
Using Function Generalization to Design
a Cosequential Processing Framework

H. Conrad Cunningham and Pallavi Tadepalli
Department of Computer and Information Science, University of Mississippi,

201 Weir Hall, University, MS 38677 USA
Email: {cunningham,pallavi}@cs.olemiss.edu

Abstract— Framework design is a multifaceted endeavor under-
taken to promote reuse of software within a family of related
applications. Traditional approaches involve either the evolution or
the systematic design of the needed generic structure. This paper
explores a systematic design approach called function generalization.
In this approach, framework design begins with an executable speci-
fication expressed as a set of functions in a functional programming
language. This set is analyzed to identify the common and variable
aspects of the family of related applications. The set of functions
is then transformed in a series of steps to produce a generalized
application corresponding to the family. Each step generalizes one
variable aspect of the family by introducing higher-order (function)
parameters or polymorphic parameters into the functions in the set.
The resulting set of generalized functions can be converted to Java
code using design patterns to guide the framework construction.

I. INTRODUCTION

A software framework is a generic application that provides
the skeleton upon which various customized applications can
be constructed. It is an object-oriented technique for reuse
of software [7] within a family of related applications [15].
Each framework consists of some common aspects that are
reusable, called frozen spots, and certain variable aspects,
called hot spots, whose implementations vary among the
different applications of the family [19]. The frozen spots
are embodied in the overall collaborative structure of the
classes in the framework and concrete implementations of
various methods and classes. The hot spots are represented
as abstract base classes (or interfaces) in the framework. A
particular custom application can be built by providing appro-
priate implementations of the relevant hot spot abstractions.
Frameworks are generally built using design patterns [10] that
fit with the concept of hot spots and frozen spots [19].

In most nontrivial frameworks, it is not possible to come
up with the right hot spot abstractions just by thinking
about the problem informally. Using ad hoc methods, three
implementation cycles are often needed to develop a sufficient
understanding of the domain to construct good abstractions
[18]. Various explicit design techniques seek to systematize
the process by identifying the frozen and hot spots a priori. In
Schmid’s systematic generalization methodology [19], frame-
work designers take the object-oriented design for a specific
application within the family and convert it into a frame-
work design by a sequence of generalizing transformations.
Each transformation corresponds to the introduction of a hot

spot abstraction into the structure. The methodology proposes
techniques for analyzing the hot spot and constructing an
appropriate design for the hot spot subsystem.

This paper takes a similar systematic approach. However,
instead of generalizing the class structure of an application
design, it generalizes the functional structure of an executable
specification to produce a generic application. This function
generalization approach introduces the hot spot abstractions
into the design by replacing concrete operations by more
general abstract operations. These abstract operations become
parameters of the generalized functions. That is, the gen-
eralized functions are higher order, having parameters that
are themselves functions. We explore these ideas here by
expressing the specification in the concrete syntax of the
purely functional programming language Haskell [16], [23].
After generalizing the various hot spots of the family, we can
use the resulting generalized functions to define a framework
in an object-oriented language such as Java.

This paper uses cosequential processing, which is described
in Section II, as the example family. Section III presents the
generalization of the key Haskell function for cosequential
processing, generalizing the hot spots one by one. Section IV
describes the translation of the resulting higher-order Haskell
function into a Java framework, and Section V uses that frame-
work to construct a sequential file update application. Then,
Section VI discusses this function generalization approach
in relation to other framework development techniques and
Section VII summarizes the paper.

II. COSEQUENTIAL PROCESSING

Cosequential processing concerns the coordinated process-
ing of two ordered sequences to produce some result, often a
third ordered sequence [8]. One key aspect of cosequential
processing is that both input sequences must be ordered
according to the same total ordering. Another is that the
processing should, in general, be incremental. That is, only a
few elements of each sequence (perhaps just one) are examined
at a time. This important family includes set operations [11]
and sequential file update applications [5], [6].

As the baseline example, consider taking two ascending
sequences of integers and merging them together to form a
third ascending sequence. In Haskell, we can define a merge
function as shown in Fig. 1. The first line of the definition gives
the type signature for merge0 as a function that takes two

merge0 :: [Int]->[Int]->[Int]
merge0 [] ys = ys
merge0 xs [] = xs
merge0 xs@(x:xs’) ys@(y:ys’)
| x < y = x : merge0 xs’ ys
| x == y = x : merge0 xs’ ys’
| x > y = y : merge0 xs ys’

Fig. 1. Baseline merge

(Curried) arguments that are lists of integers and returns a list
of integers. The second and third lines are equations that define
the result when the first and second input lists, respectively,
are empty. That is, the other input list is returned. The four
remaining lines give an equation that defines the function for
the case when both input lists are nonempty. That is, they
match a pattern like xs@(x:xs’) where x takes on the value
of the head element, xs’ takes on the value of the tail (i.e.,
the list remaining after the head is removed), and xs refers to
the entire list argument. This equation includes three guarded
definitions for the cases where the head of the first list is less
than, equal to, and greater than the head of the second list.
For example, the less-than case results in an output list that
consists of the head of the first input list prepended onto the
list formed by recursively applying merge0 to the remainder
of the first list and the second list.

The merge0 function must satisfy a number of properties.
A precondition is that the two input lists must be in ascending
order. A postcondition is that the output list must also be in
ascending order. The number of times an element appears in
the output list is the maximum number of times it appears
within one of the two input lists. To guarantee termination of
the recursive processing, the sum of the lengths of the two
input sequences must decrease by at least one for each call of
the recursive function.

Building a framework for cosequential processing involves
the general principles of framework design. We discuss those
in the next section.

