

Using Function Generalization with Java
to Design a Cosequential Framework

Pallavi Tadepalli and H. Conrad Cunningham

Computer and Information Science, University of Mississippi, University, MS 38677
(662) 915-5358

{pallavi, cunningham}@cs.olemiss.edu

Abstract
Most approaches to building frameworks involve
incremental evolution of designs. One such incremental
methodology involves the systematic transformation of an
object-oriented design to produce the needed generic
structure. An alternative approach is function
generalization where an application is expressed as a set of
functions in a functional programming language and is
then transformed in a series of steps to produce a
generalized application. The resulting set of generalized
functions can be converted to Java code using design
patterns to guide the framework construction. In this paper,
the function generalization approach is applied directly
using Java, where the set of functions are the methods in a
class. Several transformation steps produce additional
classes and methods that collectively form a framework.
The example family used in this paper is the cosequential
processing framework.

1. Introduction
 An object-oriented software framework “is a reusable
design expressed as a set of abstract classes and the way
their instances collaborate” [8]. Framework design is
considered to be a very difficult task where the difficulty is
identifying the abstractions that can be tailored to specific
applications within the family. These abstractions, which
are called hot spots, are variable and application specific
while the common aspects that are reusable are known as
frozen spots.
 The frozen spots are present within the collaborative
structure of the classes in the framework and the concrete
implementations of various methods and classes. The hot
spots are represented as abstract base classes (or interfaces)
in the framework. A particular custom application can be
built by providing appropriate implementations of the
relevant hot spot abstractions. Frameworks are generally
built using design patterns that are structured to fit with the
concepts of hot spots and frozen spots [9].

Framework design involves incrementally evolving a
design rather than discovering it in one single step.
Schmid’s systematic generalization methodology is one
such technique for framework design [9]. In this
methodology, framework designers take an object-oriented
design for a specific application within the family and
convert it into a framework design by a sequence of

generalizing transformations. Each transformation
corresponds to the introduction of a hot spot abstraction
into the structure. The methodology proposes techniques
for analyzing the hot spot and constructing an appropriate
design for the hot spot subsystem.

Another systematic and incremental methodology is the
function generalization approach [1]. While Schmid's
methodology generalizes the class structure of a prototype
application, the function generalization approach
generalizes the functional structure of a prototype
application. It introduces the hot spot abstractions into the
design by replacing concrete operations by more general
abstract operations. The abstract operations become
parameters of the generalized functions. That is, the
generalized functions are higher order, having parameters
that are themselves functions. A feature of the work
reported in [1] is that it uses the purely functional
programming language Haskell [10] to express the
functional prototype. After generalizing the various hot
spots of the application, the resulting generalized functions
are used to generate a framework in an object-oriented
language such as Java.

Instead of using a functional language unfamiliar to
most programmers, the work reported in this paper applies
function generalization directly to Java programs. The
prototype application is implemented by Java classes. The
set of methods in the prototype represent the functional
structure that is generalized by various transformations.
The generalization process may necessitate the creation of
associated helper classes, whose objects become
parameters in the methods of the application class. The
resulting set of helper classes and generalized methods in
the prototype classes form the framework.

The example family developed in this paper is a
cosequential processing family, which is described in the
next section. Section 3 presents the generalization of the
functional structure of the prototype application,
generalizing the hot spots individually. Section 4 describes
the framework construction after the various
transformations. Then, Section 5 summarizes the paper.

2. Cosequential Processing
Cosequential processing concerns the coordinated

processing of two ordered sequences to produce some
result, often a third ordered sequence [4]. An important

public class ArrayCosequential
{ public ArrayCosequential(int[] a, int[] b)
 { this.a = (a != null) ? a :(new int[0]);
 this.b = (b != null) ? b :(new int[0]);
 i = 0; j = 0; k = 0;
 c = new int[a.length+b.length];
 }
 public void merge()
 { while ((i < a.length) && (j < b.length))
 { if(a[i] < b[j])
 { c[k] = a[i]; k++; i++; }
 else if(a[i] == b[j])
 { c[k] = a[i]; k++; i++; j++; }
 else // a[i] > b[j]
 { c[k] = b[j]; k++; j++; }
 } // end while
 while (i < a.length)
 { c[k] = a[i]; k++; i++; }
 while (j < b.length)
 { c[k] = b[j]; k++; j++; }
 } // end merge
 public int[] getResult() { return c; }

 private int[] a, b, c;
 private int i, j, k;
}

Figure 1. ArrayCosequential�

feature of cosequential processing is that both input
sequences must be ordered according to the same total
ordering. Another required trait is that the processing
should, in general, be incremental. That is, only a few
elements of each sequence (perhaps just one) are examined
at a time. This important family includes set and bag
operations [7] and sequential file update applications [2, 3].
These are practical problems for which presence of a
framework can be beneficial in providing good solutions.

