
Mapping Component Specifications to Enterprise
JavaBeans Implementations

Yi Liu
Computer & Information Science

201 Weir Hall
University of Mississippi

University, MS 38677 USA

liuyi@cs.olemiss.edu

H. Conrad Cunningham
Computer & Information Science

201 Weir Hall
University of Mississippi

University, MS 38677 USA

cunningham@cs.olemiss.edu

ABSTRACT
Component-based software development has become an
important approach to building complex software systems. Much
research focuses on component specification to achieve the
advantages of the component-based approach in theory. Most of
this research pays little attention to the mappings from component
specifications to component implementations. However, the
mappings are important because they determine whether the
implementations perform satisfactorily to meet the specifications.
After presenting a general approach to component specification
and the technology of Enterprise JavaBeans (EJB) component
model, this paper presents three approaches to mapping from
component specification to EJB implementation. This paper uses
a course registration system as an example to demonstrate the
ideas. The approaches presented will be helpful to those who are
working on the realizations of component systems.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability – distributed
objects.

General Terms
Design.

Keywords
Component software, Enterprise JavaBeans, design mapping

1. INTRODUCTION
Component-based software development has become an
important approach to building complex software systems. A
potential advantage it delivers is reuse. A software application can
be built quickly and reliably by assembling preexisting
frameworks and components with a few new components.
Another advantage of the component approach is management of
change [2]. A component can be easily replaced by a new

component with minimal impact on the clients of that component.
In such a way, a software application can be updated easily by
replacing the existing components with new ones.

Much research focuses on component specification to achieve the
advantages of the component-based approach in theory. Most of
this research pays little attention to component implementation.
Implementation is the realization of the specification, so, in
theory, an implementation just needs to provide the functionality
given in the specification to construct a reliable component-based
system. However, in the real world, the component
implementation is not that easy to achieve. A component is not a
programming language object. Although component objects have
most of the characteristics of objects in Java or C++ programs,
they exist, and can only exist, in the context of a component
standard [2]. The implementation varies among different
programming languages and different component models. We call
the approaches applied to realize an implementation from a
component specification a mapping. Although some research
focuses on component models, such as Enterprise JavaBeans
(EJB), most of the work is on the technologies of the component
model while little work has been done on the connections
between the component specification and the component
implementation.

This paper presents approaches to mapping from component
specifications to component implementations. The component
specification method used in this paper is that of Cheesman and
Daniels [2]. The component model used to implement the
component specification is Enterprise JavaBeans (EJB). EJB is a
software component model for developing and deploying
enterprise-level, server-side computing applications that are
scalable, transactional, and multi-user secure [1]. It is a hot
technology in component-based system implementation.

The paper is organized as follows. Section 2 introduces the
system architecture and component specification approach of
Cheesman and Daniels. The paper uses the Unified Modeling
Language (UML) [3] to express the structural relationships.
Section 3 briefly describes the EJB technology. Section 4 presents
three approaches to mapping from a component specification to
an EJB implementation. An example course registration system is
used to demonstrate the ideas. A short discussion concludes the
paper in Section 5.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACMSE ‘04, April 2–3, 2004, Huntsville, Alabama, USA.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

2. COMPONENT SPECIFICATION
Cheesman and Daniels [2] propose an approach to building
enterprise-scale component systems. The work described here
adopts that approach.

2.1 Concept of Component
There is no universally accepted definition of software
component. There are many definitions, each of which focuses on
different aspects of the component concept.

First, we need to define what a component is for the purposes
here. A component system is composed of independent, large-
grained units of development, deployment, and execution. The
internal design and implementation are strongly encapsulated and
hidden from the outside world. Each component has one or more
interfaces that are specified with signatures and design contracts
(pre/post-conditions, invariants) [5,6]. Components communicate
with each other exclusively through their interfaces. In this paper,
we assume that components are organized in a flat structure. That
is, no component contains other components in the specification
model.

