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Abstract 
Most approaches to building frameworks involve 
incremental evolution of designs. One such incremental 
methodology involves the systematic transformation of an 
object-oriented design to produce the needed generic 
structure. An alternative approach is function 
generalization where an application is expressed as a set of 
functions in a functional programming language and is 
then transformed in a series of steps to produce a 
generalized application. The resulting set of generalized 
functions can be converted to Java code using design 
patterns to guide the framework construction. In this paper, 
the function generalization approach is applied directly 
using Java, where the set of functions are the methods in a 
class. Several transformation steps produce additional 
classes and methods that collectively form a framework. 
The example family used in this paper is the cosequential 
processing framework. 
 
1. Introduction 
    An object-oriented software framework “is a reusable 
design expressed as a set of abstract classes and the way 
their instances collaborate” [8]. Framework design is 
considered to be a very difficult task where the difficulty is 
identifying the abstractions that can be tailored to specific 
applications within the family. These abstractions, which 
are called hot spots, are variable and application specific 
while the common aspects that are reusable are known as 
frozen spots.  
    The frozen spots are present within the collaborative 
structure of the classes in the framework and the concrete 
implementations of various methods and classes. The hot 
spots are represented as abstract base classes (or interfaces) 
in the framework. A particular custom application can be 
built by providing appropriate implementations of the 
relevant hot spot abstractions.  Frameworks are generally 
built using design patterns that are structured to fit with the 
concepts of hot spots and frozen spots [9].  

Framework design involves incrementally evolving a 
design rather than discovering it in one single step. 
Schmid’s systematic generalization methodology is one 
such technique for framework design [9]. In this 
methodology, framework designers take an object-oriented 
design for a specific application within the family and 
convert it into a framework design by a sequence of 

generalizing transformations. Each transformation 
corresponds to the introduction of a hot spot abstraction 
into the structure.  The methodology proposes techniques 
for analyzing the hot spot and constructing an appropriate 
design for the hot spot subsystem.   

Another systematic and incremental methodology is the 
function generalization approach [1]. While Schmid's 
methodology generalizes the class structure of a prototype 
application, the function generalization approach 
generalizes the functional structure of a prototype 
application.  It introduces the hot spot abstractions into the 
design by replacing concrete operations by more general 
abstract operations. The abstract operations become 
parameters of the generalized functions. That is, the 
generalized functions are higher order, having parameters 
that are themselves functions. A feature of the work 
reported in [1] is that it uses the purely functional 
programming language Haskell [10] to express the 
functional prototype.   After generalizing the various hot 
spots of the application, the resulting generalized functions 
are used to generate a framework in an object-oriented 
language such as Java.  

Instead of using a functional language unfamiliar to 
most programmers, the work reported in this paper applies 
function generalization directly to Java programs. The 
prototype application is implemented by Java classes. The 
set of methods in the prototype represent the functional 
structure that is generalized by various transformations. 
The generalization process may necessitate the creation of 
associated helper classes, whose objects become 
parameters in the methods of the application class. The 
resulting set of helper classes and generalized methods in 
the prototype classes form the framework. 

The example family developed in this paper is a 
cosequential processing family, which is described in the 
next section. Section 3 presents the generalization of the 
functional structure of the prototype application, 
generalizing the hot spots individually. Section 4 describes 
the framework construction after the various 
transformations. Then, Section 5 summarizes the paper.  
 

2. Cosequential Processing 
Cosequential processing concerns the coordinated 

processing of two ordered sequences to   produce some 
result, often a third ordered sequence [4]. An important 



  

public class ArrayCosequential 
{ public ArrayCosequential(int[] a, int[] b) 
  { this.a = (a != null) ? a :(new int[0]); 
    this.b = (b != null) ? b :(new int[0]); 
    i = 0;  j = 0;  k = 0; 
    c = new int[a.length+b.length]; 
  } 
  public void merge() 
  { while ((i < a.length) && (j < b.length)) 
    { if(a[i] < b[j]) 
      { c[k] = a[i];  k++;  i++;  } 
      else if(a[i] == b[j]) 
      { c[k] = a[i];  k++;  i++;  j++; } 
      else  // a[i] > b[j] 
      { c[k] = b[j];  k++;  j++; } 
    } // end while 
    while (i < a.length)  
    { c[k] = a[i];  k++;  i++; } 
    while (j < b.length)  
    { c[k] = b[j];  k++;  j++; } 
  } // end merge 
  public int[] getResult() { return c; } 
    
  private int[] a, b, c; 
  private int   i, j, k; 
} 

Figure 1. ArrayCosequential�
 

feature of    cosequential processing is that both input 
sequences must be ordered according to the same total 
ordering.  Another required trait is that the processing 
should, in general, be incremental. That is, only a few 
elements of each sequence (perhaps just one) are examined 
at a time. This important family includes set and bag 
operations [7] and sequential file update applications [2, 3].  
These are practical problems for which presence of a 
framework can be beneficial in providing good solutions.  