As a baseline example, consider a program that takes
two ascending sequences of integers and merges them
together to form a third ascending sequence (i.e., a bag
union operation). This program appears as a Java class
ArrayCosequential in Figure 1 where the sequences are
implemented as arrays. The ordering of the input and
output sequences are required as preconditions and
postconditions, respectively. The size of the output array is
set to be equal to the sum of the sizes of both input arrays.
This is because an accurate assumption of the size of the
output array cannot be made in advance.

Suppose that variables i and j represent indices of the
“current” elements of the first and second arrays (i.e.,
arrays a and b), respectively. The method merge()
compares a[i] to b[j] and considers the three cases “less
than”, “greater than” and “equal”. If a[i] is less than
b[j], then the value a[i] is added to the output array and
array a is advanced to the next entry. If a[i] is greater
than b[j] then, the value b[j] is added to the output array
and array b is advanced to the next entry. When a[i] and
b[j] are equal, then one of the two elements is added to
the output array and both arrays are advanced to the next
entry.

The method getResult() of ArrayCosequential is
an accessor. It returns a reference to the output sequence to
the client.

Building a framework for cosequential processing
involves the general principles of framework design. We
discuss those in the next section.

3. Framework Design

Schmid’s systematic generalization methodology
identifies the following steps for construction of a
framework [9]:

• creation of a fixed application model
• hot spot analysis and specification
• hot spot high-level design
• generalization transformation

Schmid’s methodology begins by creating a class model for
the fixed application. The designers then analyze each hot
spot in turn and generalize the class model by introducing
an appropriate hot spot subsystem.

The function generalization approach begins with a
prototype application consisting of a specific set of
functions. In this case, the functions are a set of methods in
a Java class that may use associated helper classes. A
generalizing transformation may replace a data type at a hot
spot by one that is more general, thus making it a
polymorphic parameter of the methods in the program. As
an alternative, a generalizing transformation may replace a
fixed specialized operation at a hot spot by an abstract
operation. The abstract operation in this case becomes a
method that is declared abstract. These abstract operations
represent variable aspects of the framework. The frozen
spots are implemented by methods that call the abstract
operations, which represent the common aspects of the
framework. After each generalizing transformation, the
result is a valid Java class along with its helper classes that
can be compiled and executed with appropriate
implementations for the abstract methods. Eventually the
specific Java class is replaced by an abstract class. The
framework then consists of the abstract class along with the
helper classes.

Two common principles for framework construction are
unification and separation [5]. The unification principle
uses inheritance to implement the hot spot subsystem. The
common aspects (frozen spots) are implemented by
concrete template methods in a base class. The variable
aspects (hot spots) are represented by a group of abstract
hook methods. The hook methods are realized by concrete
methods in a hot spot subsystem in an application of the
family.

The separation principle uses delegation to implement
the hot spot subsystem. The hook methods appear in a
separate class that is used by the template methods. The
approach taken in this paper is to follow the unification
principle where the framework is defined to consist of an

abstract base class that defines concrete template methods
and abstract hook methods, along with supporting classes.

For the cosequential processing example, we begin with
the prototype application represented by the class
ArrayCosequential shown in Figure 1. First, we
consider the domain of the family and identify potential hot
spots. Then, we design the hot spot subsystem for each and
carry out the appropriate transformations to generalize the
Java class.

By analyzing the domain of the cosequential processing
family, we determine that it must support a variety of built-
in and user-defined types of data (not just integers) in the
input and output sequences. The data in the sequences
might be arranged according to some user-specified total
ordering. The family should enable the data to come from a
wide range of possible sources and go to a wide range of
possible destinations. The output should be a sequence of
values that are computed incrementally by examining pairs
of values drawn in order from the two input sequences.
Domain analysis also establishes the common aspect of the
family which is the merging process of two input sequences
to produce an output sequence. This common aspect is the
frozen spot of the framework and is present in the
application as the merge() method.