2.2 System Architecture
The system architecture is the overall structure of the final
system. It identifies the components and defines their
responsibilities and interconnections. Cheesman and Daniels [2]
define four system architecture layers, which are assumed to be
built using a client/server paradigm. The layers are identified as
follows.
The Business services layer typically resides on a server. This is
the bottom layer of the architecture and is the repository of core
business information that is shared by all clients. These services
usually have associated databases. Components correspond to
stable business types. Operations can be combined with others in
a transaction. Components are decoupled from each other and
thus can be shared among several systems and users.
The System services layer also typically resides on a server. This
layer is above the business services layer. It is the external
representation of the system, providing the clients access to the
services of the system. Components correspond to whole business
systems and operations are new transactions. This layer holds no
dialog or client-related state.
The user dialog layer is above the system services layer. It
includes the software that manages the interactions of a client
with the system. Logically, this layer is in the client part of the
client-server system.
The user interface layer is above the user dialog layer. It includes
the software that creates what a client (user) actually sees and is,
hence, logically in the client part of the client-server system.
The bottom two layers form the system that is user interface
independent. When a user interface is connected to the system, an
application is built.

2.3 Component Specification Design
Building component-based software begins with the analysis of
the system requirements. In this requirements definition phase,
two models are generated. One is a use case model, which
captures the user requirements for the system to be developed by
detailing user interactions. Another is a domain model, which
represents classes for real-world entities and related concepts [7].

The component specification phase follows the requirements
definition phase. Its purposes are to identify the components and
then to define the interfaces and functionalities of the component
objects. There are three stages in the specification phase—
component identification, component interaction, and component
specification.
The component identification stage takes the domain model and
the use case model as inputs. For each use case, we define an
initial system interface. The operations on the interface are the
major steps in the use case. We next transform the conceptual
domain model into a business type model that gives design
information. A key step in this process is the identification of the
core business types; these are the concepts that emerge as being
independent business-related entities as we analyze the type
model. For each core type, we define a business interface to
manage it and its related subordinate concepts. The whole system
can be divided into several components based on the core types.
Usually, we can set a core type as a component and add the types
which are “managed” by the core type into that component. For
example, as shown in Figure 1, we can divide a course
registration system into three components based around the
Person, Term and Course core types. (We will discuss this
example in section 2.4). Each interface of a component is a
manager for a core type in the business services layer. For
example, interface IPersonMgt is the interface for the core type
Person or component PersonMgr. The initial component
architecture thus consists of the system interfaces and business
interfaces and their relationships.
The second stage of the component identification phase is
component interaction, whose purpose is to determine how the
components work together to deliver the required functionality
[2]. The approach is to decide how to implement the operations on
the system interfaces by sequences of interactions with the
various business interfaces. This helps the designer discover what
operations are needed on the business interfaces defined in the
business type model.
The final stage of the component identification phase is
component specification. In this stage, the detailed specification
of the operations and constraints takes place [2]. It specifies the
interactions between the component object performing an
operation and other component objects that are required to
complete the operation. It is also necessary to specify the
constraints that need to apply to the operations. An interface
information model is introduced to enable the definition of these
interactions and constraints. The general approach taken is design
by contract [2,5,6]. In this approach, preconditions and
postconditions are defined to give the meaning of an interface’s
operations in terms of its information model. Invariants can also
be defined to set the constraints on the integrity of the interface
information model. The component specification stage completes
the specification of the system.

2.4 Course Registration System
The example used here is a course registration system for a
college. With this system, a student may register for classes.
Once given access, the student may select a term and then build a
class schedule from among the classes offered. A student may add
and delete classes from the schedule. The system passes the
information about the student's schedule to the tuition billing
system. An instructor may use the registration system to print a

