
Assertional Reasoning about Dynamic Systems

Technical Report UMCIS–1993–07

H. Conrad Cunningham
cunningham@cs.olemiss.edu

Software Methods Research Group
Department of Computer and Information Science

University of Mississippi
302 Weir Hall

University, Mississippi 38677 USA

Gruia-Catalin Roman and Jerome Y. Plun
roman@cs.wustl.edu

Department of Computer Science
Washington University

Campus Box 1045
One Brookings Drive

St. Louis, Missouri 63130-4899 USA

November 1993

A chapter to appear in the book
Parallel Computations: Paradigms and Applications,

A. Zomaya, editor, Chapman and Hall.

Assertional Reasoning about Dynamic Systems

H. Conrad Cunningham
Department of Computer and Information Science
University of Mississippi, USA

Gruia-Catalin Roman and Jerome Y. Plun
Department of Computer Science
Washington University in St. Louis, USA

Abstract

The desire to model in a straightforward manner complex features of real physical
systems is often tempered by difficulties associated with reasoning about the resulting
computational models. UNITY, Swarm and Dynamic Synchrony are three models of con-
currency that accommodate successively more dynamic systems: from systems that can
be characterized in terms of a fixed set of actions to systems involving arbitrary runtime
changes in the synchronization pattern among dynamically created actions. This paper
shows how, despite fundamental differences in computing styles, the three models were
designed to share the same basic assertional proof logic. A sample problem, synchronous
array summation, is used to illustrate the features of the three models and their impact
on program verification.

1 Introduction

The need for dependability has lead to increased reliance on formal proofs of critical
components and algorithms. The use of assertional-style proof techniques was formally
introduced for sequential algorithms by Floyd (1967). This work was further developed
by Hoare (1969) and Manna and Pnueli (1974) for proving, respectively, the partial
and total correctness of the while construct. Assertional techniques were also used in
program derivation, both for program refinement (Dijkstra 1976) and data refinement
(Morris 1989).

As interest in concurrency started to grow program verification research turned its
attention to concurrent programs. This issue was first tackled by Owicki and Gries
(1976) who developed methods for proving partial correctness, mutual exclusion and
absence of deadlock. In related but independent work, Lamport (1977) proposed the use
of control predicates and introduced the terms safety and liveness. Later, Apt, Francez
and de Roever (1980) extended Communicating Sequential Processes (Hoare 1978) with
an axiomatic proof system, and Andrews and Reitman (1980) proposed an axiomatic
proof system based on the information flow in a program. Generalized Hoare Logic was
developed by Lamport (1980) to verify safety properties of concurrent programs.

Because proofs are difficult and costly, especially when they involve concurrency,
techniques that simplify program verification are a welcome addition to the software
designer’s collection of conceptual tools. Our experience indicates that the UNITY logic

(Chandy and Misra 1988) has the potential for reducing the effort required to reason
about concurrent computations. UNITY has shown that it is possible to reason about
concurrent computations directly from the program text, without having to consider the
possible execution sequences of the computation. A UNITY program consists of a static
set of deterministic multiple-assignment statements that modify a fixed set of shared
variables. The statements are executed nondeterministicly, but fairly. The UNITY proof
logic is based on a subset of temporal logic (Manna and Pnueli 1992). Program properties
are expressed as assertions of the form {p} S {q}, where S is universally or existentially
quantified over the statements of the program and p and q are predicates over the data
state. Safety properties characterize state transitions that may occur while progress
properties characterize those that must occur.

Building upon UNITY, the Swarm model (Roman and Cunningham 1990) and its
proof system (Cunningham and Roman 1990, Roman and Cunningham 1992) have ex-
tended the applicability of assertional-style proofs to content-addressable data access, to
dynamic data and actions and to certain restricted forms of dynamic synchrony among
actions. (Synchrony is defined as the coordinated execution of one or more actions;
dynamic refers to the ability to redefine which actions are to participate in such a co-
ordinated execution.) This allowed the use of assertional-style proofs in rule-based pro-
gramming (Gamble, Roman, Ball and Cunningham in press) and made it possible to
reason about programs involving multiple computing paradigms (such as shared-variable,
message-passing and rule-based).

