
Keeping Secrets within a Family: Rediscovering Parnas

H. Conrad Cunningham Cuihua Zhang Yi Liu
Computer Science Computer & Information Systems Computer Science

University of Mississippi Northwest Vista College University of Mississippi
University, MS, 38677 San Antonio, TX 78251 University, MS 38677

Abstract

David Parnas wrote several papers in the 1970’s

and 1980’s that are now considered classics. The
concepts he advocated such as information hiding and
use of abstract interfaces are generally accepted as
the appropriate way to design nontrivial software
systems. However, not all of what he proposed has
been fully appreciated and assimilated into our
practices. Many of his simple, elegant ideas have
been lost amongst the hype surrounding the
technologies and methods that have arisen in the past
two decades. This paper examines Parnas’s ideas,
especially his emphasis on program families, and
proposes that college-level computing science and
software engineering curricula should renew their
attention to these very important principles and
techniques and present them in the context of
contemporary software development.

Keywords: program family, information hiding,
abstract interface, module, software product line.

1. Introduction

Software product lines and frameworks are
increasing in importance among software developers
and researchers; however, many of the key ideas
behind them were first published in the 1970’s and
1980’s in classic papers by David Parnas and his
colleagues [8]. Parnas argues that a “software designer
should be aware that he is not designing a single
program but a family of programs.” [10] Computing
science and software engineering students should
develop such awareness early in their studies.

A software product line is often defined as “a
family of products that share common features to meet
the needs of a market area.” [1] A software framework
is a special case of a software product line. In the
context of an object-oriented language, a framework is
a reusable design captured by a set of interrelated
abstract classes that define the shared features of a set

of related programs. The motivation for product lines
and frameworks is to take advantage of the
commonalities among the members of the product line
to lower the overall cost of producing and maintaining
a group of related software systems.

Since the foundation of software product lines and
frameworks is what Parnas proposed in his papers, an
examination of the concepts in these papers (collected
in [5]) can still reveal much of value to current-day
software developers and researchers. Many of the
lessons taught in these works should also be
incorporated into our college-level teaching.

This paper examines several of the lessons on the
design of program families taught by Parnas that are
still important for contemporary students to learn.
Many of his simple, elegant ideas have been lost
amongst the hype surrounding the technologies and
methods that have arisen in the past two decades. The
paper reviews Parnas and his colleagues’ concepts of
modularization, information hiding, abstract interfaces,
and program families. An example Table framework
from [3], designed and implemented with the Java
programming language, is used to illustrate the
concepts. After each topic is reviewed, a discussion of
part of the example is provided to enhance the
understanding of the topic.

2. Table framework example

The Table Abstract Data Type (ADT) represents a
collection of records, each of which consists of a finite
sequence of data fields. The value of one (or a
composite of several) of these fields uniquely identifies
a record within the collection; this field is called the
key. The values of the keys are elements from a totally
ordered set. The operations provided by the Table
ADT allow a record to be inserted, retrieved, updated,
and deleted using its key to identify it within the
collection.

For the purposes of this paper, we consider the
design of the Table framework to have the following
requirements [3]:

1. It must provide the functionality of the Table
ADT for a large domain of client-defined records
and keys.

2. It must support many possible representations of
the Table ADT, including both in-memory and
on-disk structures and a variety of indexing
mechanisms.

3. It must separate the key-based record access
mechanisms from the mechanisms for storing
records physically.

We approach the design of the Table framework using
Parnas’s modular specification techniques.

3. Information-hiding modules

Students commonly consider a module to be a unit
of code such as a subroutine or a class. When they
approach the design of a system, a common tendency
is to break the system into several processing steps like
steps in a flowchart and to define each step to be a
module. Parnas presents a more general view of
modules and a different approach to decomposing a
system into modules.

3.1 Parnas principles

Parnas defines a module as “a work assignment
given to a programmer or group of programmers” due
to the nature of software engineering, which is multi-
person, multi-version [9]. It is desirable for
programming environments and languages to support
the programmers' work on modules, but it is not
essential.

In Parnas's view, the goals of a modularization are
to [7]:

1. shorten development time by minimizing the
required communication among the groups,

2. make the system flexible by limiting the number of
modules affected by significant changes,

3. enable programmers to understand the system by
focusing on one module at a time.