Considering the above domain characteristics and
examining the prototype application, we can identify the
following hot spots:
1. Variability in the total ordering used for the input and

output sequences, i.e., of the comparison operators and
input sequence type.

2. The ability to have more complex data entities in the
input and output sequences, i.e., variability in record
format.

3. The ability to vary the input and output sequences
independently of each other.

4. Variability in the transformations applied to the data as
it passes into the output.

5. Variability in the sources of the input sequences and
destination of the output sequence.

We examine these in the subsections that follow.

3.1 Variability in total ordering
 In the prototype application represented by the class
ArrayCosequential, the input and output arrays are
restricted to be of the primitive type int and the
comparison operations, hence, to integer comparisons. In
hot spot #1, the variability in total ordering is incorporated
by choosing the interface Comparable from the Java API
as the array type. The resulting class CompCosequential
is shown in Figure 2. The Comparable interface has the
accessor operation compareTo(Object) that compares
objects according to some total ordering. It returns -1, 0 or
1 depending on whether the implicit argument of operation
is less-than, equal-to or greater-than the explicit argument.
The operation is supported by almost all Java core classes

like String and Integer. User classes can implement
Comparable and provide the needed operation.

3.2 Variability in record format
 The input and output sequences in CompCosequential
all contain elements of the same class type. The type may
be any built-in or user-defined class that implements
Comparable. This is because the compareTo method is
defined by the various built-in classes to compare only
elements of identical types. Nevertheless, the element of
type Comparable is still a simple structure. Normally,
however, applications in the cosequential processing family
work with complex structures.
 The aim of hot spot #2 is to allow elements of the
sequences to be more complex structures such as records.
A record consists of multiple fields where a subset defines
the key. The key value controls the ordering of the record
within a sequence. In this transformation that produces the
class KeyedCosequential, the three arrays will continue
to have elements of a single type. The ability to have
complex records is supported by defining an interface
Keyed as shown in Figure 3, which must be implemented
by the elements of the sequences. The elements are
compared by comparing the key values of the Keyed
elements. The key values are of type Comparable as
shown in Figure 4. They are extracted with the getKey()

public class CompCosequential
{ public CompCosequential
 (Comparable[] a, Comparable[] b)
 {this.a = (a!=null) ? a :(new Comparable[0]);
 this.b = (b!=null) ? b :(new Comparable[0]);
 i = 0; j = 0; k = 0;
 c = new Comparable[a.length+b.length];
 }
 public void merge()
 { while ((i < a.length) && (j < b.length))
 { if(a[i].compareTo(b[j]) < 0)
 { c[k] = a[i]; k++; i++; }
 else if (a[i].compareTo(b[j]) == 0)
 { c[k] = a[i]; k++; i++; j++; }
 else //(a[i].compareTo(b[j]) > 0)
 { c[k] = b[j]; k++; j++; }
 } //end while
 while i < a.length)
 { c[k] = a[i]; k++; i++; }
 while (j < b.length)
 { c[k] = b[j]; k++; j++; }
 } //end merge
 public Comparable[] getResult() { return c; }

 private Comparable[] a, b, c;
 private int i, j, k;
}

Figure 2. CompCosequential

public interface Keyed
{ /*returns the key of the element.*/
 public Comparable getKey();
}����

Figure 3. Keyed

method and stored in two variables currA and currB
respectively.

3.3. Independent variability of sequences
 In the KeyedCosequential class, the three arrays have
elements of the same record type. However, some
cosequential applications require the record structures to
vary among the sequences. For example, the sequential file
update application applies transactions stored in a
transaction file against master data records stored in a
master file. The master and transaction records normally
carry different information in different record structures.
The master and transaction files are inputs while a new
master file is the output. For any master record, there may
be several matching transaction records with the same key.
In other applications, the output may be a simple record
rather than a long sequence. For example, an application to
sum the values that appear in the first input sequence but
not in the second would be a reasonable application of the
family. Thus, in hot spot #3, the independent variability of
sequences is handled by the Keyed interface.
 There can be several classes that implement the interface
and support different record structures of the various
sequences. The key extraction function getKey() for each
implementation should return the keys according to same
total ordering. The comparison of keys continues as earlier.
However, certain transformations are required to map the
input records to output record types. Thus, we introduce
two new transformation functions that appear as two

abstract methods (transA and transB). These two
methods convert the input record element to the output
record type. In the new class TKeyedCosequential, the
previous statements
 c[k] = a[i]; c[k] = b[j];are replaced
with
 c[k] = transA(a[i]);
 c[k] = transB(b[j]);
respectively. The new TKeyedCosequential class is now
declared to be abstract as it contains two abstract
methods and one final method. The merge method is
declared to be final. An application can now be built by
subclassing the abstract TKeyedCosequential class and
providing appropriate implementations for the transA and
transB methods. To facilitate easy access to the output
sequence in the application, a helper method getK()
whose signature is protected int getK(),� is
introduced. This method returns the current index of the
output sequence that is otherwise manipulated by the
application. Everything else remains the same as in
KeyedCosequential.