listing of the students in his or her class. The administrator may
maintain student and instructor lists and course information.
The diagrams shown here are interface responsibility diagram of
the business type model (Figure 1) produced from component
identification stage and the final component architecture diagram
(Figure 2). Figure 1 identifies Person, Course and Term as core
types. Based on the three core types, we divide the system into
three components and each component has an interface. We
define the boundary between two components and assign the
remaining types to the component. Thus, the PersonMgr
component includes the Person, Student, Instructor,
StudentSchedule, InstructorSchedule, and Administrator types.
The CourseMgr component includes types Course and Section.
The TermMgr component only includes the type Term. Three
interfaces, IPersonMgt, ICourseMgt and ITermMgt, are assigned
to Person, Course and Term, respectively. Figure 2 shows the
main use cases and components required for the system. Interface
IBilling is out of the system bounds, so we assume it can be
supplied by a separate Billing system. These two diagrams are the
best representatives of the system to provide an overall view of
the system and help to demonstrate the mapping of the component
specification to its implementation.

IPersonMgt

ITermMgt
<<interface type>>

ICourseMgt
<<interface type>>

1

0..1

1

0..1

Person
name : String
ID : String
passwd : String
dept : String
email : String

<<core>>

Administrator
ID:String

<<type>>
0..1

11

0..1
Student

ID:String
major[] : String

<<type>>

0..1

1

1

*

Instructor
ID:String

<<type>>
0..1

1

1

*

1
*

1

*

Instructor Schedule
ref:int
sectionid : int

<<type>>
*

1

*
*

Term
termid:int
termname : String
termyear : int

<<core>>

*

1

1

*

Course
courseno:String
coursename:String
coursebrief : String

<<core>>

1
*

Student Schedule
ref:int
sectionid : int
isAudit : Bool

<<type>>

*

1

*

1

Section
sectionid:int
sectionno : int
courseno : String
termid : int
courseSpec[] : String

<<type>>

*
1

*
*

*
1

*** *

Figure 1. Interface Responsibility Diagram for Course

Registration System

Figure 2. Component Architecture for Course Registration

System

3. EJB TECHNOLOGY
Enterprise JavaBeans (EJB) from Sun Microsystems is a
component model for building server-side, enterprise-class
applications [8]. Figure 3 shows the EJB model and the
relationships among the parts within that model.

Figure 3. EJB Model

The two most important parts in the EJB component model are
enterprise beans and the EJB container. The EJB container exists
on an EJB server and provides enterprise beans a runtime
environment including remote access to the bean, security,
persistence, transactions, concurrency, and access to and pooling
of resources. Enterprise beans are server-side components, which
encapsulate the business logic of an application and are deployed
and execute in an EJB container. The beans are reusable and
shareable components on a server that can be remotely accessed
by a client program. EJB is thus suitable for building distributed,
reusable systems [1].
There are three types of enterprise beans: session beans, entity
beans, and message-driven beans.
Session beans are in-memory objects that are non-persistent.
They are designed to perform the processes of a business. A
session bean typically executes on behalf of a single client and
cannot be accessed by other clients. Session beans can be either
stateful or stateless. A stateful session bean holds conversational
state on behalf of its client and stores information for a relatively
short amount of time. A stateless session bean does not maintain
conversational state and it immediately processes the information
received from the client. Though session beans are not persistent,
they can update data in a database and participate in transactions
[1, 8]. A session bean consists of a remote interface, a home
interface, and a bean implementation class. The remote interface
declares publicly available methods of the session bean. The
home interface declares the create methods for creating new EJB
instances. The bean implementation class implements the methods
declared in the remote interface and home interfaces.
Entity beans are persistent. Each entity bean allows shared access
from multiple EJB clients. Their states can be persisted and stored
across multiple invocations. An entity bean can be used to
represent data stored in a database. Persistence in entity beans has
two types, container-managed and bean-managed. If the container
handles the synchronization of the bean’s data with the external
stores, this is called container-managed persistence. If the entity
bean itself is responsible for maintaining its own persistence, this
is called bean-managed persistence. An entity bean also consists
of a remote interface, a home interface, and a bean
implementation class. The remote interface declares publicly
methods for the EJB and the home interface declares methods for
creating new instances and locating instances. The bean