To accomplish these goals, it is important that modules
be cohesive units of functionality that are independent
of one another.

Parnas advocates the use of a principle called
information hiding to guide decomposition of a system
into appropriate modules, i.e. work assignments. He
points out that the connections among the modules
should have as few information requirements as
possible [7].

Information hiding means that each module should
hide a design decision from the rest of the modules.
This is often called the secret of the module. In

particular, the designer should choose to hide within a
module an aspect of the system that is likely to change
as the program evolves. If two aspects are likely to
change independently, they should be secrets of
separate modules. The aspects that are unlikely to
change are represented in the design of the interactions
(i.e. connections) among the modules. This approach
supports the goal of changeability (goal 2). When care
is taken to design the modules as clean abstractions
with well-defined and documented interfaces, the
approach also supports the goals of independent
development (goal 1) and comprehensibility (goal 3).

3.2 Table framework design

Consider the Table framework example. At the top
level, there seems to be three primary dimensions of
change in the system. We can make each of these the
secret of an information-hiding module. The modules
and their secrets are as follows:

Table Access. This module provides key-based
access to the collection of records stored in the table.
The secret of the module is the set of data structures
and algorithms used to provide the index for access to
the records. For example, this might be a simple index
maintained in a sorted array, a hash table, or a tree-
structured index.

Record Storage. This module manages the physical
storage for the records in the table. The secret of the
module is the detailed nature of the storage medium.
For example, the storage medium might be a structure
in the computer’s main memory or a random-access
file on disk.

Client Record. This module provides the key and
record data types needed by the other modules; the
client of the Table framework must provide an
implementation of the module appropriate for the
particular application. The secret of the module is the
structure of the client’s record, including the
identification of the key field, its data type and
ordering relation and identification of the non-key
fields and their data types.

3.3 Perspective

Classes and modules can be easily confused since
they are both self-contained units, and they do share
some of the same goals and characteristics. The
difference is, however, that a typical work assignment,
or a module, that needs to support change is often
larger than a single class; it may contain several related
classes, and these classes should be designed and
maintained as a unit.

Information hiding has, of course, been absorbed
into the dogma of object-oriented programming.
However, information hiding is often oversimplified as
merely hiding the data and their representations [15].
The secret of a well-designed module may be much
more than that. It may include such knowledge as a
specific functional requirement stated in the
requirements document, the processing algorithm used,
the nature of external devices accessed, or even the
presence or absence of other modules or programs in
the system [7, 10, 11]. These are important aspects
that may change as the system evolves.

Information hiding is one of the most important
principles in software engineering. At first glance, it
seems to be an obvious technique. However, further
study reveals it to be a subtle principle that takes
considerable practice to apply well in software design.
Students in computing science programs should learn
the principle and how to apply it in a variety of
circumstances. They also need to learn to design
modules that are coherent abstractions with well-
defined interfaces.

4. Abstract interfaces

When students specify the interface for a class or
other program unit, they typically identify the set of
operations (procedures and functions) that can be
called from outside the unit. That is, they consider the
return type of each operation and its signature—the
name and the number, order, and types of its
parameters. This describes the syntax, or structure, of
the interface. However, the students also need to be
taught to describe the semantics, or expected
behaviors, of the operations explicitly.

4.1 Parnas principles

Parnas and his colleagues advocate that the
“interface between two programs consists of the set of
assumptions that each programmer needs to make
about the other program in order to demonstrate the
correctness of his own program.” [2] In addition to an
operation’s signature, this list of assumptions must also
include information about the meaning of an operation
and of the data exchanged, about restrictions on the
operation, and about exceptions to the normal
processing that arise in response to undesired events.

In Parnas’s information-hiding approach, each
module must hide its secret from the other modules of
the system. The module’s secret is a design decision
that changes from one implementation of the module to
another. To be useful, the module must be described

by an interface (i.e. set of assumptions) that does not
change when one module implementation is substituted
for another. Parnas and his colleagues call this an
abstract interface because it is an interface that
represents the assumptions that are common to all
implementations of the module [2,9]. As an
abstraction, it concentrates on the essential nature of
the module and obscures the incidental aspects that
vary among implementations.