As a baseline example, consider a program that takes 
two ascending sequences of integers and merges them 
together to form a third ascending sequence (i.e., a bag 
union operation). This program appears as a Java class 
ArrayCosequential in Figure 1 where the sequences are 
implemented as arrays. The ordering of the input and 
output sequences are required as preconditions and 
postconditions, respectively. The size of the output array is 
set to be equal to the sum of the sizes of both input arrays. 
This is because an accurate assumption of the size of the 
output array cannot be made in advance.  

Suppose that variables i and j represent indices of the 
“current” elements of the first and second arrays (i.e., 
arrays a and b), respectively. The method merge() 
compares a[i] to b[j] and considers the three cases “less 
than”, “greater than” and “equal”. If a[i] is less than 
b[j], then the value a[i] is added to the output array and 
array a is advanced to the next entry. If a[i] is greater 
than b[j] then, the value b[j] is added to the output array 
and array b is advanced to the next entry. When a[i] and 
b[j] are equal, then one of the two elements is added to 
the output array and both arrays are advanced to the next 
entry.  

The method getResult() of  ArrayCosequential is 
an accessor. It returns a reference to the output sequence to 
the client.  

Building a framework for cosequential processing 
involves the general principles of framework design.  We 
discuss those in the next section. 
   
3. Framework Design 

Schmid’s systematic generalization methodology 
identifies the following steps for construction of a 
framework [9]: 

• creation of a fixed application model 
• hot spot analysis and specification 
• hot spot high-level design 
• generalization transformation 

Schmid’s methodology begins by creating a class model for 
the fixed application. The designers then analyze each hot 
spot in turn and generalize the class model by introducing 
an appropriate hot spot subsystem.  

The function generalization approach begins with a 
prototype application consisting of a specific set of 
functions. In this case, the functions are a set of methods in 
a Java class that may use associated helper classes. A 
generalizing transformation may replace a data type at a hot 
spot by one that is more general, thus making it a 
polymorphic parameter of the methods in the program. As 
an alternative, a generalizing transformation may replace a 
fixed specialized operation at a hot spot by an abstract 
operation.  The abstract operation in this case becomes a 
method that is declared abstract. These abstract operations 
represent variable aspects of the framework. The frozen 
spots are implemented by methods that call the abstract 
operations, which represent the common aspects of the 
framework. After each generalizing transformation, the 
result is a valid Java class along with its helper classes that 
can be compiled and executed with appropriate 
implementations for the abstract methods.  Eventually the 
specific Java class is replaced by an abstract class. The 
framework then consists of the abstract class along with the 
helper classes. 

Two common principles for framework construction are 
unification and separation [5]. The unification principle 
uses inheritance to implement the hot spot subsystem. The 
common aspects (frozen spots) are implemented by 
concrete template methods in a base class. The variable 
aspects (hot spots) are represented by a group of abstract 
hook methods. The hook methods are realized by concrete 
methods in a hot spot subsystem in an application of the 
family. 

The separation principle uses delegation to implement 
the hot spot subsystem. The hook methods appear in a 
separate class that is used by the template methods. The 
approach taken in this paper is to follow the unification 
principle where the framework is defined to consist of an 



  

abstract base class that defines concrete template methods 
and abstract hook methods, along with supporting classes.  

For the cosequential processing example, we begin with 
the prototype application represented by the class 
ArrayCosequential shown in Figure 1. First, we 
consider the domain of the family and identify potential hot 
spots.  Then, we design the hot spot subsystem for each and 
carry out the appropriate transformations to generalize the 
Java class.  

By analyzing the domain of the cosequential processing 
family, we determine that it must support a variety of built-
in and user-defined types of data (not just integers) in the 
input and output sequences. The data in the sequences 
might be arranged according to some user-specified total 
ordering. The family should enable the data to come from a 
wide range of possible sources and go to a wide range of 
possible destinations. The output should be a sequence of 
values that are computed incrementally by examining pairs 
of values drawn in order from the two input sequences. 
Domain analysis also establishes the common aspect of the 
family which is the merging process of two input sequences 
to produce an output sequence. This common aspect is the 
frozen spot of the framework and is present in the 
application as the merge() method.  