III. FRAMEWORK DESIGN

Schmid’s systematic generalization methodology identifies
the following steps for construction of a framework [19]:

• creation of a fixed application model
• hot spot analysis and specification
• hot spot high level design
• generalization transformation

In Schmid’s approach, the fixed application model is an
object-oriented design. A generalizing transformation replaces
a fixed, specialized class at a hot spot by an abstract base
class. The hot spot’s features are accessed through the common
interface of the abstract class. However, different concrete
implementations of the base class provide the variant behaviors
required for the hot spot.

The function generalization approach taken in this paper
begins with an executable specification for an application,

that is, a specific set of functions expressed as a Haskell
program. A generalizing transformation may replace a data
type at a hot spot by one that is more general, typically
making it a polymorphic parameter of functions in the pro-
gram. Alternatively, a generalizing transformation may replace
a fixed, specialized operation at a hot spot by an abstract
operation. The abstract operation typically becomes a higher-
order (function) parameter of functions in the program.

Haskell is a good choice because it has several characteris-
tics that make it useful in design of generic programs, which is
what frameworks are. First, Haskell functions are polymorphic.
They can be defined to take parameters from a range of
related data types. Second, Haskell offers powerful features
to encapsulate abstractions. In particular, Haskell functions are
higher-order. That is, they can take functions as parameters and
return functions as results. Third, Haskell programs tend to be
concise. Fourth, Haskell programs can readily be manipulated
mathematically using the language itself. Fifth, as with OOP
languages, Haskell programs can be developed using design
patterns [25], [26] and refactored with tool support [14], [24].

Polymorphism and higher-order functions are important
because they promote the reuse of software [22]. These
features also form a bridge between the functional program-
ming and object-oriented programming (OOP) approaches,
enabling similar structures to be created within each paradigm
[20]. Higher-order functions in Haskell and inheritance and
delegation in an OOP language both provide the means for
definition of generic code that can be readily customized to a
specific application. The polymorphic parameters of Haskell
functions make the functions reusable across a number of
types. Similarly, the subclass polymorphism that exists in OOP
languages enables abstract interfaces to be reused among a
number of types.

Haskell’s conciseness and its amenability to mathematical
reasoning using the language itself make it attractive as a
means for carrying out generalizing program transformations.
OOP languages are, relatively speaking, more verbose and
more difficult to manipulate mathematically. Therefore, the
function generalization approach in this paper uses Haskell for
the generalizing transformations. After each transformation, it
expects that the result is a valid Haskell program that can
be compiled and executed. The program can potentially be
restructured using refactoring techniques and tools [14].

For the cosequential processing example, function merge0
from Fig. 1 is the initial executable specification. The first step
of the systematic process is to define the scope of the family,
as we do in Section II. The second step is to identify the frozen
spots and hot spots. Care should be taken to avoid enumerating
hot spots that are unlikely to be needed in an application of
the framework [2]. The third step is to analyze each hot spot,
design a hot spot subsystem, and carry out the appropriate
transformations to generalize the Haskell program. The final
step is to transform the Haskell program into an appropriate
Java program.

Considering the scope and examining the initial specifica-
tion merge0, we can identify the following frozen spots:

1) The inputs consist of two sequences ordered by the same
total ordering.

2) The output consists of a sequence ordered by the same
total ordering as the input sequences.

3) The processing is incremental. Each step examines the
current element from each input sequence and advances
at least one of the input sequences for subsequent steps.

4) Each step compares the current elements from the input
sequences to determine what action to take at that step.

Again considering the scope and examining the initial
specification, we can identify the following hot spots:

1) Variability in the total ordering used for the input and
output sequences, i.e., of the comparison operators and
input sequence type.

2) The ability to have more complex data entities in the
input and output sequences, i.e., variability in record
format.

3) The ability to vary the input and output sequences
independently of each other.

4) Variability in the transformations applied to the data as
it passes into the output.

5) Variability in the sources of the input sequences and
destination of the output sequence.

The merge function represents the frozen spots of the
framework. It gives the common behavior of family members
and the relationships among the various elements of the hot
spot subsystems. A hot spot subsystem consists of a set
of Haskell function, type, and class definitions that add the
desired variability into the merge function.

The subsections that follow examine the above hot spots
and carry out appropriate generalization steps. To keep the
presentation, we deemphasize error detection, reporting, and
recovery. However, a production version of the framework
would likely have additional frozen spots and hot spots to
support these tasks in a customizable manner.

A. Variability in Total Ordering

In the function merge0, the input and output sequences
are restricted to elements of type integer, that is, to Int, and
the comparison operations, hence, to the integer comparisons.
The responsibility associated with hot spot #1 is to enable
the base type of the sequences to be any type upon which
an appropriate ordering is defined. In this transformation, we
still consider all three sequences as containing simple values
of the same type. We can generalize the function to take and
return sequences of any ordered type using the polymorphic
feature of Haskell programs. Using a type variable a, we
can redefine the type signature to be [a] -> [a] -> [a].
However, we need to constrain type a to be a type for which an
appropriate total ordering is defined. We do this by requiring
that the type be restricted to those in the predefined Haskell
type class Ord. This class consists of the group of types for
which the relational operators ==, /=, <, <=, >, and >= have
been defined.

Fig. 2 shows merge1, the function resulting from this
generalization step. This function represents the frozen spots

merge1 :: Ord a => [a] -> [a] -> [a]
merge1 [] ys = ys
merge1 xs [] = xs
merge1 xs@(x:xs’) ys@(y:ys’)
| x < y = x:merge1 xs’ ys
| x == y = x:merge1 xs’ ys’
| x > y = y:merge1 xs ys’

Fig. 2. Generalized comparisons

of the cosequential processing framework. The implementation
of class Ord used in a program is hot spot #1. To satisfy the
requirement represented by frozen spot #1, we require that the
two lists xs and ys be in ascending order. Note that, if we
restrict merge1’s type variable a to be Int values, then:

merge1 xs ys == merge0 xs ys

B. Variability in Record Format

The merge1 function works with sequences of any type
that have appropriate comparison operators defined. This al-
lows the elements to be of some built-in type such as Int or
String or some user-defined type that has been declared as
an instance of the Ord class. Thus each individual data item
is of a single type. In general, however, applications in this
family will need to work with data elements that are records.