Parnas and his colleagues take an interesting two-
phase approach to the design of abstract interfaces, one
that they argue is especially important in the design of
interfaces to “devices” in the environment. The
method constructs two partially redundant descriptions
of an abstract interface. They are redundant because
they describe the same assumptions.

First, the designer carefully studies the possible
capabilities of the types of devices that might be used
(or module implementations that might be needed) and
then explicitly states in plain English the list of
assumptions that can be made about all the devices
(module implementations) in the set. This list is meant
for people who are experts in the application domain,
but who might not be skilled programmers. This plain
English list makes invalid assumptions easier to detect.

Second, the designer constructs a list of the specific
operations in the interface and describes the signature
and semantics of each operation. Every capability
implied in the specifications of the operations must be
explicitly stated in the list of assumptions. These
programming constructs can be later used in programs.

4.2 Table framework design

Consider the abstract interface for the Client Record
module in the Table framework example. We want, as
much as possible, to let clients (users) of the Table
framework define their own record and key structures.
However, the Table Access module must be able to
extract the keys from the records and compare them
with each other. Thus we require that the Client
Record module be implemented so that assumption 1
given in Figure 1 holds.

Similarly, the Record Storage module must be able
to store the records on and retrieve them from the
physical slots on the storage medium. For in-memory
implementations of the Record Storage module, this is
not a problem; they can simply clone the record (or
perhaps copy a reference to it). However, disk-based
implementations must write the record to a (random-
access) file and reconstruct the record when it is read.
In general, the Record Storage module may need to
convert the client’s record to and from a sequence of

bytes. Thus we specify that assumption 2 shown in
Figure 1 must hold.

The programming interface for the Client Record
module is shown in Figure 2. It consists of three Java
interfaces with a total of five methods.

The built-in Java interface Comparable satisfies
the requirement for the keys [3]. Any class that
implements this interface must provide the method
compareTo() that compares the associated object
with its argument. Clients can use any existing
Comparable class for their keys or implement their
own in the Client Record module.

We introduce the Java interface Keyed to represent
the type of objects that can be stored and retrieved by
the Table Access module [3]. Any class that
implements this interface must implement the method
getKey() that extracts the key from the associated
record. Clients must supply a class in the Client
Record module that provides an appropriate
implementation of the Keyed interface. The Table
Access module can use this method to extract a key
and then use the key's compareTo method to do the
comparison. The details of the record structure are
otherwise hidden in the Client Record module.

We also introduce the Java interface Record to
represent the type of objects that can, if needed, be
converted to and from a sequence of bytes [3]. This
interface has the three methods writeRecord(),
readRecord(), and getLength() to write the
record, read the record, and return the size of the
record, respectively. The Record Storage module calls
the Record methods when it needs to read or write the
physical record. The code in the Record-
implementing class (e.g., defined in the Client Record
module) converts the internal record data to and from a
stream of bytes. The Record Storage module is
responsible for routing the stream of bytes to and from
the physical storage medium.

An implementation of the Client Record module
would thus normally consist of a class that implements
the Java interfaces Keyed and Record and a decision
on how to represent the record’s keys. The latter
decision might be to construct some class that
implements the built-in Java interface Comparable or
it might be to choose an existing built-in class that

already implements Comparable.

The abstract interfaces of the Table Access and
Record Storage modules are described in [3]. The
Table Access module has a Java interface Table that
represents the Table ADT as described in Section 2;
this interface has (at least) seven operations. The
Record Access module has a pair of closely related
abstractions represented by the Java interfaces
RecordStore and RecordSlot. These abstractions
manage the physical storage facility; collectively, they
have six operations. The semantics of the operations
in these modules are given in terms of formal design
contracts and information models. The key
contribution of [3] is the specification of modules with
abstract interfaces that enabled the separation of the
key-based access mechanism in the Table Access
module from the physical storage mechanism in the
Record Storage module.

4.3 Perspective

Parnas's ideas on abstract interfaces [2] have been
refined by others and incorporated into various
methods such as Meyer's design by contract [6].
However, the method of using two partially redundant
descriptions has not been used extensively. It deserves
more attention in a world where a program may require
services from the interfaces of many other programs
and, in turn, provide other programs interfaces to its
services [14].

Like information hiding, design of elegant and
effective module interfaces is an important skill that
computing science students should learn. Computing
science programs should present principles for
effective design of abstract interfaces and help students
learn the subtleties of their application. Abstract
interfaces and information hiding are the key concepts
enabling the construction of program families.

