once the labeling is com-

plete, the tree shrinks to its root which is declared to be the winner. This is carried out by the

Track1(P ) transaction.

Note that the additional code required to perform the detection involved the modification of

the Label1 transaction type to form the Label5 type. It was not sufficient to merge two separate

programs, a labeling and a detection program. We had to introduce some coupling between the

two computations. In Swarm such coupling may be easily avoided because of the kinds of queries

one can perform against the tuple and transaction spaces.

Absence of activity. The three remaining detection paradigms show the different ways

decoupling may be accomplished. One strategy we can pursue is to detect the absence of com-

putational activity which may occur once a stable state is established. Of course, this is possible

only if the transaction space is dynamic. In the dynamic asynchronous solution presented earlier

(Label2), when the labeling activity is completed, the winning pixel P is still labeled with its own

coordinate and no transactions are attempting to place the label P on any other pixels. Unfor-

tunately this property can also be satisfied by losing pixels. However, a trivial change to Label2

allows us to come up with the following elegant solution:

[P : Pixel(P ) ::
Track2(P ) ≡

alive(P ), [∃ ρ :: Label2(ρ, P )] → Track2(P )
‖ alive(P ), [∀ ρ :: ¬Label2(ρ, P )] → wins(P )

]

We initially associate a Track2(P ) transaction with each pixel P in the image.

20



The Track2 transaction requires that we modify the RegionLabel2 program in two ways.

Initially an alive(P ) tuple exists for each pixel P . Transaction Label2′ then deletes the tuple

alive(λ) whenever it relabels any pixel labeled λ to a smaller value.

[P,L : Pixel(P ), P ixel(L) ::
Label2′(P,L) ≡

· · ·
‖

λ : has label(P, λ)†, λ > L
→ has label(P,L), alive(λ)†

‖
· · ·

]

Global coordination. In the next stable state detection mechanism we exploit the global

coordination capabilities available in the definition of a synchronic group. For each region we

grow a synchronic group of Track3 detectors, one per pixel. The Track3 detector transaction for

each pixel includes (1) a regular query which fails if the pixel is properly labeled with respect to

its neighbors, (2) a second regular query which fails if the Track3 transaction for the pixel is in

synchrony with the Track3 transactions for all neighbors, (3) a special query which succeeds and

recreates Track3 if any of the regular queries of any transaction in the synchronic group succeeds,

and (4) a special query which succeeds if all regular queries fail and this detector transaction is

associated with the winning pixel:

[P : Pixel(P ) ::
Track3(P ) ≡

ρ, λ1, λ2 : neighbors(P, ρ), has label(P, λ1), has label(ρ, λ2), λ1 > λ2
→ skip

‖ ρ : neighbors(P, ρ),¬(Track3(P ) ∼ Track3(ρ))
→ Track3(P ) ∼ Track3(ρ)

‖ OR → Track3(P )
‖ NOR, has label(P, P ) → wins(P )

]

This approach works by incrementally constructing a synchronic group of Track3 transactions for

each region of the image; a region’s synchronic group encompasses all of the Track3 transactions

associated with the pixels in the region. When the construction of this group is complete and

all pixels in the region are labeled identically, the detector can declare the pixel which is labeled

with its own coordinates to be the winner. This approach is compatible with all labeling solu-

tions presented earlier. It does not require that alive(P ) tuples be introduced into the Label2

computation.
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Global query. Finally, the most direct solution one can construct is by actually specifying a

global query to determine whether the region is or is not labeled:

[P : Pixel(P ) ::
Track4(P ) ≡

has label(P, P ),¬wins(P ) → Track4(P )
‖ has label(P, P ), [∀ ρ, δ : neighbors(ρ, δ), has label(ρ, P ) :: has label(δ, P )]

→ wins(P )
]

This solution allows labeling and detection to be totally decoupled; it is a direct encoding of the

problem statement. To this extent, it represents the ideal programming solution.