The responsibility associated with hot spot #2 is to enable
the elements of the sequences to be values with more complex
structures, i.e., records. Each record is composed of one or
more fields of which some subset defines the key. The value
of the key provides the information for ordering the records
within that sequence. In this transformation, we still consider
all three sequences as containing simple values of the same
type. We abstract the key as a function on the record type
that returns a value of some Ord type to enable the needed
comparisons. We transform the merge1 function by adding
key as a higher-order parameter.

Fig. 3 shows merge2, the function resulting from this
generalization. Its first parameter (i.e., key) is of type (a
-> b), which denotes a unary function type in Haskell. This
higher-order parameter represents hot spot #2 in the framework
design. Hot spot #1 is the implementation of Haskell class Ord
for values of type b. To satisfy the requirement represented
by frozen spot #1, the sequence of keys corresponding to each
input sequence, i.e., map key xs and map key ys, must
be in ascending order. (Function map from the Haskell library
applies its function argument to each element of a list and
returns the resulting list.) Also note that

merge2 id xs ys == merge1 xs ys

where id is the identity (combinator) function.

C. Independent Variability of Sequences

In merge2, the records are of the same type in all three
sequences. The key extraction function is also the same
for all sequences. Some cosequential processing applications,

merge2 :: Ord b =>
(a -> b) -> [a] -> [a] -> [a]

merge2 key [] ys = ys
merge2 key xs [] = xs
merge2 key xs@(x:xs’) ys@(y:ys’)
| key x < key y = x:merge2 key xs’ ys
| key x == key y = x:merge2 key xs’ ys’
| key x > key y = y:merge2 key xs ys’

Fig. 3. Generalized record format

however, require that the record structure vary among the
sequences. For example, the sequential file update application
usually involves a master file and a transaction file as the inputs
and a new master file as the output. The master records and
transaction records usually carry different information.

The responsibility associated with hot spot #3 is to enable
the three sequences to be varied independently. That is, the
records in one sequence may differ in structure from the
records in the others. This requires separate key extraction
functions for the two input sequences. These must, however,
still return key values from the same total ordering. Because
the data types for the two input sequences may differ and both
may differ from the output data type, we must introduce record
transformation functions that convert the input data types to
the output types.

Fig. 4 shows merge3, the function resulting from the
transformation. Parameters kx and ky are the key extraction
functions for the first and second inputs, respectively; tx and
ty are the corresponding functions to transform those inputs
to the output. Hot spot #3 consists of these four functions.
In some sense, this transformation subsumes hot spot #2. To
avoid repetition of the many unchanging arguments in the
recursive calls, the definition of merge3 uses a local function
definition mg. The nonrecursive legs use the higher-order
library function map. To satisfy the requirement represented
by frozen spot #1, the sequence of keys corresponding to each
input sequence, i.e., map kx xs and map ky ys, must be
in ascending order. Note that, if xs and ys are of the same
type, then it is true that:

merge3 key key id id xs ys
== merge2 key xs ys

D. Variability in Sequence Transformations

Function merge3 enabled simple one-to-one, record-by-
record transformations of the input sequences to create the
output sequence. Such simple transformations are not suffi-
cient for practical situations. For example, in the sequential file
update application, each key may be associated with no more
than one record in the master file. However, there may be any
number of update transactions that must be performed against
a master record before the new master record can be output.
Thus, there needs to be some local state maintained throughout
the processing of all the transaction records associated with
one master record.

merge3 :: Ord d => (a -> d) -> (b -> d)
-> (a -> c) -> (b -> c)
-> [a] -> [b] -> [c]

merge3 kx ky tx ty xs ys = mg xs ys
where
mg [] ys = map ty ys
mg xs [] = map tx xs
mg xs@(x:xs’) ys@(y:ys’)
| kx x < ky y = tx x : mg xs’ ys
| kx x == ky y = tx x : mg xs’ ys’
| kx x > ky y = ty y : mg xs ys’

Fig. 4. Independent sequences

merge4a :: Ord d => (a -> d) -> (b -> d)
-> (a -> c) -> (b -> c)
-> [c] -> [a] -> [b] -> [c]

merge4a kx ky tx ty ss xs ys = mg ss xs ys
where mg ss [] ys = ss ++ map ty ys
mg ss xs [] = ss ++ map tx xs
mg ss xs@(x:xs’) ys@(y:ys’)

| kx x < ky y
= mg (ss++[tx x]) xs’ ys

| kx x == ky y
= mg (ss++[tx x]) xs’ ys’

| kx x > ky y
= mg (ss++[ty y]) xs ys’