Considering the above domain characteristics and 
examining the prototype application, we can identify the 
following hot spots: 
1. Variability in the total ordering used for the input and 

output sequences, i.e., of the comparison operators and 
input sequence type. 

2. The ability to have more complex data entities in the 
input and output sequences, i.e., variability in record 
format. 

3. The ability to vary the input and output sequences 
independently of each other. 

4. Variability in the transformations applied to the data as 
it passes into the output. 

5. Variability in the sources of the input sequences and 
destination of the output sequence. 

We examine these in the subsections that follow. 
 
3.1 Variability in total ordering 
     In the prototype application represented by the class 
ArrayCosequential, the input and output arrays are 
restricted to be of the primitive type int and the 
comparison operations, hence, to integer comparisons. In 
hot spot #1, the variability in total ordering is incorporated 
by choosing the interface Comparable from the Java API 
as the array type. The resulting class CompCosequential 
is shown in Figure 2. The Comparable interface has the 
accessor operation compareTo(Object) that compares 
objects according to some total ordering. It returns -1, 0 or 
1 depending on whether the implicit argument of operation 
is less-than, equal-to or greater-than the explicit argument. 
The operation is supported by almost all Java core classes 

like String and Integer.  User classes can implement 
Comparable and provide the needed operation.  

 
3.2 Variability in record format 
    The input and output sequences in CompCosequential 
all contain elements of the same class type.  The type may 
be any built-in or user-defined class that implements 
Comparable. This is because the compareTo method is 
defined by the various built-in classes to compare only 
elements of identical types. Nevertheless, the element of 
type Comparable is still a simple structure. Normally, 
however, applications in the cosequential processing family 
work with complex structures.  
   The aim of hot spot #2 is to allow elements of the 
sequences to be more complex structures such as records. 
A record consists of multiple fields where a subset defines 
the key. The key value controls the ordering of the record 
within a sequence. In this transformation that produces the 
class KeyedCosequential, the three arrays will continue 
to have elements of a single type. The ability to have 
complex records is supported by defining an interface 
Keyed as shown in Figure 3, which must be implemented 
by the elements of the sequences. The elements are 
compared by comparing the key values of the Keyed 
elements. The key values are of type Comparable as 
shown in Figure 4. They are extracted with the getKey() 

public class CompCosequential 
{ public CompCosequential 
              (Comparable[] a,  Comparable[] b) 
  {this.a = (a!=null) ? a :(new Comparable[0]); 
   this.b = (b!=null) ? b :(new Comparable[0]); 
   i = 0; j = 0;  k = 0; 
   c = new Comparable[a.length+b.length]; 
  }  
  public void merge() 
  { while ((i < a.length) && (j < b.length)) 
    { if(a[i].compareTo(b[j]) < 0) 
      { c[k] = a[i]; k++;  i++; }   
      else if (a[i].compareTo(b[j]) == 0)  
      { c[k] = a[i];  k++;  i++;  j++; }                 
      else   //(a[i].compareTo(b[j]) > 0) 
      { c[k] = b[j]; k++;  j++; }   
    }   //end while   
    while i < a.length) 
    { c[k] = a[i];   k++;  i++; }  
    while (j < b.length) 
    { c[k] = b[j];  k++;  j++;  }  
  }   //end merge  
  public Comparable[] getResult() { return c; } 
 
  private Comparable[] a, b, c; 
  private int          i, j, k; 
}    

Figure 2. CompCosequential 
 

public interface Keyed 
{  /*returns the key of the element.*/ 
   public Comparable getKey(); 
}����

Figure 3. Keyed 
 



  

method and stored in two variables currA and currB 
respectively.  