4 DISCUSSION

The objective of this section is to relate Swarm to other research endeavors that have been

instrumental in its conception. In doing so, we examine Swarm from three distinct perspectives—

as a model, a language, and a programming methodology.

4.1 Models

The best way to relate Swarm to existing work is to compare it to the UNITY model [10].

Because UNITY’s approach and style have greatly influenced the development of the shared

dataspace model, the distinctions between the two are easiest to draw. In UNITY concurrent

computations are defined by a fixed set of statements and variables. Each statement may include

multiple conditional assignments. In an infinite computation each statement is executed infinitely

often. The computation can be stopped as soon as the program reaches a fixed point—termination

is considered to be an implementation issue and not a computation concern. UNITY is defined

in terms of a very small set of constructs, is able to model both synchronous and asynchronous

computations, and includes a powerful proof system.

In Swarm, the fixed set of variables has been replaced by an unbounded set of tuples; the condi-

tional assignment has been replaced by transactions which can examine, insert, and delete elements

of the dataspace. The interpretations of the ‖ operator are similar in UNITY and Swarm. How-

ever, the latter places no restrictions on the composition of subtransactions into transactions—the

synchronous nature of subtransaction execution guarantees no interference among subtransactions.

Swarm permits both the creation of new transactions and the dynamic coupling of transactions
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in the transaction space. As a further distinction, a transaction is removed from the transaction

space as soon as it executes. Clearly, the class of UNITY programs is a proper subset of the class

of Swarm programs. The additional features are provided at the expense of a more complex proof

system. In some sense, one can think of Swarm as a model which allows for trade-offs between

expressive power and proof complexity.

Swarm shares the philosophy and goals of UNITY, but attempts to reach beyond the two dom-

inant concurrency paradigms (shared variables and message passing). The rich class of computing

styles possible in Swarm is interesting, not only as an academic exercise, but as a practical matter

as well. First, reasoning about software systems which involve multiple computing paradigms is

made possible by the availability of the Swarm proof logics. Second, unbounded and unstructured

problems (e.g., operations on very sparse matrices) benefit from the highly dynamic nature of the

model. Third, we expect the partial synchrony present in the formation of synchronic groups to

open new opportunities for enhanced performance on some classes of algorithms and to suggest

new architectural features for future classes of multiprocessors. We know of no other formal stud-

ies of algorithms which uses dynamic partial synchrony. Finally, we believe that Swarm and its

proof logics can serve as an example of how to build similar proof logics for the parallel rule-based

systems currently under development.

4.2 Languages

Among existing languages Swarm’s closest relative is Linda [7]. In his advocacy of the Linda

language, Gelernter has relied heavily upon the temporal and spatial decoupling that can be

achieved when data are accessed by content rather than by name. Our experience, however,

shows that the degree of decoupling one can achieve depends greatly upon the power of the atomic

transactions available to the programmer (accessing one tuple at a time is very limiting) and on

the ability to organize the computation dynamically in response to the unpredictable structure of

the data being processed (e.g., on a region-by-region basis in the labeling problem). Neither Linda

nor the traditional approaches to concurrent computation, such as the UNITY paradigm and the

data-parallel [17] computing style used to write Connection Machine algorithms, can accomplish

this. Linda’s limitations are the result of a language development philosophy different from that of

Swarm—a philosophy which favors an efficient implementation over programming convenience and

the capability to reason formally about programs. The limitations of UNITY and data-parallel
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programs result from the fixed computational structures imposed by their programming models

and notation.

All other shared dataspace languages of which we are aware, such as Associons [25, 26] and

OPS5 [6], are only marginally concerned with concurrency. Moreover, the closure statement of

Associons and the production rules of OPS5 have straightforward Swarm implementations. The

potential impact of languages such as Swarm on the future generation of expert system shells is

an interesting question that deserves careful consideration. Swarm’s advantages might rest with

its ability to organize transactions into synchronic groups in response to the changing dataspace

configuration and with the availability of a proof system. Its disadvantage may be found in the

nondeterministic selection of transactions to be executed—expert systems often have complex

scheduling rules based on rule priorities and the age of the data.