Swarm’s mechanisms for specifying dynamic synchrony makes it possible to verify
software that executes on reconfigurable networks consisting of a mixture of synchronous
and asynchronous machines. Nevertheless, Swarm proved inadequate when faced with
the more mundane task of modeling (in a simple and direct manner) the synchronization
rules associated with other models of concurrency such as Concurrent Processes (Milne
and Milner 1979) and Input/Output Automata (Lynch and Tuttle 1989). A rethinking
of the mechanics used to specify dynamic synchrony in Swarm led to a new model,
Dynamic Synchrony (Roman and Plun 1993), in which synchronization is specified by
employing a synchronization predicate defined over the combined data and control state
of the program. In each state, the synchronization predicate determines which actions
are to be executed synchronously. The built-in synchronization rules associated with
currently popular models of concurrency appear to have immediate formulations in the
Dynamic Synchrony (DS) model. Furthermore, since the synchronization may change
from one state to the next, highly dynamic and somewhat exotic forms of synchrony may
be modeled and reasoned about in ways not previously possible.

This paper traces the impact dynamic features have on the complexity of the assertional-
style proof logics for the three models (UNITY, Swarm and DS) discussed above. UNITY
(section 2) has a static structure composed of a fixed set of actions (called statements)
with some of the actions consisting of synchronously executed subactions. In Swarm
(section 3), actions (called transactions) are created dynamically but can be deleted only
as a side effect of their execution and synchronously executed (disjoint) groups of actions
may be constructed at runtime. DS (section 4) allows arbitrary deletion of actions and
arbitrary formation of synchronously executed groups of actions. Variants of a single
example—parallel synchronous array summation—are used to demonstrate differences in
verification style associated with the three models. The programming solution is essen-

2

tially the same in all three cases. While this choice does not emphasize the differences in
expressive power among the three models, it does make it easier for the reader to shift
from one notation to the next and to gain insight in the way the proof obligations change
from one model to the next. Conclusions and future work are discussed in section 5.

2 Static statements

2.1 Overview of UNITY

Attempts to meet the challenges of concurrent programming have led to the emer-
gence of a variety of models and languages. Chandy and Misra (1988), however, argue
that the fragmentation of programming approaches along the lines of architectural struc-
ture, application area and programming language features obscures the basic unity of the
programming task. With the UNITY model, their goal is to unify seemingly disparate
areas of programming with a simple theory consisting of a model of computation and an
associated proof system.

Chandy and Misra build the UNITY computational model upon a traditional im-
perative foundation, a state-transition system. Above this foundation, however, UNITY
follows a more radical design: all flow-of-control and communication constructs have been
eliminated from the notation. For the purposes of this paper, a UNITY program consists
of three sections:

1. the declarations for a finite, static set of variables,

2. the descriptions of the allowed initial values for the variables and

3. a finite, static set of statements.

The only type of statement allowed is the conditional, multiple-assignment statement;
each statement specifies a deterministic, terminating, atomic change to the program’s
state (i.e. to the values of the variables).

The execution of a UNITY program starts in any state that satisfies the initial condi-
tion and continues for an infinite number of steps. In each step the execution mechanism
nondeterministically selects one of the assignment statements and executes it. The se-
lection must be fair in the sense that every statement is executed infinitely many times
during an infinite execution—weak fairness as defined by Francez (1986).

To illustrate each of the programming models, this paper uses the problem of summing
an array A[1..N] of integers. For simplicity, we assume that N is a power of 2. Thus a
precondition for a UNITY program is the assertion pow2(N) where

pow2(k) ≡ 〈∃ p : p ≥ 0 :: k = 2p〉.