 
3.3. Independent variability of sequences 
    In the KeyedCosequential class, the three arrays have 
elements of the same record type. However, some 
cosequential applications require the record structures to 
vary among the sequences.  For example, the sequential file 
update application applies transactions stored in a 
transaction file against master data records stored in a 
master file. The master and transaction records normally 
carry different information in different record structures. 
The master and transaction files are inputs while a new 
master file is the output. For any master record, there may 
be several matching transaction records with the same key. 
In other applications, the output may be a simple record 
rather than a long sequence. For example, an application to 
sum the values that appear in the first input sequence but 
not in the second would be a reasonable application of the 
family. Thus, in hot spot #3, the independent variability of 
sequences is handled by the Keyed interface. 
    There can be several classes that implement the interface 
and support different record structures of the various 
sequences. The key extraction function getKey() for each 
implementation should return the keys according to same 
total ordering. The comparison of keys continues as earlier. 
However, certain transformations are required to map the 
input records to output record types. Thus, we introduce 
two new transformation functions that appear as two 

abstract methods (transA and transB). These two 
methods convert the input record element to the output 
record type. In the new class TKeyedCosequential, the 
previous statements  
 c[k] = a[i]; c[k] = b[j];are replaced 
with 
 c[k] = transA(a[i]); 
 c[k] = transB(b[j]); 
respectively. The new TKeyedCosequential class is now 
declared to be abstract as it contains two abstract 
methods and one final method. The merge method is 
declared to be final. An application can now be built by 
subclassing the abstract TKeyedCosequential class and 
providing appropriate implementations for the transA and 
transB methods. To facilitate easy access to the output 
sequence in the application, a helper method getK() 
whose signature is protected int getK(),� is 
introduced. This method returns the current index of the 
output sequence that is otherwise manipulated by the 
application. Everything else remains the same as in 
KeyedCosequential. 

 
3.4. Variability of transformations 
    The TKeyedCosequential class allows simple 
mapping transformations between input and output records. 
Practical scenarios, however, require more complex 
transformations as is evident in the sequential file update 
application. It consists of a master file of records and a 
transaction file of updates to be performed on the master 
file to produce a new master file as output.  Each key may 
be associated with no more than one record in the master 
file.  However, there may be any number of update 
transactions that must be performed against a master record 
before the new master record can be output.  Thus, there 
needs to be some local state maintained throughout the 
processing of all the transaction records associated with one 
master record. In hot spot #4, the variability in 
transformation functions to convert input sequences to the 
output sequence appear as abstract hook methods transLt, 
transGt and transEq. These replace the previously 
introduced methods transA and transB. The resulting 
class TransKeyedCosequential is shown in Figure 5. 
Other changes made in this class include the introduction of 
two new helper methods, getA and getB. These methods 
return the “current” record values in each sequence. 
    Additional methods getNextA and getNextB access 
the elements and their respective key values at the current 
indices in each of the arrays and then increment the index 
to the next position in the array. The current elements (or 
records) in each array are stored in the variables currRecA 
and currRecB while their corresponding keys are stored 
in currA and currB, respectively. 
 
 
 

public class KeyedCosequential 
{public KeyedCosequential(Keyed[] a, Keyed[] b)      
 { this.a = (a!=null) ? a :(new Keyed[0]); 
   this.b = (b!=null) ? b :(new Keyed[0]); 
   i = 0; j = 0; k = 0; 
   c = new Keyed[a.length+b.length]; 
 }   // end constructor  
 public void merge() 
 { while ((i < a.length) && (j < b.length)) 
   { currA = ((Keyed)a[i]).getKey(); 
     currB  = ((Keyed)b[j]).getKey(); 
     if (currA.compareTo(currB) < 0) 
     { c[k] = a[i]; k++; i++; }  
     else if (currA.compareTo(currB) == 0)  
     { c[k] = a[i]; k++; i++; j++; }  
     else  // (currA.compareTo(currB) > 0) 
     { c[k] = b[j]; k++; j++; }   
   }   // end while   
   while (i < a.length) 
   { c[k] = a[i]; k++; i++; }  
   while (j < b.length) 
   { c[k] = b[j]; k++; j++; }  
 }   // end merge  
 public Keyed[] getResult() { return c; }         
 
 private Keyed[]       a, b, c; 
 private int           i, j, k; 
 private Comparable    currA,currB; 
}    

Figure 4. KeyedCosequential 



  

public interface OutSeq 
{   public void put(Object r); 
    public void close(); 
} 

Figure 6. OutSeq 
�

 

    To provide appropriate behavior when the keys are 
equal, other hook methods have been added to the 
TransKeyedCosequential class. These new methods are   
getNextAEquals and getNextBEquals, which access 
the subsequent elements from the individual sequences as 
required. The methods transAEmpty and transBEmpty 
were also added to provide variability in transformation 
when one of the two sequences is empty. Default behavior 
has been provided for the above four methods. One other 
hook method finish is added to take the final state of the 
computation and complete the output sequence.  
 