Fig. 5. Tail recursion

Before we address the issue of this variation directly, let us
generalize the merge function to make the state that currently
exists (i.e., the output) explicit in the parameter list. To do this,
we replace the backward linear recursive merge3 function
by its tail recursive generalization [12]. That is, we add an
accumulating parameter ss that is used to collect the output
during the recursive calls and then to generate the final output
when the end of an input sequence is reached. The initial
value of this argument is normally a nil list, but it does enable
some other initial value to be prepended to the output list. This
transformation is shown as function merge4a in Fig. 5. Note
that the following holds:

merge4a kx ky tx ty ss xs ys
== ss ++ merge3 kx ky tx ty xs ys

Now consider hot spot #4 more explicitly. The responsibility
associated with the hot spot is to enable the use of more
general transformations on the input sequences to produce
the output sequence. To accomplish this, we introduce an
explicit state to record the relevant aspects of the computation
to some position in the two input sequences. Each call of
the merge function can examine the current values from the
input sequences and update the value of the state appropriately
for the next call. In some sense, the merge function “folds”
together the values from the two input sequences to compute
the state. At the end of both input sequences, the merge

merge4b :: Ord d =>
(a -> d) -> (b -> d) -> -- kx, ky
(e -> a -> b -> e) -> -- tl
(e -> a -> b -> e) -> -- te
(e -> a -> b -> e) -> -- tg
(e -> [a] -> [a]) -> -- nex
(e -> [b] -> [b]) -> -- ney
(e -> a -> e) -> -- ttx
(e -> b -> e) -> -- tty
(e -> [c]) -> e -> -- res, s
[a] -> [b] -> [c] -- xs, ys

merge4b kx ky tl te tg nex ney ttx tty
res s xs ys = mg s xs ys

where
mg s [] ys = res (foldl tty s ys)
mg s xs [] = res (foldl ttx s xs)
mg s xs@(x:xs’) ys@(y:ys’)
| kx x < ky y

= mg (tl s x y) xs’ ys
| kx x == ky y

= mg (te s x y) (nex s xs)
(ney s ys)

| kx x > ky y
= mg (tg s x y) xs ys

Fig. 6. Variable sequence transformations

function then transforms the state into the output sequence.
To accomplish this, we can generalize merge4a. We

generalize the accumulating parameter ss in merge4a to
be a parameter s that represents the state. We also replace
the two simple record-to-record transformation functions tx
and ty by more flexible transformation functions tl, te, and
tg, that update the state in the three guards of the recursive
leg and functions tty and ttx that update the state when
the first and second input sequences, respectively, become
empty. For the “equals” guard, the amount that the input
sequences are advanced also becomes dependent upon the state
of the computation. This is abstracted as functions nex on
the first input sequence and ney on the second. To satisfy
the requirement represented by frozen spot #3, the pair of
functions nex and ney must make the following progress
requirement true for each call of mg:

if (kx x == ky y) then
(length (nex s xs) < length xs) ||
(length (ney s ys) < length ys)

else True

That is, the client of the framework must ensure that at least
one of the input sequences will be advanced by at least one
element. We also introduce the new function res to take the
final state of the computation and return the output sequence.

Fig. 6 shows the function merge4b resulting from the
above transformation. The function uses the Haskell library
function foldl in the first two legs. This function continues

merge4b kx ky
(\ss x y -> ss ++ [tx x])
(\ss x y -> ss ++ [tx x])
(\ss x y -> ss ++ [ty y])
(\ss xs -> tail xs)
(\ss ys -> tail ys)
(\ss x -> ss ++ [x])
(\ss y -> ss ++ [y]) ss xs ys

== merge4a kx ky tx ty ss xs ys

Fig. 7. Equivalence of merge4a and merge4b

the computation beginning with the state computed by the
recursive leg and processes the remainder of the nonempty
input sequence by “folding” the remaining elements as defined
in the functions ttx and tty. As was the case for merge3,
frozen spot #1 requires that map kx xs and map ky ys
be in ascending order for calls to merge4b

Hot spot #4 consists of the eight functions tl, te, tg, ttx,
tty, nex ney, and res. Note that the property stated in
Fig. 7 holds. That is, we can define the general transformation
functions so that they have the same effect as the record-to-
record transformations of merge4a. The statement of this
property uses the anonymous function (lambda expression)
feature of Haskell. For example, (\ss xs -> tail xs)
denotes a function that takes two arguments (the second one
being a list) and returns the result of applying the built-in
Haskell function tail to the second argument.

E. Variability of Sequence Source/Destination

Hot spot #5 concerns the ability to take the input sequences
from many possible sources and to direct the output to many
possible destinations. In the Haskell merge functions, these se-
quences are represented as the pervasive polymorphic list data
type. The redirection is simply a matter of writing appropriate
functions to produce the input lists and to consume its output
list. No changes are needed to the merge4b function itself.
Of course, for any expressions (e.g., function cpsalls) es and
ey that generate the input sequence arguments xs and ys of
merge4b, it must be the case that sequences map kx es
and map ky ey are ascending.

IV. JAVA FRAMEWORK CONSTRUCTION

In the previous section we transform a simple merge
function expressed in Haskell into a more general function
with several higher-order parameters. The generalization steps
correspond to points of variability (i.e., hot spots) that can be
identified in the scope of the desired software family. This
section looks at how we can generate a Java framework from
the Haskell program in the previous section. To keep the
presentation simple, we do not use Java’s generic classes or
interfaces.

In an object-oriented framework, we implement a common
behavior (frozen spot) by a concrete template method in a
base class, and we represent a variable aspect of the system
(hot spot) by a group of abstract hook methods. As we have

constructed it, the merge function embodies the common
behaviors of the cosequential processing framework (i.e., the
template method). The variable behaviors are abstracted into
the parameters of the merge function (merge4b) or into the
Haskell class Ord. The type signature of the merge4b func-
tion defines the relationships among these “hook methods.”

There are two principles for framework construction—
unification and separation [9]. The unification principle uses
inheritance to implement the hot spot subsystem. Both the
template methods and hook methods are defined in the same
abstract base class. The hook methods are implemented in
subclasses of the base class. This effect can be achieved by
applying the Template Method design pattern to structure the
framework [10]. The separation principle uses delegation to
implement the hot spot subsystem. The template methods are
implemented in a concrete client class; the hook methods are
defined in a separate abstract class and implemented in its
subclasses. The template methods thus delegate work to an
instance of the subclass that implements the hook methods.
This effect can be achieved by applying the Strategy design
pattern to structure the framework [10]. We can develop a
cosequential processing framework using either principle.