4.3 Methodologies

In Swarm, the replicated worker [2, 7] metaphor proposed for Linda is refined, acquiring new

forms and nuances. First of all, motivated by the fact that reasoning about concurrent computa-

tions is done in terms of progress and safety properties, we have been pursuing a programming

methodology in which computations are partitioned between progress and detection activities.

Progress and detection programs can be composed either by merging or by introducing some form

of coupling (static or dynamic). As made evident in the previous section, the simple merging

of independent programs is the preferred method of composition because it enhances program

modularity and simplifies reasoning about the composite program. The use of dynamic coupling

(synchronic groups) as a program composition mechanism remains to be investigated.

Transactions participating in progress activities could be called workers, while those involved

in detection could be called detectives. In Swarm, however, workers may be categorized by the way

they function and by their level and style of cooperation. Workers in Linda could be called migrant

workers because they exist solely to seek out work assignments encoded as tuples in the dataspace.

The transactions of the type Label2(P,L) and Label2a(P ) are migrant workers. In contrast, the

transactions of type Label1(P ) are anchored to a particular pixel serving its labeling needs as a

waiter might service a particular table. Through the use of the synchrony relation, a group of

workers can be organized into a community (i.e., a locally synchronous computation) which can

24



evolve and ultimately dissolve on its own. Finally, detectives may monitor either the tuple or the

transaction spaces, seeking to determine the end of a particular phase in the computation.

The reliance on formal reasoning about concurrent computations is also at the base for our

approach to program visualization [28]. The visualization approach uses invariants and progress

conditions to determine the kinds of visual representations which are most likely to convey the

workings of the program. Actually, because the entire computational state is given by the data-

space, new and highly effective approaches to the visualization of concurrent computations are

made possible.

5 CONCLUSIONS

In this paper we have defined a language paradigm called shared dataspace, a paradigm

in which computations are performed using an anonymous, content-addressable communication

medium acted upon by atomic transactions. To probe the essence of this paradigm, we have

defined a relatively simple programming notation called Swarm. This paper has overviewed the

Swarm model and notation and discussed some of their programming implications and distinctive

features. We emphasized the generality of the model and its potential impact on programming

style. This is, in part, because we see Swarm, not so much as a language, but as a framework

for investigating concurrency paradigms and languages. This work forms the basis for further

investigation of programming methodologies [29], proof systems [12, 13, 30], and approaches to

program visualization [28].

APPENDIX: A FORMAL MODEL

In this appendix we present an operational, state-transition model for Swarm. This model

formalizes the concepts expressed informally in section 2 and lays the foundation for the develop-

ment of Swarm programming logics [12, 13, 30]. The model presented here is similar to the one

presented in [29].

The model represents the execution of a Swarm program as an infinite sequence of dataspaces

(program states). Terminating computations are modeled as infinite sequences by replicating

the final dataspace. The first dataspace in each program execution sequence is one of the valid

initial dataspaces of the program. Each successive element consists of the transformed dataspace
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resulting from the execution of a synchronic group from the preceding element’s transaction space.

Allowed transitions between dataspaces are specified with a transition relation. The choice of the

transactions to execute is assumed to satisfy a fairness property.

The Swarm model is stated in terms of relationships among several sets of basic entities. Val

denotes the set of constant values used in Swarm programs. In this model we restrict ourselves

to integer (the set Int) and boolean (the set Bool) values and finite sequences thereof. Nam is

the set from which names of tuple and transaction types are drawn (Nam ∩ Val = ∅). In the

definition of functions, the domain operator → implicitly associates to the right, i.e, A→ B → C

means A→ (B → C).