3.5. Variability of source/destination 
    The fifth hot spot allows independent sources for inputs 
along with variable output destinations. To accomplish this, 
different abstractions serve as wrappers for the variable 
sources and destinations for the values in the sequences. 
The Iterator interface in the Java API serves as a useful 
abstraction for input sequences.  Its methods hasNext() 
and next() check for the existence of an additional 
element and returns that element, respectively. Objects that 
implement the Iterator interface are returned by a 
number of built-in collection classes in the Java API. 
Programmers can also develop their own classes that 
implement this interface.  
    The Cosequential class shown in Figure 8 
encapsulates the use of the Iterator methods inside 
helper methods getNextA() and getNextB() to keep 
subclasses from using the iterator inappropriately. The 
methods getA() and getB() give access to the current 
record on the input sequences. We can introduce a Java 
interface OutSeq as shown in Figure 6 to abstract the 
output sequence.  It has two methods put(Object) and 
close() that append an element at the end of the output 
and terminate the sequence when finished. As a result, the 
methods getK() and getResult() can be removed. The 
classes that implement the Iterator and OutSeq 
interfaces provide the encapsulations for sources and 
destinations, respectively. The Cosequential class in 
Figure 8 encapsulates the use of the OutSeq put() method 
inside the helper method put(); method close() is only 
used  by the client of the framework.  

 
 4. Framework Construction 
    The unification principle of framework construction uses 
inheritance to implement the hot spot subsystem. The 
Cosequential class in Figure 8 on the next page is the 
abstract base class. It consists of one template method 
merge(), shown in Figure 7, that implements the common 

abstract public class TransKeyedCosequential 
{ public TransKeyedCosequential 
                    (Keyed[] a, Keyed[] b) 
  { this.a = (a!=null) ? a :(new Keyed[0]); 
    this.b = (b!=null) ? b :(new Keyed[0]); 
    i = 0; j = 0; k = 0; 
    c = new Keyed[a.length+b.length]; 
    aNotEmpty=true; bNotEmpty=true; 
  } 
  final public void merge() 
  { getNextA(); getNextB(); 
    while (aNotEmpty && bNotEmpty) 
    { if (currA.compareTo(currB) < 0) 
      { transLt(); getNextA(); }  
      else if (currA.compareTo(currB) == 0)  
      { transEq(); getNextAEquals();  
        getNextBEquals(); }         
      else // (currA.compareTo(currB) > 0) 
      { transGt();  getNextB(); }  
    } // end while   
    while (aNotEmpty && !bNotEmpty) 
    { transBEmpty(); getNextA();    } 
    while (!aNotEmpty && bNotEmpty) 
    { transAEmpty(); getNextB();     } 
    finish(); 
  } // end merge 
  protected int getK() {return k;} 
  protected final Keyed getA() 
  { return currRecA; } 
  protected final Keyed getB()  
  { return currRecB; } 
  private void getNextA() 
  { if (i < a.length) 
    { currRecA = (Keyed)a[i];  
      currA = currRecA.getKey();   
      i++;  aNotEmpty=true; 
    }  
    else   
    { currA = null;currRecA = null; 
      aNotEmpty=false; } 
  } // end getNextA  
  private void getNextB() 
  { if (j<b.length) 
    { currRecB = (Keyed)b[j]; 
      currB = currRecB.getKey(); 
      j++; bNotEmpty=true; 
    }  
    else  
    { currB = null; currRecB = null;  
      bNotEmpty=false; } 
  } // end getNextB 
  public Keyed[] getResult() { return c; } 
  //hook methods 
  abstract protected void transLt();     
  abstract protected void transGt();  
  abstract protected void transEq();   
  protected void finish() {} 
  protected void transAEmpty(){ transGt(); } 
  protected void transBEmpty(){ transLt(); } 
  protected void getNextAEquals()  
  { getNextA(); } 
  protected void getNextBEquals()  
  { getNextB(); } 
    
  private Keyed[]     a, b, c; 
  private int         i,  j, k; 
  private Comparable  currA,     currB; 
  private Keyed       currRecA,  currRecB; 
  private boolean     aNotEmpty, bNotEmpty; 
} 