3.4. Variability of transformations
 The TKeyedCosequential class allows simple
mapping transformations between input and output records.
Practical scenarios, however, require more complex
transformations as is evident in the sequential file update
application. It consists of a master file of records and a
transaction file of updates to be performed on the master
file to produce a new master file as output. Each key may
be associated with no more than one record in the master
file. However, there may be any number of update
transactions that must be performed against a master record
before the new master record can be output. Thus, there
needs to be some local state maintained throughout the
processing of all the transaction records associated with one
master record. In hot spot #4, the variability in
transformation functions to convert input sequences to the
output sequence appear as abstract hook methods transLt,
transGt and transEq. These replace the previously
introduced methods transA and transB. The resulting
class TransKeyedCosequential is shown in Figure 5.
Other changes made in this class include the introduction of
two new helper methods, getA and getB. These methods
return the “current” record values in each sequence.
 Additional methods getNextA and getNextB access
the elements and their respective key values at the current
indices in each of the arrays and then increment the index
to the next position in the array. The current elements (or
records) in each array are stored in the variables currRecA
and currRecB while their corresponding keys are stored
in currA and currB, respectively.

public class KeyedCosequential
{public KeyedCosequential(Keyed[] a, Keyed[] b)
 { this.a = (a!=null) ? a :(new Keyed[0]);
 this.b = (b!=null) ? b :(new Keyed[0]);
 i = 0; j = 0; k = 0;
 c = new Keyed[a.length+b.length];
 } // end constructor
 public void merge()
 { while ((i < a.length) && (j < b.length))
 { currA = ((Keyed)a[i]).getKey();
 currB = ((Keyed)b[j]).getKey();
 if (currA.compareTo(currB) < 0)
 { c[k] = a[i]; k++; i++; }
 else if (currA.compareTo(currB) == 0)
 { c[k] = a[i]; k++; i++; j++; }
 else // (currA.compareTo(currB) > 0)
 { c[k] = b[j]; k++; j++; }
 } // end while
 while (i < a.length)
 { c[k] = a[i]; k++; i++; }
 while (j < b.length)
 { c[k] = b[j]; k++; j++; }
 } // end merge
 public Keyed[] getResult() { return c; }

 private Keyed[] a, b, c;
 private int i, j, k;
 private Comparable currA,currB;
}

Figure 4. KeyedCosequential

public interface OutSeq
{ public void put(Object r);
 public void close();
}

Figure 6. OutSeq
�

 To provide appropriate behavior when the keys are
equal, other hook methods have been added to the
TransKeyedCosequential class. These new methods are
getNextAEquals and getNextBEquals, which access
the subsequent elements from the individual sequences as
required. The methods transAEmpty and transBEmpty
were also added to provide variability in transformation
when one of the two sequences is empty. Default behavior
has been provided for the above four methods. One other
hook method finish is added to take the final state of the
computation and complete the output sequence.

3.5. Variability of source/destination
 The fifth hot spot allows independent sources for inputs
along with variable output destinations. To accomplish this,
different abstractions serve as wrappers for the variable
sources and destinations for the values in the sequences.
The Iterator interface in the Java API serves as a useful
abstraction for input sequences. Its methods hasNext()
and next() check for the existence of an additional
element and returns that element, respectively. Objects that
implement the Iterator interface are returned by a
number of built-in collection classes in the Java API.
Programmers can also develop their own classes that
implement this interface.
 The Cosequential class shown in Figure 8
encapsulates the use of the Iterator methods inside
helper methods getNextA() and getNextB() to keep
subclasses from using the iterator inappropriately. The
methods getA() and getB() give access to the current
record on the input sequences. We can introduce a Java
interface OutSeq as shown in Figure 6 to abstract the
output sequence. It has two methods put(Object) and
close() that append an element at the end of the output
and terminate the sequence when finished. As a result, the
methods getK() and getResult() can be removed. The
classes that implement the Iterator and OutSeq
interfaces provide the encapsulations for sources and
destinations, respectively. The Cosequential class in
Figure 8 encapsulates the use of the OutSeq put() method
inside the helper method put(); method close() is only
used by the client of the framework.