Note: We write quantified expressions in the form 〈Op x : R(x) :: T (x)〉 where Op is
the quantification operator, x is a list of dummy variables whose scopes are delimited by
the angle brackets, R(x) is a predicate giving the range of values for the dummies over
which the quantification is to be done and T (x) is the term to which the operation is to
be applied. Op is a commutative and associative operator such as ∃ (“there exists”), ∀
(“for all”), Σ (“sum of”) or # (“number of”).

3

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

j = 1
@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@∑1

1

∑2
1

∑3
3

∑4
3

∑5
5

∑6
5

∑7
7

∑8
7

j = 2
H
HHH

HHHH

H
HHH

HHHH∑1
1

∑2
1

∑3
3

∑4
1

∑5
5

∑6
5

∑7
7

∑8
5

j = 4

XXXXXXXXXXXXXXXX∑1
1

∑2
1

∑3
3

∑4
1

∑5
5

∑6
5

∑7
7

∑8
1

program U Sum(N,A)
N : integer constant { 〈∃ p : p ≥ 0 :: N = 2p〉 },
A : array [1..N] of integer constant

declare
x : array [1..N] of integer,
j : integer

initially
j, x = 1, A

assign
〈‖ k : 1 ≤ k ≤ N ∧ k mod (2 ∗ j) = 0 ::

x[k] := x[k−j] + x[k]〉
‖ j := 2 ∗ j if j < N

end

Figure 1: Array summation in UNITY

4

Eventually, after all N elements of A have been added, we want some program variable
to contain their sum. That is, we want the assertion

additions done ∧ result = sumA(0, N)

to hold for some appropriate predicate additions done and variable result, where

sumA(l, u) = 〈Σ k : l < k ≤ u :: A[k]〉.

One parallel algorithm for this problem is to compute the sum in a tree-like fashion
as shown in the diagram in Fig. 1: adjacent elements of the array are added in parallel,
then the same is done for the resulting values, and so forth until a single value remains.
To develop a program for this multi-phase algorithm, we introduce program variables x,
an N -element array to hold the partial sums that are computed, and j, an integer giving
the width of the segment of array A in each partial sum. Before and after each phase we
require that the assertion

pow2(N) ∧ pow2(j) ∧ j ≤ N ∧ 〈∀ i : node(i, j) :: x[i] = sumA(i−j, i)〉

hold, where

node(k, l) ≡ (1 ≤ k ≤ N ∧ kmod l = 0).

To establish this assertion at the beginning of the algorithm, we initialize x to equal
A and j to equal 1. To achieve the tree-like computation, the program should double
the value of j for each successive phase. Note that when j = N , all needed additions
have been completed and x[N] contains the final result. Thus we let j = N replace
the additions done predicate and x[N] replace the result variable. Figure 1 shows the
resulting UNITY program for summing array A.

2.2 Proof logic

To accompany the simple but innovative UNITY model, Chandy and Misra (1988)
have formulated an assertional programming logic that frees the program proof from the
necessity of reasoning about execution sequences. Unlike most assertional proof systems,
which rely on the annotation of the program text with predicates, the UNITY logic seeks
to extricate the proof from the text by relying upon proofs of program-wide properties.
The UNITY programming logic uses the logical relations unless, stable, invariant,
constant and 7−→ (read “leads-to”). It defines these relations in terms of the set of
program statements and the Hoare triple (Hoare 1969). In this section, Prog denotes
the set of assignment statements of the program under consideration and Initial denotes
the initial condition predicate. As in Chandy and Misra (1988), properties and inference
rules are written without explicit quantification; these are universally quantified over all
the values of the free variables occurring in them.

In terms of Dijkstra’s weakest precondition calculus (Dijkstra 1976), the UNITY logic
defines the Hoare triple {p} S {q} for some statement S in Prog such that

{p} S {q} ≡ (p⇒ wp(S, q)).

5

Informally, the triple means that, whenever statement S is executed in a state satisfying
precondition predicate p, the next state will satisfy the postcondition predicate q.