 Enterprise Bean

…
Enterprise Bean

EJB Container
EJB Server

EJB Client

…
EJB Client

EJB Client

IBilling

<< comp spec >>

Registration System

IPersonMgt
ITermMgt

ICourseMgt

<<comp spec>>
 Billing System IBilling

IMakeSchedule
IChangeSchedule
IDisplaySchedule
IMainTainPerson
IMaintainTerm
IMaintainCourse
ILogin

implementation class implements the methods declared in the
remote and home interfaces.
Message-driven beans are stateless, server-side, transaction-aware
beans that are driven by a Java message. A message-driven bean
is invoked by the EJB container when a message is received
(asynchronously) from a Java Message System (JMS) Queue or
Topic. The bean acts as a simple message listener.
The course registration system example is implemented with
Sun’s Java 2 Enterprise Edition (J2EE) platform. J2EE is
designed to provide a multilayer distributed application model [4].
The architecture of J2EE is shown in Figure 4. The course
registration system uses HTML in a browser, JavaServer Pages
(JSP) and JavaBeans in a Web container, and Enterprise
JavaBeans in an EJB container. The database used is Cloudscape
and the database connector is the Java DataBase Connectivity
(JDBC) library.

Figure 4. J2EE Architecture

4. MAPPING APPROACHES
This paper focuses on the EJB container components. It is not
concerned with the browser and the Web container software. For
convenience, we call the application in the user interface and
dialog layers of the system architecture dialog software, call the
components in the system services layer system components, and
call the components in the business services layer business
components [2]. As addressed in the section 3, the example
implementation used HTML and JSP as tools for the dialog
software.
This section presents how the business components and the
system components are implemented according to the component
specification and the system architecture. The following shows
three mapping approaches: the manager bean, hierarchical, and
singleton EJB approaches. It uses the course registration system
to illustrate the mapping approaches.

4.1 Manager Bean Approach
In the manager bean approach [2], all components are session
beans. Figure 5 uses the PersonMgr component to show the
mapping from system architecture to EJB.
In the business services layer, each business component is
implemented as a session bean. To make the session bean easy to
implement, we usually use helper classes (regular Java classes) to
implement business types and let each component manage a set of
instances of the types.
In the PersonMgr component, we have the following six business
types: Person, Student, Instructor, Administrator,
StudentSchedule, and InstructorSchedule. We use three helper
classes to implement them: one for the Person type (functions for
Student, Instructor, and Administrator are included), one for
StudentSchedule, and one for InstructorSchedule. These three
Java classes provide methods for dealing with the access to the
database.

There is a manager bean PersonMgr that coordinates operations
on these types. The possible processes a client can do include
accessing his student account and making or changing his
schedule. All data shared among clients are stored in the database
and no conversational session state is needed. So, it is reasonable
to make the PersonMgr a stateless session bean in which each
client has a session bean object. Thus, the PersonMgr component
is built upon a session bean PersonMgr, several helper classes,
and an interface.
In the CourseMgr component, we use the same approach. First,
we build two helper classes, Course and Section, which provide
the operations on the database. Then, we use a stateless session
bean CourseMgr to wrap the two classes and build the course
component. And, an interface is provided for use by the system
component.
Similarly, the TermMgr component consists of a stateless session
bean TermMgr, a helper class for the Term type (which operates
on database), and an interface provided for use by the system
component.
Each business component provides an interface to the upper level.
For example, the PersonMgr component provides the interface
IPersonMgt, which is implemented by PersonMgr; the TermMgr
component provides the interface ITermMgt, which is
implemented by TermMgr; and the CourseMgr component
provides the interface ICourseMgt, which is implemented by
CourseMgr. The upper level can access the business component
objects through these interfaces.
In the system service layer, a system component wraps the
business components and provides an interface for the dialog
software to access. For accessing the system, it is better for the
client to have its own instance, which means that one instance for
one client. So, we choose a session bean to implement the system
component. A session bean manages the collective of the three
business components − PersonMgr, CourseMgr, and TermMgr −
and carries out business workflows by calling the three business
components.

Figure 5. Manager Bean Approach

Stateful session beans, which involve many interactions with
clients, can be used to implement the user dialog software level,
in which conversational state would be stored. However, the
example course registration system implemented the dialog
software in the Web container using JSP.