The model also uses a number of operations on sets. For set S, Pow(S) denotes the powerset

and Fs(S) denotes the set of all finite subsets. If R is a binary relation on some set, then Rτ is the

reflexive, transitive closure of the relation. If S is a set, then S∗ denotes the set of all finite-length

sequences whose elements are drawn from S and S∞ denotes the set of all infinite sequences. The

symbol ε signifies the empty (zero-length) sequence. Sequence elements are indexed with natural

numbers beginning with 0. The notation si designates the ith element of the sequence s; #s

denotes the length of the sequence.

Ignoring the program and definitions sections (which are syntactic sugar), a Swarm program

is modeled as a four-tuple 〈TP,TR,SR, ID〉 where:

TP : Nam → Val∗ → Bool is the characteristic function for the data tuple types. For all name

and values, TP(name, values) = true if and only if name(values) is a tuple instance allowed

by the tuple type declaration in the program’s text. A tuple type is the nonempty set of all

tuple instances corresponding to one tuple name. The number of tuple types in a program

must be finite.

TR : Nam → Val∗ → Beh is the characteristic function for the transaction types. For all name

and values, TR(name, values) 6= ε if and only if name(values) is a transaction instance

allowed by the transaction type declaration in the program’s text. A transaction type is

the nonempty set of all transaction instances corresponding to one transaction name. The

number of transaction types must be finite. The sets of names for tuple and transaction

types must be disjoint. Beh is the set of transaction behaviors defined below.
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SR is the set of valid synchrony relations. Each element of SR is a symmetric, irreflexive binary

relation on the set of valid transaction instances.

ID is the set of valid initial dataspaces; one of these dataspaces is chosen nondeterministically as

the first dataspace of an execution sequence.

The data type and transaction type characteristic functions define the sets of all valid instances

of tuples ( TPS ) and transactions ( TRS ):

TPS = {n, v : n ∈ Nam ∧ v ∈ Val∗ ∧TP(n, v) = true :: (n, v)}

TRS = {n, v : n ∈ Nam ∧ v ∈ Val∗ ∧TR(n, v) 6= ε :: (n, v)}

SR is a subset of Pow(TRS×TRS).

DS, the universe of dataspaces (program states), can now be defined as follows:

DS = Fs(TPS)× Fs(TRS)× SR

Each dataspace consists of a finite tuple space, a finite transaction space, and a synchrony relation.

ID is a (normally singleton) subset of DS.

The set of transaction behaviors Beh is a subset of the set of sequences (R ∪ S)∗ where:

R ∩ S = ∅.

R ⊆ [ Bool∗ → DS → Val∗ → Bool × DS × DS ] is a set of behaviors for subtransactions

which involve only regular predicates in their queries. Each element of R maps a dataspace

and a set of bindings for subtransaction variables to a query result flag, a group of (tuple and

synchrony relation) deletions, and a group of (tuple, transaction, and synchrony relation)

insertions. Given a dataspace d and a sequence of values for the subtransaction variables v

〈∀ b : b ∈ Bool∗ :: R(b, d, v) = R(ε, d, v)〉

because the Bool∗ argument is a “dummy” included for compatibility with the set S.

S ⊆ [ Bool∗ → DS → Val∗ → Bool × DS × DS ] is a set of behaviors for subtransactions

involving the special predicates AND, OR, NAND, and NOR as discussed in section 2.

The Bool∗ arguments represent the success and failure results of all the regular subtrans-

action queries executed in the same step. The function range is interpreted in the same way
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as in R. Given a dataspace d, a sequence of regular query results b, and a sequence of values

for the subtransaction variables v

〈∀ b′ : b′ is a permutation of b :: S(b, d, v) = S(b′, d, v)〉

because the special predicates are commutative and associative.

Swarm subtransactions can be translated to R and S functions in a straightforward manner.