Misra (1990) defines UNITY’s unless relation with the inference rule:

〈∀S : S ∈ Prog :: {p ∧ ¬q} S {p ∨ q}〉
p unless q

The premise of this rule means that, if p is true at some point in the computation and q
is not, then, after the next step, p remains true or q becomes true.

Stable, invariant and constant properties are important for reasoning about UNITY
programs. For a predicate p to be stable means that, if p becomes true at some point in
a computation, it remains true thereafter. A predicate p is invariant if p is true at all
points in the computation. A predicate p is constant if it either always remains true or
always remains false.

stable p ≡ p unless false
invariant p ≡ (Initial ⇒ p) ∧ (stable p)
constant p ≡ (stable p) ∧ (stable ¬p)

A useful, although somewhat controversial (Misra 1990, Sanders 1991), rule is the
Invariant Substitution Axiom. This axiom states that if x = y is an invariant of Prog,
then x can replace y in all properties of Prog. In particular, if I is an invariant, then
I = true is also an invariant and, hence, I can replace true in any property and vice
versa.

Misra (1990) also defines UNITY’s ensures relation with inference rule:

p unless q , 〈∃S : S ∈ Prog :: {p ∧ ¬q} S {q}〉
p ensures q

The premise of this rule means that, if p is true at some point, then (1) p will remain true
as long as q is false, and (2) if q is false, there is at least one statement whose execution
will always make q true. Because of fairness, that statement must eventually be executed.

The leads-to relation, written

p 7−→ q

means that, once p becomes true, q will eventually become true. (However, p is not
guaranteed to remain true until q becomes true.) The assertion p 7−→ q is true if and only
if it can be derived by a finite number of applications of the following inference rules:

• p ensures q
p 7−→ q

(basis)

• p 7−→ q, q 7−→ r

p 7−→ r
(transitivity)

• For any set W , (disjunction)
〈∀ m : m ∈ W :: p(m) 7−→ q〉
〈∃ m : m ∈ W :: p(m)〉 7−→ q

6

UNITY programs do not terminate in the traditional sense. However, UNITY pro-
grams may reach a fixed point, a state that is repeated infinitely whenever it is reached
during an execution. The fixed point predicate FP characterizes these states. We can
construct FP syntactically as the conjunction of the equations corresponding to the as-
signment statements of the program. That is, a program with the assign section

X := E if B Y := F if C

has the FP predicate

(B ⇒ X = E) ∧ (C ⇒ Y = F).

2.3 Example proof

To prove the UNITY array summation program given in Fig. 1, we must first state its
specification formally. The initial condition for this program, the predicate Initial , can
be stated as

pow2(N) ∧ j = 1 ∧ x = A.

The desired “postcondition” for the program, the predicate Post , can be stated as

j = N ∧ x[N] = sumA(0, N).

Whenever the program begins execution in a state satisfying Initial , it must eventually
reach a state satisfying Post and, once such a state is reached, any further execution must
not falsify Post . That is, we must prove a progress property and a safety property—the
Sum Completion and Sum Stability properties, respectively.

Property 1 (Sum Completion) Initial 7−→ Post

Property 2 (Sum Stability) stable Post

Proof of Sum Stability: Note that if j = N then none of the assignments change
the state. Thus Post is preserved by all statements of the program.

To prove the Sum Completion property, we must first characterize the relationships
among the values of the program variables N , j, A and x. In the informal derivation of
the program given in section 2.1, we identified an assertion that must hold “before and
after each phase” of the computation. Since each phase of the computation corresponds
to the execution of one atomic statement in the program, the conjuncts of the assertion
correspond to the UNITY invariants we need. We call these the Phase Invariants.

Property 3 (Phase Invariants)

invariant pow2(N)
invariant pow2(j)
invariant j ≤ N
invariant 〈∀ i : node(i, j) :: x[i] = sumA(i−j, i)〉

7

Proof of the Phase Invariants: Let I1, I2, I3 and I4 denote the first, second, third
and fourth Phase Invariants, respectively.

To prove that a predicate is invariant we must show that the predicate holds initially
and that it is stable (i.e. each statement preserves the predicate). Given the precondition
assumption about N and the initialization of j to 1 and x to A, it is easy to see that each
of the four predicates hold initially.