1. Records are objects from which the keys can be
extracted and compared using a total ordering.

2. As needed, records can be converted to and from a
sequence of bytes. It is possible to determine the
number of bytes in the record.

 Figure 1. Assumption list for Client Record

interface Comparable
int compareTo(Object key)
// compares the associated object with argument key and
// returns -1 if key is greater, 0 if they are equal, and 1 if
// key is less.

interface Keyed
Comparable getKey()
// extracts the key from the associated record

interface Record
void writeRecord(DataOutput)
// writes the record to a DataOutput stream
void readRecord(DataInput)
// reads the record from a DataInput stream
int getLength()
// returns the number of bytes that will be written by
// writeRecord()

Figure 2. Programming interface for Client Record

5. Program families

Students (and many professionals) often practice
code reuse in an informal manner. When given a new
problem to solve, they may find a program for a
similar problem and, using a text editor, modify the
program to get a solution to the new problem. This
may be a reasonable approach for small, simple
programs in a situation in which it is legitimate to
adapt the existing code, a solution is needed quickly,
there is little concern about the efficiency or elegance
of the program, and the program will only be used for
a short period of time. However, if these conditions do
not hold, this undisciplined technique can lead to a
chaotic situation where many versions of a whole
program must be maintained simultaneously in source
code. Changes and error corrections cannot be
conveniently and reliably moved among the different
versions as needed. To overcome these problems, we
should teach students a disciplined technique from the
beginning.

Students should thus be taught more systematic
methods to design and implement multi-version
programs. Information hiding modules and abstract
interfaces are the basic concepts needed to design such
programs. The information hiding approach seeks to
identify aspects of a software design that might change
from one version to another and to hide them within
independent modules behind well-defined abstract
interfaces. Because one implementation can be easily
substituted for another, this type of design can be
considered as defining a program family.

5.1 Parnas principles

Parnas defines a program family as a set of
programs “whose common properties are so extensive
that it is advantageous to study the common properties
of the programs before analyzing individual members.”
[8] In his view, a family member is developed by
incrementally identifying the common aspects of the
family and representing the intermediate forms of the
program as they evolve. These intermediate forms
should be documented fully and saved for development
of future family members. Instead of developing a new
family member by modifying a previous member,
the designer finds the appropriate intermediate
representation and restarts the design from that point.

In Parnas's module specification approach [8],
which is based on the principles of information hiding
and abstract interfaces, the technique is to define a
software system by giving the “specifications of the
externally visible collective behaviors” of the modules

instead of the internal implementation details. It works
by identifying “the design decisions which cannot be
common properties of the family” and hiding each as a
secret of a module.

5.2 Table framework design

Again consider the Table framework. The analysis
of the problem domain led to a design in which the
primary expected sources of change are encapsulated
within three information-hiding modules with carefully
defined abstract interfaces. This generated a program
family in which the different members vary according
to their selections for the Table Access, Record
Storage, and Client Record module implementations.
The members of the family discussed in [3] include
two different Table Access module implementations;
one is a simple in-memory index that uses sorted arrays
of keys and binary search, and the other is an in-
memory hashed index. Similarly, there are three
implementations of the Record Storage module; two of
these use in-memory data structures, and the third uses
a random-access file on disk. A client can configure a
system by combining implementations of the Table
Access and Record Storage modules with an
implementation of the Client Record module with
appropriate definitions of the records and keys.

5.3 Perspective

Since Parnas’s paper [8] on the concept of program
families first appeared, considerable interest has grown
in what are now usually called software product lines
[1]. Parnas observes that there is “growing academic
interest and some evidence of real industrial success in
applying this idea,” yet “the majority of industrial
programmers seem to ignore it in their rush to produce
code.” [12] He warns, “If you are developing a family
of programs, you must do so consciously, or you will
incur unnecessary long-term costs.” [12] This issue
should be addressed in computing science and software
engineering curricula.