Browser

Web Container EJB Container
HTML
HTTP
XML

JSP Pages,Servlets
XML,JavaMail

Enterprise Beans,
JMS, JTA,JDBC

EIS
Resources

Dialog
Software

System
Software

Business
Components

MakeSchedule

<<Session EJB>>
CourseReg System

<<Session EJB>>
PersonMgr

<<database>>
Person

The advantage of this approach is its simplicity as the session
bean is the simplest among the three types of enterprise beans.
One disadvantage of this approach is that session beans do not
deal with persistence, so we have to add persistence code for each
manager. Another disadvantage is it does not have in-memory
data sharing, so performance may be affected.

4.2 Hierarchical Approach
The hierarchical approach is more complicated than the manager
bean approach. The idea is to decompose a business component
into a manager and several subcomponents. Figure 6 shows this
mapping approach with the example PersonMgr component.
In the business services layer, to avoid the performance penalty
and the persistence problem arising from using session beans to
implement the lowest level types, this approach uses entity beans
to implement those types that access the database directly. Since
entity beans are persistent and can be shared among multiple
clients, it is ideal to use entity beans to encapsulate database
tables [2]. Take the PersonMgr component as an example. There
are six database tables built corresponding to these six business
types. Since the types are heavily dependent on the database, the
course registration system uses an entity bean to implement each
type of component.
The PersonMgr bean manages these types and coordinates
operations on the PersonMgr component by accessing the
instances of the types that are implemented as entity beans. The
hierarchical mapping approach uses the PersonMgr bean since all
sharing of state is done in the entity beans.
Similar to the manager bean approach, this approach also uses a
stateless session bean to implement the system component.
Compared to the first approach, an advantage of the hierarchical
approach is that it increases the reliability of the database access
and data sharing. The disadvantage is that the hierarchical layer
may bring inefficient and complex implementation.

Figure 6. Hierarchical Approach

4.3 Singleton EJB Approach
The previous two approaches use pure Enterprise JavaBeans to
implement the components. In the singleton EJB, we use both
EJB and regular Java classes to perform the implementation (as
shown in Figure 7).
Compared to regular Java program development, EJB
development is more complicated. EJBs are very useful to meet
distributed system requirements. For some large systems, the
business components might be developed by different groups and
distributed to different servers. The situation is similar for the
system components. The clients are distributed and will use the
system from different areas. So, the previous two approaches are
suitable for these situations. Every approach has its trade-offs.
Compared to regular Java programs, enterprise beans are more
complicated to develop and less efficient to execute because of
the communication overhead.
Consider relatively small systems, such as a course registration
system that will only be used within a single college. The
business components are typically stored on the same server. The
database may also be on that server. Because a high level of
distribution is not needed, we can use regular Java classes for
some components.
We designed the singleton EJB approach for developing a
relatively small system in which business components are not
distributed all over the world. This approach can be described as
using regular Java packages (or classes) to implement business
components and using an enterprise bean to wrap these business
components at the system services layer. Figure 7 shows the
approach with the example course registration system.
The singleton EJB approach looks similar to the manager bean
approach at the first glance. But, actually, the two approaches are
different. We use regular Java packages to implement business
components in this approach instead of the session beans in the
manager bean approach.
Each business component is a regular Java package. An interface
for each business component is provided to the system
component. Inside each Java package, we can design hierarchical
structures if necessary. For example, PersonMgr is a complicated
business component. It contains six business types: Person,
Student, Instructor, Administrator, StudentSchedule, and
InstructorSchedule. We define a class for each business type.
PersonMgr wraps these classes and implements the methods
required in the interface IPersonMgt. For a simple component,
such as Term, hierarchical structures might be unnecessary. These
business components access the database and build on the
database system capabilities to implement any needed
transactions and concurrency control features.
In the system service layer, we use a single enterprise bean to
implement the system component Course Registration System.
Since the clients are distributed, the use of the enterprise bean
satisfies the requirements. Similar to the previous two approaches,
we use a stateless session bean to implement the system
component. The system component gathers those business
components together and provides an interface for the dialog
software.