The proofs of stability are straightforward. I1 follows from the declaration of N as a
constant. I2 follows from the observation that doubling is the only change that can be
made to j. To prove I3 we apply the Invariant Substitution Axiom with invariants I1 and
I2. Thus, noting the guard on the “j := 2 ∗ j ” assignment, I3 follows from the validity of

I1 ∧ I2 ∧ I3 ∧ j < N ⇒ 2 ∗ j ≤ N.

Similarly, using the first three invariants and noting the range predicate on the assign-
ments to x, invariant I4 follows from the validity of

I1 ∧ I2 ∧ I3 ∧ I4 ⇒
〈∀ i : node(i, 2 ∗ j) :: x[i−j] + x[i] = sumA(i−2 ∗ j, i)〉.

Now we can turn our attention to the Sum Completion progress property. This is a
large-grained progress property for which leads-to induction (Chandy and Misra 1988)
seems to be a promising proof technique. To use this technique, we must find a finer-
grained leads-to property that can be composed with itself transitively to deduce the
large-grained leads-to. We must also find a metric function that maps the program state
to a well-founded set; the value of this metric must decrease for each successive transitive
application of the finer-grained leads-to property.

Proof of Sum Completion: To prove Sum Completion, we must show that ¬Post 7−→
Post . We proceed by leads-to induction choosing the integer function

N

j

as the metric. This gives us two proof obligations:

• invariant ¬Post ⇒ 1 ≤ j ≤ N to guarantee that the metric is well-founded,

• ¬Post ∧ j = k 7−→ (¬Post ∧ j > k) ∨ Post to guarantee the progress.

Using the Invariant Substitution Rule and the Phase Invariants, we see that the first
of these obligations holds and that the second obligation follows from

j = k < N 7−→ j > k.

Using the basis rule of the 7−→ definition, this property follows from the Sum Step property
stated and proved below.

The Sum Step property is a fine-grained progress property corresponding to the exe-
cution of a single statement. We state it as an ensures relation.

Property 4 (Sum Step) j = k < N ensures j = 2 ∗ k

8

Proof of the Sum Step property: The proof of an ensures property has two
parts: an unless part and an existential part. Since the only program variable referenced
in this property is j, we only need to consider the assignments to j.

Because of the definition of unless, j = k < N unless j = 2 ∗ k follows from the
validity of

j = k < N ∧ j 6= 2 ∗ k ∧ j < N ⇒ 2 ∗ j = k < N ∨ 2 ∗ j = 2 ∗ k.

The existential part requires us to prove there is a statement that will always establish
j = 2 ∗ k when j = k < N ∧ j 6= 2 ∗ k holds before execution. Clearly, the doubling
operation on j is the only assignment that can change the value of j. Thus the existential
part follows from the validity of

(j = k < N ∧ j 6= 2 ∗ k ∧ j < N ⇒ 2 ∗ j = 2 ∗ k)∧
(j = k < N ∧ j 6= 2 ∗ k ∧ j ≥ N ⇒ 2 ∗ j = 2 ∗ k).

Note that the second implication above is true because its left-hand-side is false.
We have thus proved the Sum Stability and Sum Completion properties of the UNITY

program. Therefore, the program satisfies its specification. Furthermore, by inspection
of the UNITY program, we see that its fixed point predicate FP is

j = 0 ∨ j ≥ N.

If we let PI denote the conjunction of the Phase Invariants, a bit of logical and arithmetic
manipulation will show that

FP ∧ PI ≡ Post ∧ PI .

Hence, those states in which the program has reached a fixed point are exactly those
states in which the predicate Post is true.

3 Dynamic transactions

3.1 Overview of Swarm

The name Swarm evokes the image of a large, rapidly moving aggregation of small,
independent agents cooperating to perform a task. This section introduces a notation for
programming such dynamic computations. Beginning with the UNITY program given in
Fig. 1, we construct a program in the Swarm notation with similar semantics.