If we choose to use the Template Method pattern to give
the program structure, we generate a class similar to the
Coseq class shown in Fig. 8. We make the merge function the
template method merge() as shown in Fig. 9. We transform
the tail recursive leg of the function definition into a while
loop that processes the records when neither sequence is
empty. We also transform each of the nonrecursive legs (which
involve the application of the foldl library function) into a
simple loop that processes the remaining records in a sequence
once the other input sequence has been completely processed.
To simplify the presentation, the Java code uses concise names
similar to the names used in the Haskell function definitions.

Hot spot #1, the variability of the total ordering used (i.e.,
the comparison operators), is implemented by class Ord in
Haskell. The interface Comparable from the Java API is a
convenient choice as the abstraction for items that can be com-
pared according to a total ordering. Interface Comparable
has the accessor operation compareTo(Object) that re-
turns -1, 0, or 1 depending upon whether the implicit argument
of operation is less-than, equal-to, or greater-than the explicit
argument. User classes can implement Comparable and
provide the needed operation. Built-in Java API classes such
as String and Integer already implement the interface.

Hot spot #2, the ability to have complex records in the
sequences is implemented by the key extraction function key
in Haskell function merge2 and functions kx and ky in
merge3 and later. Note that these functions return a value of
an Ord type. In Java, we achieve this by defining an interface
Keyed, which must be implemented by the elements of the
sequences. This interface defines one operation getKey()
that returns an object of type Comparable.

Hot spot #3, which enables the independent variability of the
input sequences, is implemented in Haskell by allowing each
input sequence to be of a different type, providing different

import java.util.*;
abstract public class Coseq
{ public Coseq(Iterator _xs,

Iterator _ys, OutSeq _zs)
{ xs = _xs; ys = _ys; zs = _zs;

xsNotEmpty
= (xs != null) && xs.hasNext();

ysNotEmpty
= (ys != null)& ys.hasNext();

if (zs == null)
{ throw new RuntimeException(

"Output not initialized.");}
}
public final void merge() { ... }
abstract protected void transLt();//tl
abstract protected void transEq();//te
abstract protected void transGt();//tg
protected void transXsEmpty() //tty
{ transGt(); }
protected void transYsEmpty() //ttx
{ transLt(); }
protected void advEqXs() //nex
{ advXs(); }
protected void advEqYs() //ney
{ advYs(); }
protected void finish() {} //res
protected final Keyed getX() //helpers
{ return xRec; }
protected final Keyed getY()
{ return yRec; }
protected final void put(Object r)
{ zs.put(r); }
protected final void advXs()
{ xRec = null; xKey = null;

xsNotEmpty = xs.hasNext();
if (xsNotEmpty)
{ xRec = (Keyed) xs.next();

xKey = xRec.getKey();
}

}
protected final void advYs()
{ yRec = null; yKey = null;

ysNotEmpty = ys.hasNext();
if (ysNotEmpty)
{ yRec = (Keyed) ys.next();

yKey = yRec.getKey();
}

}
private Iterator xs, ys;
private boolean xsNotEmpty,ysNotEmpty;
private Keyed xRec, yRec;
private Comparable xKey, yKey;
private OutSeq zs;

}

Fig. 8. Cosequential framework base class

public final void merge() // template
{ advXs(); advYs();

while(xsNotEmpty && ysNotEmpty)
{ int cmpxy = xKey.compareTo(yKey);

if (cmpxy < 0) // Ord
{ transLt(); advXs(); } // tl
else if (cmpxy == 0)
{ transEq(); // te

advEqXs(); // nex
advEqYs(); // ney

}
else
{ transGt(); advYs(); } // tg

}
while (xsNotEmpty)
{ transYsEmpty(); advXs(); } // ttx
while (ysNotEmpty)
{ transXsEmpty(); advYs(); } // tty
finish(); // res

}

Fig. 9. Cosequential framework template method

key extraction functions for each (i.e., kx and ky in merge3
and later), and providing the record-to-record transformation
functions tx and ty to generate the required output record.
The Keyed abstraction in the Java framework also supports
this capability. There can be several classes that implement
the interface and support different record structures.

Hot spot #4, which enables the needed variability in the
actual transformations carried out on the input sequences to
generate the output sequence, is implemented in Haskell by
the higher-order function parameters tl, te, tg, ttx, tty,
and res. Higher-order parameters nex and ney also provide
the variable ability to step through the input sequences in the
case of the keys from both sequences being equal. In Java,
these functions become hook methods of the Template Method
class for the framework. The overall structure of the Template
Method class for the framework is shown in Fig. 8.

Hot spot #5, which enables variable sources and destinations
for the values in the sequences, is implemented using lists
in Haskell. It is convenient to use Java’s built-in interface
java.util.Iterator to provide the needed abstraction
for the input sequences. This interface provides the methods
hasNext() and next() to check for the existence of an
additional element and to return that element, respectively.
Objects that implement the Iterator interface are returned
by a number of the built-in collection classes in the Java API.
Programmers can also develop their own classes that imple-
ment this interface, e.g., classes that provide iterators that read
their values from files. The Coseq class in Fig. 8 encapsulates
the use of the Iterator methods inside helper methods
advXs() and advYs() for advancing the “current record”
through the input sequences and getX() and getX() for
accessing the current record on each sequence.