For convenience, we define a number of prefix operators. For any dataspace d in DS, Tp.d,

Tr.d, and Sr.d yield, respectively, the tuple space, transaction space, and synchrony relation

components of d. For example, if d = (a, b, c) is an element of DS, then Tp.d yields the tuple

space a. For any subtransaction behavior s in R ∪ S, Q.s, D.s, and I.s are functions which yield

the three components of s’s range when applied to the same arguments as s, i.e., the query result,

the dataspace deletions, and the dataspace insertions.

For any dataspace d in DS, (Sr.d)τ is an equivalence relation on TRS. An equivalence class

of the closure is called a synchrony class. For a dataspace d having a synchrony class C, if

C ∩ TR.d 6= ∅, then C ∩ Tr.d, the set of transaction instances in the synchrony class which

actually exist in the transaction space, is a synchronic group of d. To facilitate the modeling of

terminating computations, we define ∅ to be the synchronic group of the empty transaction space.

So far we have modeled the program as a static entity. As noted at the beginning of the

section, an execution of a program is denoted by an infinite sequence of dataspaces. To be more

precise, we define the universe of execution sequences ES as follows:

ES = (DS× Fs(TRS))∞

For all e ∈ ES and for all i ≥ 0, Ds.ei is the first component of ei (the “current” dataspace) and

Sg.ei is the second (the synchronic group to be executed next).

To define the allowed orders in which dataspaces may be sequenced in an execution of the

program, we introduce the transition relation step. This relation is defined in Figure 3. The step

relation states that a transition from a dataspace d to a dataspace d′ can occur by the execution

of a set of transactions G if and only if G is a synchronic group of d’s transaction space and d′ is

a possible result of the synchronous execution of all the subtransactions in G from dataspace d.

Because there may be several sets of values for the bound variables in a subtransaction that allow

the query to succeed on dataspace d, the execution of the subtransaction nondeterministically
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chooses one set. Given a set of values that satisfy the query, the deletion of entities from the

tuple space, transaction space, and synchrony relation are “performed before” the insertions of

new entities. The subtransactions involving special predicates depend upon the success or failure

of the regular subtransactions as well as directly upon the dataspace.

Some of the notation in Figure 3 needs further explanation. Note in lines 4 and 5 the definition

of the functions v and b. v maps a subtransaction of S into a sequence of value bindings for its

variables, and b maps a subtransaction into a boolean query success flag. The “array” b is used

to model the “passing” of the success/failure results of the regular subtransactions to the special

transactions. In lines 10 and 11 the queries for the special transactions depend upon the elements

of b corresponding to regular subtransactions. In the definition of reg(b,G) the operator SEQ

means to concatenate the items in the range of the constructor into a sequence in an arbitrary

order. In the definition of the Update predicate the subtraction symbol “−” is used to denote the

set difference operation.

In section 2 we stated the requirement that the selection of transactions for execution be fair.

This fairness constraint can be stated in terms of the execution sequences of this model using the

predicate Fair defined as follows:

〈∀ e : e ∈ ES ::
Fair(e) ≡ 〈∀ i, t : 0 ≤ i ∧ t ∈ Tr.Ds.ei ::

〈∃ j : j ≥ i :: t ∈ Sg.ej ∧ 〈∀ k : i ≤ k ≤ j :: t ∈ Tr.Ds.ek〉〉〉〉

Informally, an execution sequence is fair if, once a transaction exists in the transaction space, it

remains in the space until it is selected for execution and it will be selected for execution within a

finite number of steps. (An unfair execution sequence would be one in which a transaction enters

the transaction space, but is never executed.)