Swarm is a shared dataspace programming model. Instead of expressing a compu-
tation in terms of a group of named variables, Swarm uses a set of tuples stored in a
dataspace. Each tuple is a pairing of a type name with a finite sequence of values; a pro-
gram accesses a tuple by its content—type name and values—rather than by a specific
name or address. Swarm programs execute by deleting existing tuples from and inserting
new tuples into the dataspace. The transactions that specify these atomic dataspace
transformations consist of a set of query-action pairs executed in parallel. Each query-
action pair is similar to a production rule in a language like OPS5 (Brownston, Farrell,
Kant and Martin 1985).

9

How can we express the array-summation algorithm in Swarm? To represent the array
x, we introduce tuples of type x in which the first component is an integer in the range 1
through N , the second a partial sum. We can express an instance of the array assignment
in the UNITY program as a Swarm transaction in the following way:

v1, v2 : x(k−j, v1), x(k, v2) −→ x(k, v2)†, x(k, v1+v2)

The part to the left of the −→ is the query; the part to the right is the action. The
identifiers v1 and v2 designate variables that are local to the query-action pair. (For
now, assume that j and k are constants.)

The execution of a Swarm query is similar to the evaluation of a rule in Prolog (Sterling
and Shapiro 1986). The above query causes a search of the dataspace for two tuples of
type x whose component values have the specified relationship—the comma separating
the two tuple predicates is interpreted as a conjunction. If one or more solutions are
found, then one of the solutions is chosen nondeterministically and the matched values
are bound to the local variables v1 and v2 and the action is performed with this binding.
If no solution is found, then the transaction is said to fail and none of the specified actions
are taken.

The action of the above transaction consists of the deletion of one tuple and the
insertion of another. The † operator indicates that the tuple x(k, v2), where v2 has the
value bound by the query, is to be deleted from the dataspace. The unmarked tuple
form x(k, v1+v2) indicates that the corresponding tuple is to be inserted. Although
the execution of a transaction is atomic, the effect of an action is as if all deletions are
performed first, then all insertions.

The parallel assignment to array x in the UNITY program can be expressed similarly
in Swarm:

[‖ k : 1 ≤ k ≤ N ∧ kmod (j ∗ 2) = 0 ::
v1, v2 : x(k−j, v1), x(k, v2) −→ x(k, v2)†, x(k, v1+v2)]

Each individual query-action pair is called a subtransaction and the overall parallel con-
struct a transaction. As with the UNITY assignment, the entire transaction is executed
atomically. The cumulative effect of executing a transaction is as if the subtransactions
are executed synchronously: all queries are evaluated first, then the indicated tuples are
deleted, and finally the indicated tuples are inserted.

In Swarm there is no concept of a process and there are no sequential programming
constructs or recursive function calls. Only transactions are available. Like data tuples,
transactions are represented as tuple-like entities in the dataspace. A transaction has a
type name and a finite sequence of values called parameters. Transaction instances can be
queried and inserted in the same way that data tuples are, but cannot be explicitly deleted.
A Swarm dataspace thus has two components, the tuple space and the transaction space.

We model the execution of a Swarm program in a way similar to UNITY. The pro-
gram begins execution with the specified initial dataspace. On each execution step,
a transaction is chosen nondeterministically from the transaction space and executed
atomically. This selection is fair in the sense that every transaction present in the trans-
action space at any point in time must eventually be executed. Unless the transaction
explicitly reinserts itself into the transaction space, it is deleted as a by-product of its

10

program S Sum V ariant
(N,A : [∃ p : p ≥ 0 :: N = 2p], A(i : 1 ≤ i ≤ N))

tuple types
[i, s : 1 ≤ i ≤ N :: x(i, s)]

transaction types
[j : 1 ≤ j < N ::

Sum(j) ≡
[‖ k : 1 ≤ k ≤ N ∧ kmod (j ∗ 2) = 0 ::

v1, v2 : x(k−j, v1)†, x(k, v2)† −→ x(k, v1+v2)]
‖ j < N −→ Sum(j ∗ 2)

]
initialization

Sum(1); [i : 1 ≤ i ≤ N :: x(i, A(i))]
end

Figure 2: Swarm encoding of the UNITY array summation program

own execution—regardless of the success or failure of its component queries. Program
execution continues until there are no transactions remaining in the transaction space.