Figure 5. TransKeyedCosequential 
 



  

import java.util.*; 
abstract public class Cosequential 
{ public Cosequential 
        (Iterator _a, Iterator _b, OutSeq _c) 
  { a=_a; b=_b; c =_c; 
    aNotEmpty = (a != null) && a.hasNext(); 
    bNotEmpty = (b != null) && b.hasNext(); 
    if (c == null)    
    { throw new RuntimeException  
         ("Output sequence not initialized");     
    } 
  }  // end constructor 
  //hook methods 
  abstract protected void transLt();  
  abstract protected void transGt(); 
  abstract protected void transEq();   
  protected void transAEmpty() { transGt(); } 
  protected void transBEmpty() { transLt(); } 
  protected void getNextAEquals() 
  { getNextA(); } 
  protected void getNextBEquals()  
  { getNextB(); } 
  protected void finish() {} 
  //template method 
  final public void merge()  {...} //Figure 7 
  //helper methods 
  protected final Keyed getA()  
  { return currRecA; } 
  protected final Keyed getB()  
  { return currRecB; } 
  protected void put(Object r) { c.put(r); } 
  private void getNextA() 
  { aNotEmpty = a.hasNext(); 
    if (aNotEmpty) 
    { currRecA = (Keyed)a.next(); 
      currA = currRecA.getKey();  
    }   
    else  { currA = null;  currRecA = null; }    
  }//end getNextA  
  private void getNextB() 
  { bNotEmpty = b.hasNext(); 
    if (bNotEmpty) 
    { currRecB = (Keyed)b.next(); 
      currB = currRecB.getKey();  
    }   
    else  { currB = null;  currRecB = null; }   
  }//end getNextB 
     
  private Iterator a,b; 
  private OutSeq c; 
  private Comparable currA,currB;   //keys 
  private Keyed currRecA,currRecB;  //records 
  private boolean aNotEmpty, bNotEmpty; 
} 

Figure 8. Cosequential 
�

final public void merge() 
{ getNextA(); getNextB(); 
  while (aNotEmpty && bNotEmpty) 
  { if (currA.compareTo(currB) < 0) 
    { transLt(); 
      getNextA(); 
    }  
    else if (currA.compareTo(currB) == 0)  
    { transEq(); 
      getNextAEquals(); 
      getNextBEquals(); 
    }  
    else  // (currA.compareTo(currB) > 0) 
    { transGt(); 
      getNextB(); 
    }    
  }   //end while   
  while (aNotEmpty) 
  { transBEmpty(); 
    getNextA(); 
  } 
  while (bNotEmpty) 
  { transAEmpty(); 
    getNextB(); 
  } 
}    

Figure 7.  merge Method for class Cosequential 
 

behaviors (frozen spots) and several abstract hook methods 
that implement the variable aspects(hot spots) of the 
system. This class uses the Template Method design pattern 
[6] to structure the framework. 
A specific application of the framework must subclass 
Cosequential to provide appropriate definitions of the 
hook methods. It must also provide appropriate 
implementations of the Keyed and OutSeq interfaces. 
Depending upon the nature of the keys, a new 
implementation of the Comparable interface may also be 
needed. Similarly, a new implementation of the Iterator 
interface may be needed to provide the input sequences to 
the merge() procedure.  A class diagram that depicts the 
relationships among the various classes and interfaces that 
form the cosequential processing framework is shown in 
Figure 9.  An application of the cosequential processing 
framework to the master-transaction update problem is 
given in [1]. 

 
6. Conclusion 
    The cosequential processing framework can be used to 
build a number of real world applications such as set and 
bag operations and sequential file update applications. 
Designing the framework to suit a variety of applications 
involved understanding the underlying applications and 
creating appropriate abstractions. The structuring of the 
framework involves use of design patterns to lay out the hot 
spots and frozen spots of the system. The framework 
construction follows the function generalization approach 
where the functional structure of the program is 
generalized. It is similar to Schmid’s systematic 
generalization approach in its systematic analysis of the 

application and employing domain knowledge to determine 
the various points of variability. Each point of variability 
(hot spot) compels separate and appropriate generalization 
transformations to the design.  
    After each transformation, the resulting class is 
executable along with certain additional required 
implementations. This is unlike Schmid’s work where no 
executable programs are created. By having each result 
executable, the designers were able to test each hot spot 
thoroughly which helped them to find flaws existing in the 



  

framework. To test the framework a master/transaction file 
update application was also successfully created.  
    The function generalization technique worked 
reasonably for the cosequential processing family. The 
technique as illustrated in this paper can be used in 
developing other examples.  
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