 4. Framework Construction
 The unification principle of framework construction uses
inheritance to implement the hot spot subsystem. The
Cosequential class in Figure 8 on the next page is the
abstract base class. It consists of one template method
merge(), shown in Figure 7, that implements the common

abstract public class TransKeyedCosequential
{ public TransKeyedCosequential
 (Keyed[] a, Keyed[] b)
 { this.a = (a!=null) ? a :(new Keyed[0]);
 this.b = (b!=null) ? b :(new Keyed[0]);
 i = 0; j = 0; k = 0;
 c = new Keyed[a.length+b.length];
 aNotEmpty=true; bNotEmpty=true;
 }
 final public void merge()
 { getNextA(); getNextB();
 while (aNotEmpty && bNotEmpty)
 { if (currA.compareTo(currB) < 0)
 { transLt(); getNextA(); }
 else if (currA.compareTo(currB) == 0)
 { transEq(); getNextAEquals();
 getNextBEquals(); }
 else // (currA.compareTo(currB) > 0)
 { transGt(); getNextB(); }
 } // end while
 while (aNotEmpty && !bNotEmpty)
 { transBEmpty(); getNextA(); }
 while (!aNotEmpty && bNotEmpty)
 { transAEmpty(); getNextB(); }
 finish();
 } // end merge
 protected int getK() {return k;}
 protected final Keyed getA()
 { return currRecA; }
 protected final Keyed getB()
 { return currRecB; }
 private void getNextA()
 { if (i < a.length)
 { currRecA = (Keyed)a[i];
 currA = currRecA.getKey();
 i++; aNotEmpty=true;
 }
 else
 { currA = null;currRecA = null;
 aNotEmpty=false; }
 } // end getNextA
 private void getNextB()
 { if (j<b.length)
 { currRecB = (Keyed)b[j];
 currB = currRecB.getKey();
 j++; bNotEmpty=true;
 }
 else
 { currB = null; currRecB = null;
 bNotEmpty=false; }
 } // end getNextB
 public Keyed[] getResult() { return c; }
 //hook methods
 abstract protected void transLt();
 abstract protected void transGt();
 abstract protected void transEq();
 protected void finish() {}
 protected void transAEmpty(){ transGt(); }
 protected void transBEmpty(){ transLt(); }
 protected void getNextAEquals()
 { getNextA(); }
 protected void getNextBEquals()
 { getNextB(); }

 private Keyed[] a, b, c;
 private int i, j, k;
 private Comparable currA, currB;
 private Keyed currRecA, currRecB;
 private boolean aNotEmpty, bNotEmpty;
}

Figure 5. TransKeyedCosequential

import java.util.*;
abstract public class Cosequential
{ public Cosequential
 (Iterator _a, Iterator _b, OutSeq _c)
 { a=_a; b=_b; c =_c;
 aNotEmpty = (a != null) && a.hasNext();
 bNotEmpty = (b != null) && b.hasNext();
 if (c == null)
 { throw new RuntimeException
 ("Output sequence not initialized");
 }
 } // end constructor
 //hook methods
 abstract protected void transLt();
 abstract protected void transGt();
 abstract protected void transEq();
 protected void transAEmpty() { transGt(); }
 protected void transBEmpty() { transLt(); }
 protected void getNextAEquals()
 { getNextA(); }
 protected void getNextBEquals()
 { getNextB(); }
 protected void finish() {}
 //template method
 final public void merge() {...} //Figure 7
 //helper methods
 protected final Keyed getA()
 { return currRecA; }
 protected final Keyed getB()
 { return currRecB; }
 protected void put(Object r) { c.put(r); }
 private void getNextA()
 { aNotEmpty = a.hasNext();
 if (aNotEmpty)
 { currRecA = (Keyed)a.next();
 currA = currRecA.getKey();
 }
 else { currA = null; currRecA = null; }
 }//end getNextA
 private void getNextB()
 { bNotEmpty = b.hasNext();
 if (bNotEmpty)
 { currRecB = (Keyed)b.next();
 currB = currRecB.getKey();
 }
 else { currB = null; currRecB = null; }
 }//end getNextB

 private Iterator a,b;
 private OutSeq c;
 private Comparable currA,currB; //keys
 private Keyed currRecA,currRecB; //records
 private boolean aNotEmpty, bNotEmpty;
}