Dialog
Software

System
Software

Business
Components

MakeSchedule

<<Session EJB>>
CourseReg System

<<Session EJB>>
PersonMgr

<<database>>
Person

<<Entity EJB>>
Person

<<Entity EJB>>
Student …

PersonMgr
Component

The singleton EJB approach is the simplest approach among the
three approaches presented. As noted earlier, writing regular Java
classes is much easier than writing enterprise beans. Programmers
must write three Java classes for a session bean or an entity bean
and must deploy each bean. When using regular Java classes,
programmers only need to write a main class for each type and
compile it. This approach simplifies the development process and
makes it more accessible to novice programmers.
In this example, there is only one enterprise bean – the Course
Registration System bean at the system services layer. However,
this enterprise bean gives the system the characteristics of EJBs. It
can successfully deal with the distributed clients.
The singleton EJB is a good approach for those who are familiar
with Java but less familiar with EJBs. However, this approach
has disadvantages. Since the approach does not use enterprise
beans in the business components in which EJB container can
take care of the transactions and concurrency, programmers have
to deal with the transactions and concurrency themselves in the
Java classes implementing the business types.

 Figure 7. Singleton EJB Approach

5. CONCLUSION
The realization of the mapping from component specification to
implementation is an important issue in component software.

This paper described three approaches, which are shown to be
feasible in practice. Comparing these three approaches, the
hierarchical approach provides the most reliable persistence
maintenance. However, it is the most complicated and has the
longest development cycle. The manager bean approach is

simpler than the hierarchical approach, but it may get some
performance penalty because the session beans do not have in-
memory sharing. The last approach, the singleton EJB, is the
simplest in realization; the development time is often less than of
the previous two approaches. But its disadvantage is that
developers must deal with transactions or concurrency problems
in the code.

The mapping approaches presented in this paper should be helpful
to the developers of component-based systems.

6. ACKNOWLEDGMENTS
This work was supported, in part, by a grant from Acxiom
Corporation titled “The Acxiom Laboratory for Software
Architecture and Component Engineering (ALSACE).”
Mingxian Fu and Pallavi Tadepalli assisted with the design of the
course registration system. Fu was instrumental in the EJB
implementation. Cuihua Zhang and Tadepalli each proofread the
paper and suggested several improvements.

7. REFERENCES
[1] D. Blevins. “Overview of the Enterprise JavaBeans

Component Model”, In G.T. Heineman and W. T. Councill
(editors), Component-based Software Engineering: Putting
the Pieces Together, Addison-Wesley, 2001.

[2] J. Cheesman and J. Daniels. UML Components: A Simple
Process for Specifying Component-Based Software, Addison
Wesley, 2001.

[3] M. Fowler and K. Scott. UML Distilled, Second Edition,
Addison Wesley, 1999.

[4] N. Kassem and the Enterprise Team. Designing Enterprise
Applications with the Java 2 Platform, Enterprise Edition,
Addison Wesley, 2001.

[5] Y. Liu and H. C. Cunningham. “Software Component
Specification using Design by Contract,” Proceedings of the
SouthEast Software Engineering Conference, Tennessee
Valley Chapter, National Defense Industry Association,
Huntsville, Alabama, April 2002.

[6] B. Meyer. Object-Oriented Software Construction, Prentice
Hall PTR, 1997.

[7] D. Rosenberg and K. Scott. Use Case Driven Object
Modeling with UML: A Practical Approach, Addison
Wesley, 1999.

[8] I. Singh, B. Stearns, M. Johnson, and the Enterprise Team.
Designing Enterprise Applications with the J2EETM
Platform, Second Edition. Addison Wesley, 2002.

Dialog
Software

System
Software

Business
Components

MakeSchedule

<<Session EJB>>
CourseReg System

<<database>>
Person

<<Java Package>>
PersonMgr

<<Java Package>>
CourseMgr

…