Coseq<<interface>>

Keyed

+getKey(): Comparable

<<interface>>

OutSeq

+put(r:Object):void

+close():void

<<interface>>

java.lang.Comparable

<<interface>>

java.util.Iterator

-xs:Iterator

-ys:Iterator

-xsNotEmpry:boolean

-ysNotEmpty:boolean

-xRec:Keyed

-yRec:Keyed

-xKey:Comparable

-yKey:Comparable

-zs:OutSeq

+merge():void

#transLt():void

#transEq():void

#transGt():void

#transXsEmpty():void

#transYsEmpty():void

#advEqXs():void

#advEqYs():void

#finish():void

#getX():Keyed

#getY():Keyed

#put(r:Object):void

#advXs():void

#advYs():void

Fig. 10. Cosequential framework classes

Similarly, we introduce a Java interface OutSeq that ab-
stracts the output sequence. This interface provides the void
methods put(Object) and close() to enable the ap-
pending of new elements and to terminate the sequence when
finished. The classes that implement the OutSeq interface
encapsulate the destination of the elements of the sequence.
For example, an OutSeq-implementing class might use a
file as the destination for the sequence of values output. The
Coseq class in Fig. 8 encapsulates the use of the OutSeq
put() method inside the helper method put(); method
close() is only used by the client of the framework.

Fig. 10 shows a class diagram giving the relationships
among the framework class and interfaces described above. A
specific application of the framework must subclass Coseq to
provide appropriate definitions of the hook methods. It must
also provide appropriate implementations of the the Keyed
and OutSeq interfaces. Depending upon the nature of the
keys, a new implementation of the Comparable interface
may also be needed. Similarly, a new implementation of the
Iterator interface may be needed to provide the input
sequences to the merge() procedure.

As described here, the framework itself does not include ex-
tensive error detection, reporting, or recovery features. These,
of course, should be implemented within an application of
the framework. A production version of the framework would
likely need to expand the functionality of the Coseq class
to include some error checking features that best fit in the
template or helper methods. For example, checking that the
input files are properly ordered can be handled in the advXs
and advYs helper methods. This would likely involve the
creation of additional hook methods to enable the specific
behaviors to vary among applications of the framework.

A cosequential processing framework developed according
to the separation principle and Strategy pattern is similar in

many ways to the framework described above. There is a
concrete context class (e.g., CoseqContext) that includes
the template method merge() and the concrete helper meth-
ods that encapsulate the input and output sequences. The
hook methods are collected in an abstract strategy class (e.g.,
CoseqStrategy). The client of an application creates an
instance of the context class and supplies it with an instance of
the strategy class for the particular application. The instance
of the context class delegates the hook method calls to the
instance of the strategy class. The methods of the strategy
class may call back to the helper methods in the context class
as needed.

In the next section we examine a sequential file update
application as a specific application of the framework.

V. SEQUENTIAL FILE UPDATE APPLICATION

The Java framework constructed in the previous section
should allow any application in the cosequential processing
family to be developed. An interesting example, the sequen-
tial file update application, should be easily developed by
appropriately extending the framework code. This application
involves two files, a master file and a transaction file, as inputs
to generate a new master file whose values depend on the
initial values of the input files. In our example, the master file
records contain the status of ledger account numbers [6]. The
record is assumed to contain two fields, the ledger account
number as the key and the balance amount in the account.
Ledger accounts have different events associated with them
which include [6]:

• create an account
• debit or credit an account
• delete an account
For the purpose of illustration, we consider only debits and

credits to an account as the allowed transactions. The records
in the master file are in ascending order according to keys.
The records in the transaction file are ordered according to
the keys in the master file. If there are multiple transactions
for a single master record, the sequence is the order of their
external occurrence. The merging should apply transactions to
the master record in order of occurrence. The resultant master
file will have master records where [6]:

• the status of some remain unchanged
• some are changed by a single transaction
• the status of others are changed more than once in

response to multiple transactions
The application created from the framework consists of a

subclass of Coseq along with appropriate implementations
of the Iterator and OutSeq interfaces provided by the
classes MasterTrans, FileInput, and FileOutput,
respectively. It also has an implementation of the Keyed inter-
face in the class MTRecord. The subclass MasterTrans, as
shown in Fig. 11, provides functionality to the hook methods
transLt(), transEq(), and transGt() declared in
class Coseq. MasterTrans() also overrides the method
advEqXs(). In the example, the master file record is stored
on one line of text and has the format:

Key: Balance_amount

Similarly, the transaction record is a line with the format:

Key: Amount: Transaction_type

The class MTRecord provides an implementation of the
getKey() method of the Keyed interface, which extracts
the account number as the key from each file. It also extracts
the amount from the master and transaction records and the
transaction type from the transaction record. FileInput
provides a wrapper to open and read files stored on the disk.
Its implementation for the hasNext() method checks to see
if a record exists in the file while the next() method returns
the record from the input file. FileOutput creates the output
file that is the new master file. Its put() method is used (via
the like-named method in Coseq) to append the new master
record to the output file and the close() method is used by
the client to close the output file.

In the transEq() method, a transaction is applied to the
master record to create a new master record that is stored
internally. Further transactions are applied to the internal mas-
ter record that changes with each transaction. This continues
until all transactions corresponding to the master record are
completed. In transLt(), when the key of the transaction
record is greater than the master record key, the internal master
record is sent to the output if not null. If it is null, then the
master record is output. Method transGt() generates an
error message if the key of the master record is greater than
the corresponding key of the transaction record, that is, there
is some transaction not corresponding to an existing account.

In this example, most of the error handling, such as checks
on the validity of records, is relegated to the methods of
class MTRecord and other classes supplied by the application
programmers. At the cost of some extra complexity, the
framework could be generalized to add other template and
hook methods to organize the approach to error handling and
recovery. For example, there potentially could be additional
hook methods that are called by advXs() or advYs() to
check the validity of the input records.