We still have two aspects of the UNITY program to express in Swarm—the doubling
of j and the repetitive execution of statements. Both of these actions can be incorpo-
rated into the transaction shown above. We define transactions of type Sum having one
parameter as follows:

Sum(j) ≡
[‖ k : 1 ≤ k ≤ N ∧ kmod (j ∗ 2) = 0 ::

v1, v2 : x(k−j, v1), x(k, v2) −→ x(k, v2)†, x(k, v1+v2)]
‖ j ∗ 2 < N −→ Sum(j ∗ 2)

Note that the transaction above uses parameter j as a constant throughout its body.
A transaction instance Sum(j)—representing the jth phase of the algorithm—updates
the set of x tuples to reflect the newly computed partial sum and inserts an appropriate
transaction to continue the computation.

For a correct computation of array A’s sum, the Swarm program must initialize the
tuple space to contain the N elements of the array represented as x tuples, i.e. to be the
set

{x(1, A(1)), x(2, A(2)), · · · , x(N,A(N))}.

Similarly, the transaction space must consist of the single transaction Sum(1).
Figure 2 shows a complete array-summation program. Since each x tuple is only ref-

erenced once during a computation, we modify the definition of the Sum subtransactions

11

to delete both x tuples that are referenced. If a tuple form in a query is marked by the †
operator, then, if the overall query succeeds, the marked tuple is deleted as a part of the
action.

So far, we have ignored a third component of a Swarm program’s dataspace—the syn-
chrony relation. The interaction of the synchrony relation with the execution mechanism
provides a dynamic form of the ‖ operator. The synchrony relation is a symmetric relation
on the set of valid transaction instances. The reflexive transitive closure of the synchrony
relation is thus an equivalence relation. (The synchrony relation can be pictured as an
undirected graph in which the transaction instances are represented as vertices and the
synchrony relationships between transaction instances as edges between the correspond-
ing vertices. The equivalence classes of the closure relation are the connected components
of this graph.) When one of the transactions in an equivalence class is chosen for exe-
cution, then all members of the class that exist in the transaction space at that point
in the computation are also chosen. This group of related transactions is called a syn-
chronic group. The subtransactions making up the transactions of a synchronic group
are executed as if they were part of the same transaction.

The synchrony relation can be examined and modified in much the same way as the
tuple and transaction spaces can. The predicate

Sum(i) ∼ Sum(j)

in the query of a subtransaction examines the synchrony relation for a transaction instance
Sum(i) that is directly related to an instance Sum(j). Neither transaction instance is
required to exist in the transaction space. The operator ≈ can be used in a predicate
to examine whether transaction instances are related by the closure of the synchrony
relation.

Synchrony relationships between transaction instances can be inserted into and deleted
from the relation. (The dynamic creation of a synchrony relationship between two trans-
actions can be pictured as the insertion of an edge in the undirected graph noted above,
and the deletion of a relationship as the removal of an edge.) The operation

Sum(i) ∼ Sum(j)

in the action of a subtransaction creates a dynamic coupling between transaction instances
Sum(i) and Sum(j), where i and j have bound values. If two instances are related by
the synchrony relation, then

(Sum(i) ∼ Sum(j))†

deletes the relationship. Note that both the synchrony relation ∼ and its closure ≈ can be
tested in a query, but that only the base synchrony relation ∼ can be directly modified
by an action. Initial synchrony relationships can be specified by putting appropriate
insertion operations into the initialization section of the Swarm program.