Figure 8. Cosequential
�

final public void merge()
{ getNextA(); getNextB();
 while (aNotEmpty && bNotEmpty)
 { if (currA.compareTo(currB) < 0)
 { transLt();
 getNextA();
 }
 else if (currA.compareTo(currB) == 0)
 { transEq();
 getNextAEquals();
 getNextBEquals();
 }
 else // (currA.compareTo(currB) > 0)
 { transGt();
 getNextB();
 }
 } //end while
 while (aNotEmpty)
 { transBEmpty();
 getNextA();
 }
 while (bNotEmpty)
 { transAEmpty();
 getNextB();
 }
}

Figure 7. merge Method for class Cosequential

behaviors (frozen spots) and several abstract hook methods
that implement the variable aspects(hot spots) of the
system. This class uses the Template Method design pattern
[6] to structure the framework.
A specific application of the framework must subclass
Cosequential to provide appropriate definitions of the
hook methods. It must also provide appropriate
implementations of the Keyed and OutSeq interfaces.
Depending upon the nature of the keys, a new
implementation of the Comparable interface may also be
needed. Similarly, a new implementation of the Iterator
interface may be needed to provide the input sequences to
the merge() procedure. A class diagram that depicts the
relationships among the various classes and interfaces that
form the cosequential processing framework is shown in
Figure 9. An application of the cosequential processing
framework to the master-transaction update problem is
given in [1].

6. Conclusion
 The cosequential processing framework can be used to
build a number of real world applications such as set and
bag operations and sequential file update applications.
Designing the framework to suit a variety of applications
involved understanding the underlying applications and
creating appropriate abstractions. The structuring of the
framework involves use of design patterns to lay out the hot
spots and frozen spots of the system. The framework
construction follows the function generalization approach
where the functional structure of the program is
generalized. It is similar to Schmid’s systematic
generalization approach in its systematic analysis of the

application and employing domain knowledge to determine
the various points of variability. Each point of variability
(hot spot) compels separate and appropriate generalization
transformations to the design.
 After each transformation, the resulting class is
executable along with certain additional required
implementations. This is unlike Schmid’s work where no
executable programs are created. By having each result
executable, the designers were able to test each hot spot
thoroughly which helped them to find flaws existing in the

framework. To test the framework a master/transaction file
update application was also successfully created.
 The function generalization technique worked
reasonably for the cosequential processing family. The
technique as illustrated in this paper can be used in
developing other examples.

Acknowledgements
 This work is supported in part by a grant from Acxiom
Corporation titled “The Acxiom Laboratory for Software
Architecture and Component Engineering (ALSACE).”

References
[1] H. C. Cunningham and P. Tadepalli. “Using Function
Generalization to Design a Cosequential Processing
Framework,” Manuscript, 21 pages, December 2004.
[2] E. W. Dijkstra. “Updating a Sequential File,” Chapter
15, In A Discipline of Programming, pp. 117-122, Prentice
Hall, 1976.
[3] B. Dwyer. “One More Time—How to Update a Master
File,” Communications of the ACM, Vol. 24, No.1, pp.3-8,
January 1981.

[4] M. J. Folk, B. Zoellick and G. Riccardi. File Structures:
An Object-Oriented Approach with C++, Third edition,
Addison-Wesley, 1998.
[5] M. Fontoura, W. Pree, and B. Rumpe. The UML Profile
for Framework Architectures. Addison-Wesley, 2002.
[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.
[7] M. T. Goodrich and R. Tamassia. Data Structures and
Algorithms in Java, Wiley, Third edition, 2004.
[8] R. Johnson. “Frameworks Home Page,”
http://st-www.cs.uiuc.edu/users/johnson/frameworks.html.
Last accessed: November 7, 2004.
[9] H. A. Schmid. “Framework Design by Systematic
Generalization," In M. E. Fayad , D. C. Schmidt, and R. E.
Johnson, editors, Building Application Frameworks, pp.
353-378, Wiley, 1999.
[10] S. Thompson. Haskell: The Craft of Functional
Programming, Second edition, Addison-Wesley, 1999.

Figure 9. Cosequential Framework Classes