VI. RELATED WORK

Framework design, and program family design in general,
is all about developing the right abstractions. Roberts and
Johnson note that most programmers “develop abstractions by
generalizing from concrete examples.” [18] They warn that an
“attempt to determine the correct abstractions on paper without
actually developing a running system is doomed to failure.” In
their Patterns for Evolving Frameworks [18], they propose that
framework designers first develop three example systems (at
least prototypes) and then use those three examples to develop
the needed general abstractions for the framework. They argue
that fewer applications probably do not provide a sufficient
view of the requirements for the family and more applications
may make framework development too time consuming and
costly. They view frameworks as software systems that grow
organically in response to changing requirements or the needs

import java.util.*;
public class MasterTrans extends Coseq
{ public MasterTrans (Iterator xs,

Iterator ys, OutSeq zs)
{ super(xs,ys,zs);

curRec = false; curAcc = null;
curBal = 0.0;

}
protected void transLt() // mst < tr
{ if (curRec)

{ put(new MTRecord
(curAcc,curBal));

curRec = false;
}
else
{ put(getX()); }

}
protected void transEq() // mst = tr
{ MTRecord xRc = (MTRecord)getX();

MTRecord yRc = (MTRecord)getY();
if (!curRec)
{ curAcc =

(Integer)(xRc.getKey());
curBal = xRc.getAmount();
curRec = true;

}
double amt = yRc.getAmount();
int trT = yRc.getTransType();
if (trT == MTRecord.DEBIT)
{ curBal = curBal - amt; }
else if (trT == MTRecord.CREDIT)
{ curBal = curBal + amt; }
else
{ putErr(

"Invalid trans type skipped: "
+ yRc);

}
}
protected void transGt() // mst > tr
{ putErr(

"Invalid acct # on transaction: "
+ curAcc);

}
protected void advEqXs() { }

private void putErr(String e)
{ System.out.println(e); }
private boolean curRec;
private Integer curAcc;
private double curBal;

}

Fig. 11. Master-Transaction File Update Application

of different customers. As knowledge of the domain’s require-
ments grows, the design is refactored and evolved over time
into a framework.

Schmid takes a more proactive stance in his Systematic
Generalization approach to framework design. This approach
emphasizes that designers should “preplan evolution and gen-
eralize as much as possible a priori.” [19] The approach starts
by building an application model for a typical fixed application
in the family. The approach then seeks explicitly to generalize
this design into a framework. It conducts a systematic analysis
of the application, applying domain knowledge to determine
the likely points of variation (i.e., the hot spots) among the
family members. Using this analysis, the approach seeks to
generalize the design around these hot spots by applying
systematic transformations of the design that are driven by
the analysis of the hot spot. Schmid’s approach has much in
common with the commonality/variability analysis techniques
for developing software product lines, another form of pro-
gram family [1].

Carey and Carlson’s framework process patterns also seek
to design the needed generality into a framework from the
beginning [2]. They do, however, offer some cautions. They
warn designers to “beware of extreme requirements that unnec-
essarily increase framework complexity” (in their discussion
of the requirements gathering pattern Tor’s Second Cousin).
They suggest that “in some cases a contingency is mentioned,
examined, and not handled” within a framework’s design (in
their discussion of the Pass the Buck design pattern).

The work described in this paper takes the same stance as
Schmid, seeking to build the needed generality into the design
from the beginning, but also taking note of Carey and Carl-
son’s cautions. While Schmid generalizes the concrete class
structure of an object-oriented program, the work in this paper
generalizes the structure of the functions in an executable
specification written in the functional language Haskell. Like
Schmid’s approach, this work seeks to separate the various
dimensions of variability and deal with each one separately,
introducing the needed new abstractions into the program
systematically. Unlike Schmid’s work, each function presented
in this paper is executable when appropriate arguments are
supplied to the higher-order functions. Each of the merge
functions can be executed using the Hugs interpreter [13]
for the Haskell language. The ability to compile and run the
Haskell programs at each step enables the designers to debug
their specifications, explore the functionality of the framework,
and make appropriate changes to the specifications.

In addition to the ability to execute the framework models,
the authors chose to explore the use of Haskell for framework
design because of its conciseness and of its amenability to
mathematical manipulation [12], [23] and refactoring [14],
[24]. Haskell is quite expressive, capable of defining relatively
powerful programs in relatively few symbols and lines of code.
Because Haskell is relatively close to normal mathematical
notation in its syntax and semantics, it is convenient to state
and possible to prove mathematical properties such at the
equivalence properties stated for each transformation. How-

ever, functional programs have a few disadvantages. Haskell is
unfamiliar to most programmers. Also the architectural design
of Haskell programs must be understood using a text-based
language. In Schmid’s approach, the framework’s architecture
can be readily shown more visually using class diagrams in
the Unified Modeling Language (UML).

Of course, other languages or even mathematical functions
could be used for deriving frameworks by generalization of
functions. For example, Tadepalli and Cunningham [21] and
Cunningham, Liu, and Zhang [4] use similar techniques to
generalize Java functions into frameworks.

The work described in this paper is also close in spirit
to the approach of Cortes, Fontoura, and Lucena in [3].
Their approach evolves an object-oriented framework through
a sequence of refactoring and unification transformations.
A refactoring changes the structure of a framework, while
preserving its behavior. It is often carried out to increase the
flexibility of the framework. A unification seeks to add new
functionality into the design, and, hence, does not preserve
behavior. These involve identification of template and hook
methods and their realization as small frameworks or framelets
[17]. Their work is aimed toward systematically “restructuring
the framework hot-spots during evolution” of the framework.
The systematic generalization approach of Schmid and the
function generalization approach in this paper are aimed more
at a priori identification of hot spots and transformation of a
prototype design into a framework.