6. Teaching the Parnas principles

Three decades after Parnas first articulated the
principle, he argues that information hiding is still “the
most important and basic software design principle.”
[12] Yet, he observes that “it is often not understood
and applied” despite being the intellectual
underpinning of recent ideas such as object-oriented
and component-based programming. He laments that
he commonly sees “programs in both academia and

industry in which arbitrary design decisions are
implicit in intermodular interfaces making the software
unnecessarily hard to inspect or change.” [12]

Computing science and software engineering
educators must assume part of the blame for this
situation and accept much of the responsibility for
remedying it. The basics of information hiding can be
explained in one lecture in a typical college-level class.
However, the principle “is actually quite subtle” and
usually “takes at least a semester of practice to learn
how to use it.” [12] Educators should go beyond the
superficial attention given in textbooks and incorporate
application of the principle into most aspects of soft-
ware design courses. The examples presented should
be designed according to the principle and the secrets
of the modules should be articulated during design and
explicitly documented. Student work should be
evaluated on how well it applies the principle.

Information-hiding modules must, of course, have
interfaces that hide the secrets of the modules. The
interfaces must be “less likely to change than the
‘secrets’ that they hide.” [9] This is not an easy
process. The design of an appropriate abstract
interface “requires both careful investigation and some
creativity” [9] on the part of the software designer. As
with information hiding, the concept of abstract
interfaces is not difficult to explain. It is, however, a
subtle concept that takes considerable practice to be
able to apply well.

Educators should seek to give students appropriate
instruction on the concepts and techniques for building
good abstract interfaces and provide experiences in
building such interfaces. Although Parnas’s two-phase
procedure [2, 9] has not been used extensively, it is a
good approach to use in education. The first phase
focuses the students’ attention on identifying explicitly
the common properties of the set of all likely versions
of a module. Since it uses English text, there are no
new notations or technologies to learn. The second
phase focuses the students’ attention on designing
specific interfaces that are consistent with the
assumptions identified in the first phase. If more
formality is desired, then the second phase can be
augmented by an approach such as design by contract
[6]. Instructors should discourage the common practice
of diving immediately into the definition of the
operations in the second phase, bypassing the first
phase. The examples and exercises in a course should
reflect the abstract interface approach. Student work
should be evaluated based on how well it applies the
approach and how effectively the interfaces hide the
changeable design decisions of the module.

The principles of information hiding and abstract
interface design are key underlying concepts for the
construction of program families. However, design of
a program family requires more. The designers must
analyze the application domain and explicitly identify
the common and the variable aspects of the family
members [1]. The common aspects can be incorporated
into the module structure and the variable aspects
made secrets of modules. Techniques for identifying
these commonalities and variabilities should be taught
in software design courses.

The techniques and tools for building product lines
can be quite complex, involving special-purpose
translators and configuration tools [1]. Hence, general
product line construction is difficult to teach within the
confines of a college course. However, software
frameworks are more accessible to students and
professors. Frameworks consist of design
specifications and program code and build upon
standard object-oriented concepts that students are
taught in undergraduate classes. Simple examples can
be used to illustrate the concept of frameworks and
serve as a basis for programming exercises [4]. An
interesting possible approach to teaching framework
design is to generalize the design of a specific
application from the family using Schmid’s techniques
for hotspot analysis and systematic generalization
[13]. Construction of program families can be taught
successfully if explicit attention is given to the
underlying principles and these principles are
consistently reinforced over time.

7. Conclusion

In 1979, David Parnas wrote that a “software
designer should be aware that he is not designing a
single program but a family of programs.” [10] In a
number of papers published in the 1970’s and 1980’s,
Parnas and his colleagues codified the principles and
practices for engineering such program families. They
refined and demonstrated their software engineering
approach in a difficult real-world setting, the
reimplementation of the hard realtime Operational
Flight Program (OFP) for the U.S. Navy’s A-7E
airplane [11].

The thesis of this paper is that contemporary
students, once they have mastered the skills for
development of individual programs, should be taught
to approach program design as the development of a
whole family of software products. Furthermore, it
argues that the principles and practices laid down by
Parnas a quarter century ago are still applicable today.
Perhaps they are not fully appreciated, and sometimes

they may get lost amongst all the hype surrounding the
technologies and tools that have emerged in recent
years. However, the principles from Parnas’s classic
papers are still valuable for current-day students and
practitioners to study and apply in their software
development activities.