The set of program executions can now be formalized as follows:

Exec = {e : e ∈ ES ∧ Fair(e) ∧Ds.e0 ∈ ID ∧
〈∀ i : 0 ≤ i :: step(Ds.ei,Sg.ei,Ds.ei+1)〉
:: e}

This is the set of all execution sequences which begin in a valid initial dataspace, execute a

synchronic group of transactions at each computational step, and select transactions for execution

in a fair manner.
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〈∀ d, d′, G : d ∈ DS ∧ d′ ∈ DS ∧G ⊆ TRS ::
step(d,G, d′) ≡ Synch(G, d)∧
〈∃ v, b :

v ∈ [{t, i : t ∈ G ∧ 0 ≤ i < #TR(t) : (t, i)} → Val∗]∧
b ∈ [{t, i : t ∈ G ∧ 0 ≤ i < #TR(t) : (t, i)} → Bool] :
〈∀ t, i, σ : subtrans(G, t, i, σ) ∧ σ ∈ R :

(Q.σ(ε, d, v(t, i)) ∧ b(t, i))
∨ (〈∀x :: ¬Q.σ(ε, d, x)〉 ∧ ¬b(t, i))〉

∧〈∀ t, i, σ : subtrans(G, t, i, σ) ∧ σ ∈ S :
(Q.σ(reg(b,G), d, v(t, i)) ∧ b(t, i))
∨ (〈∀x :: ¬Q.σ(reg(b,G), d, x)〉 ∧ ¬b(t, i))〉

∧Update(d,G, d′, v, b)
〉

〉

where
Synch(G, d) ≡

(G = ∅ ∧Tr.d = ∅)∨
(G 6= ∅ ∧G ⊆ Tr.d ∧ 〈∀ t, t′ : t ∈ G ∧ t′ ∈ G : (t, t′) ∈ (Sr.d)τ 〉 ∧
〈∀ t, x : t ∈ G ∧ x ∈ Tr.d ∧ x 6∈ G : (t, x) 6∈ (Sr.d)τ 〉)

and
subtrans(G, t, i, σ) ≡ t ∈ G ∧ 0 ≤ i < #TR(t) ∧ σ = (TR(t))i

and
reg(b,G) ≡ 〈SEQ t, i, σ : subtrans(G, t, i, σ) ∧ σ ∈ R : b(t, i)〉

and
Update(d,G, d′, v, b) ≡

Tp.d′ = (Tp.d− 〈∪ t, i, σ : subtrans(G, t, i, σ) ∧ b(t, i) :
Tp.D.σ(reg(b,G), d, v(t, i))〉)

∪ 〈∪ t, i, σ : subtrans(G, t, i, σ) ∧ b(t, i) :
Tp.I.σ(reg(b,G), d, v(t, i))〉

∧Tr.d′ = (Tr.d−G)
∪ 〈∪ t, i, σ : subtrans(G, t, i, σ) ∧ b(t, i) :

Tr.I.σ(reg(b,G), d, v(t, i))〉
∧Sr.d′ = (Sr.d− 〈∪ t, i, σ : subtrans(G, t, i, σ) ∧ b(t, i) :

Sr.D.σ(reg(b,G), d, v(t, i))〉)
∪ 〈∪ t, i, σ : subtrans(G, t, i, σ) ∧ b(t, i) :

Sr.I.σ(reg(b,G), d, v(t, i))〉

Figure 3: The Transition Relation step
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Although we could use this formalism directly to reason about Swarm programs, we prefer

to reason with assertions about program states rather than with execution sequences. Using this

state-transition model to capture the desired notion of program execution, we have developed two

programming logics for Swarm. The first programming logic, described in [12] and [13], provides

a proof system for a subset of Swarm without the synchronic group feature; the second logic,

described in [12] and [29], generalizes the proof system to handle synchronic groups. We define the

Swarm logics in terms of the same logical relations as UNITY [10] (unless, ensures, and leads-

to), but must reformulate several of the concepts to accommodate Swarm’s distinctive features.

We have constructed our logics carefully so that most of the theorems developed for UNITY can

be directly adapted to the Swarm logic. The above concept of fairness is a central assumption of

the logics; it is essential to proofs of progress (liveness) properties of Swarm programs.
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