VII. CONCLUSION

This paper illustrates the technique of framework design
by function generalization. It begins with a simple Haskell
program to merge two ascending lists of integers into third
ascending list of integers containing all integers in the first
two sequences. This program is generalized in a step by step
fashion to produce a new program that is capable of carrying
out any operation from the family of cosequential processing
programs [8]. Finally, the program is transformed into a Java
framework with that capability. To illustrate the framework,
the paper constructs a simple master/transaction file update
program that extends the framework code.

Although some members of the cosequential processing
family can be rather complicated, it has the characteristic that
the primary driver for the algorithm can be concisely stated
as a simple loop (i.e., recursive function). The function gen-
eralization technique worked reasonably well for this family.
More examples should be studied to determine how broadly
the technique can be applied effectively. Also the rules for
generalization should be formalized more thoroughly than they
are presented in this paper.

VIII. ACKNOWLEDGMENTS

This work was supported, in part, by a grant from Acx-
iom Corporation titled “The Acxiom Laboratory for Software
Architecture and Component Engineering (ALSACE).” The
authors thank Yi Liu for her useful suggestions concerning
this work and for drawing Fig. 10.

REFERENCES

[1] M. Ardis, N. Daley, D. Hoffman, and D. Weiss, “Software product lines:
A case study,” Software—Experience and Practice, vol. 30, pp. 825–847,
2000.

[2] J. Carey and B. Carlson, Framework Process Patterns: Lessons Learned
Developing Application Frameworks. Addison-Wesley, 2002.

[3] M. Cortes, M. Fontoura, and C. Lucena, “Using refactoring and uni-
fication rules to assist framework evolution,” ACM SIGSOFT Software
Engineering Notes, vol. 28, no. 6, November 2003.

[4] H. C. Cunningham, Y. Liu, and C. Zhang, “Using classic problems to
teach Java framework design,” Science of Computer Programming, in
press.

[5] E. W. Dijkstra, “Updating a sequential file,” in A Discipline of Program-
ming. Prentice Hall, 1976, ch. 15, pp. 117–122.

[6] B. Dwyer, “One more time—How to update a master file,” Communi-
cations of the ACM, vol. 81, no. 1, pp. 3–8, January 1981.

[7] M. E. Fayad, D. C. Schmidt, and R. E. Johnson, “Application frame-
works,” in Building Application Frameworks: Object-Oriented Founda-
tions of Framework Design, M. E. Fayad, D. C. Schmidt, and R. E.
Johnson, Eds. Wiley, 1999.

[8] M. J. Folk, B. Zoellick, and G. Riccardi, File Structures: An Object-
Oriented Approach with C++, 3rd ed. Addison-Wesley, 1998.

[9] M. Fontoura, W. Pree, and B. Rumpe, The UML Profile for Framework
Architectures. Addison-Wesley, 2002.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[11] M. T. Goodrich and R. Tamassia, Data Structures and Algorithms in
Java, 3rd ed. Wiley, 2004.

[12] R. Hoogerwoord, “The design of functional programs: A calculational
approach,” Ph.D. dissertation, Technical University of Eindhoven, The
Netherlands, 1989.

[13] Hugs Project, “Hugs online,” http://www.haskell.org/hugs,
2004.

[14] H. Li, C. Reinke, and S. Thompson, “Tool support for refactoring
functional programs,” in Proceedings of the ACM SIGPLAN Haskell
Workshop, Uppsala, Sweden, August 2003.

[15] D. L. Parnas, “On the design and development of program families,”
IEEE Transactions on Software Engineering, vol. SE-2, no. 1, pp. 1–9,
March 1976.

[16] S. Peyton Jones, Ed., Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, May 2003.

[17] W. Pree and K. Koskimies, “Framelets—Small is beautiful,” in Building
Application Frameworks: Object-Oriented Foundations of Framework
Design, M. E. Fayad, D. C. Schmidt, and R. E. Johnson, Eds. Wiley,
1999, pp. 411–414.

[18] D. Roberts and R. Johnson, “Patterns for evolving frameworks,” in
Pattern Languages of Program Design 3, R. Martin, D. Riehle, and
F. Buschmann, Eds. Addison-Wesley, 1998, pp. 471–486.

[19] H. A. Schmid, “Framework design by systematic generalization,”
in Building Application Frameworks: Object-Oriented Foundations of
Framework Design, M. E. Fayad, D. C. Schmidt, and R. E. Johnson,
Eds. Wiley, 1999, pp. 353–378.

[20] Y. Smaragdakis and B. McNamara, “Bridging functional and object-
oriented programming,” College of Computing, Georgia Institute of
Technology, Tech. Rep. 00-27, 2000.

[21] P. Tadepalli and H. C. Cunningham, “Using function generalization
with Java to design a cosequential framework,” in Proceedings of the
Conference on Applied Research in Information Technology. Acxiom
Laboratory for Applied Research, February 2005, pp. 95–101.

[22] S. Thompson, “Higher-order + polymorphic = reusable,” Computing
Laboratory, University of Kent, Tech. Rep., May 1997.

[23] ——, Haskell: The Craft of Functional Programming. Addison-Wesley,
1999.

[24] S. Thompson and C. Reinke, “A case study in refactoring functional pro-
grams,” in Proceedings of the 7th Brazilian Symposium on Programming
Languages, May 2003.

[25] E. Wallingford, “Roundabout: A pattern language for recursive program-
ming,” in Proceedings of the Fourth Pattern Languages of Programs
Conference, Allerton, Illinois, 1997.

[26] ——, “Envoy: A pattern language for maintaining state,” in Proceedings
of the Sixth Pattern Languages of Programs Conference, Allerton,
Illinois, 1999.