The Parnas methods can be characterized by two
key ideas, information hiding and abstract interfaces.
The information hiding principle says that a system
should be decomposed into modules where each
module hides a single design decision (secret) that may
change independently from other design decisions
about the system. The abstract interface of a module is
a listing of all the assumptions that a user of the
module may make about the module. These
assumptions must not reveal the secret of the module
and must be well-defined and carefully documented.

The Parnas approach to the design of software
families can be summarized as “keeping secrets within
a family.” It seeks to identify aspects of a design that
might change from one version to another of an
application and make them secrets of independent
modules with well-defined abstract interfaces. The
modules hide their secrets from each other. Because
this approach enables one implementation of a module
to be substituted for another easily, this type of design
defines a program family.

8. Acknowledgements

The work of Cunningham and Liu was supported, in
part, by a grant from Acxiom Corporation titled “The
Acxiom Laboratory for Software Architecture and
Component Engineering (ALSACE).” The prototype
implementations of the Table framework [3] were done
by Jingyi Wang. Pallavi Tadepalli reviewed this paper
and suggested several improvements.

9. References

[1] M. Ardis, N. Daley, D. Hoffman, H. Siy, and D. Weiss.

“Software Product Lines: A Case Study,” Software—
Practice and Experience, Vol. 30, pp. 825-847, 2000.

[2] K. H. Britton, R. A. Parker, and D. L. Parnas. “A

Procedure for Designing Abstract Interfaces for Device
Interface Modules,” In Proceedings of the 5th
International Conference on Software Engineering, pp.
95-204, March 1981.

[3] H. C. Cunningham and J. Wang. “Building a Layered

Framework for the Table Abstraction,” In Proceedings of
the ACM Symposium on Applied Computing, pp. 668-674,
March 2001.

[4] H. C. Cunningham, Y. Liu, and C. Zhang. “Using the
Divide and Conquer Strategy to Teach Java Framework
Design,” To appear in the Proceedings of the Principles
and Practice of Programming in Java (PPPJ)
Conference, 6 pages, June 2004.

[5] D. M. Hoffman and D. M. Weiss, editors. Software

Fundamentals: Collected Papers by David L. Parnas,
Addison-Wesley, 2001.

[6] B. Meyer. Object-Oriented Program Construction,

Second edition, Prentice Hall, 1997.

[7] D. L. Parnas. “On the Criteria to Be Used in

Decomposing Systems into Modules,” Communications of
the ACM, Vol. 15, No. 12, pp.1053-1058, 1972.

[8] D. L. Parnas. “On the Design and Development of

Program Families,” IEEE Transactions on Software
Engineering, Vol. SE-2, No. 1, pp. 1-9, March 1976.

[9] D. L. Parnas. “Some Software Engineering Principles,”

Infotech State of the Art Report on Structured Analysis
and Design, Infotech International, 10 pages, 1978.
Reprinted in Software Fundamentals: Collected Papers
by David L. Parnas, D. M. Hoffman and D. M. Weiss,
editors, Addison-Wesley, 2001.

[10] D. L. Parnas. “Designing Software for Ease of

Extension and Contraction,” IEEE Transactions on
Software Engineering, Vol. SE-5, No. 1, pp. 128-138,
March 1979.

[11] D. L. Parnas, P. C. Clements, and D. M. Weiss. “The

Modular Structure of Complex Systems,” IEEE
Transactions on Software Engineering, Vol. SE-11, No.
3, pp. 259-266, March 1985.

[12] D. L. Parnas. “Software Design,” In D. M. Hoffman and

D. M. Weiss, editors. Software Fundamentals: Collected
Papers by David L. Parnas, Addison-Wesley, 2001.

[13] H. A. Schmid. “Framework Design by Systematic

Generalization," In M. E. Fayad and R. E. Johnson,
editors, Domain-Specific Application Frameworks, Wiley,
2000.

[14] J. Waldo. “Introduction: A Procedure for Designing

Abstract Interfaces for Device Interface Modules,” In
Software Fundamentals: Collected Papers by David L.
Parnas, D. M. Hoffman and D. M. Weiss, editors,
Addison-Wesley, 2001.

[15] D. M. Weiss. "Introduction: On the Criteria to Be Used

in Decomposing Systems into Modules,” In Software
Fundamentals: Collected Papers by David L. Parnas, D.
M. Hoffman and D. M. Weiss, editors, Addison-Wesley,
2001.