Figure 3 shows a version of the array-summation program that uses synchronic groups.
The subtransactions of Sum(j) have been separated into distinct transactions Sum(k, j)
coupled by the synchrony relation. For each phase j, all transactions associated with
that phase are structured into a single synchronic group. The computation’s effect is the
same as that of the earlier program.

12

program S Sum(N,A : [∃ p : p ≥ 0 :: N = 2p], A(i : 1 ≤ i ≤ N))
tuple types

[i, s : 1 ≤ i ≤ N :: x(i, s)]
transaction types

[k, j : 1 ≤ k ≤ N, 1 ≤ j < N ::
Sum(k, j) ≡

v1, v2 : x(k−j, v1)†, x(k, v2)† −→ x(k, v1+v2)
‖ k 6= N −→ (Sum(k, j) ∼ Sum(N, j))†
‖ j < N, kmod (j ∗ 4) = 0

−→ Sum(k, j ∗ 2),
Sum(k, j ∗ 2) ∼ Sum(N, j ∗ 2)

]
initialization

[i : 1 ≤ i ≤ N :: x(i, A(i))];
[k : 1 ≤ k ≤ N, kmod 2 = 0 :: Sum(k, 1) ; Sum(k, 1) ∼ Sum(N, 1)]

end

Figure 3: Array summation in Swarm using synchronic groups

3.2 Proof logic

Even though, at an abstract level, the Swarm computational model is similar to that
given for UNITY in section 2, the Swarm proof logic must be able to accommodate
the dynamic nature of the Swarm dataspace. First we consider the proof rules for the
subset of Swarm without the synchrony relation then look at how these rules can be
generalized to support the synchrony relation. More detail on the operational model
(Roman and Cunningham 1990) and proof rules (Cunningham and Roman 1990, Roman
and Cunningham 1992) are given elsewhere. The Swarm programming logics have been
defined so that the theorems proved for UNITY in Chandy and Misra (1988) can also be
proved for Swarm.

For any transaction t in the program, the Swarm logic defines the Hoare triple

{p} t {q}

such that, whenever the dataspace satisfies the precondition predicate p and transaction
instance t is in the transaction space, all dataspaces that can result from execution of
transaction t satisfy the postcondition predicate q.

We define Swarm’s unless relation with an inference rule similar to that given for
UNITY’s unless in section 2:

〈∀ t : t ∈ TRS :: {p ∧ ¬q} t {p ∨ q}〉
p unless q

13

In this section TRS denotes the set of all possible transactions (not a specific transaction
space). As in the UNITY logic, the premise of this rule means that, if p is true at some
point in the computation and q is not, then, after the next step, p remains true or q
becomes true.

Following UNITY’s definition, we define Swarm’s ensures relation with an inference
rule:

p unless q , 〈∃ t : t ∈ TRS :: (p ∧ ¬q ⇒ [t]) ∧ {p ∧ ¬q} t {q}〉
p ensures q

Here we use the notation “[t]” to denote the predicate “transaction instance t is in the
transaction space”. The premise of this rule means that, if p is true at some point in
the computation, then (1) p will remain true as long as q is false, and (2) if q is false,
there is at least one transaction in the transaction space that, when executed, will always
establish q as true. The “p ∧ ¬q ⇒ [t]” requirement generalizes the UNITY definition of
ensures to accommodate Swarm’s dynamic transaction space.

For the Swarm logic, we define the stable, invariant, constant and 7−→ as we did
in section 2 for UNITY. However, unlike UNITY programs, Swarm programs terminate
when the transaction space is empty, that is

Termination ≡ 〈∀ t : t ∈ TRS :: ¬[t]〉.

How can we generalize the above logic to accommodate synchronic groups? We need
to add a synchronic group rule and redefine the unless and ensures relations. The other
elements of the logic are the same.

For any synchronic group S in the program, the Swarm logic defines the Hoare triple

{p} S {q}

such that, whenever precondition p is true and S is a synchronic group of the dataspace,
all dataspaces that can result from execution of group S satisfy postcondition q.

A key difference between this logic and the previous logic is the set over which the
properties must be proved. For example, the previous logic required that, in proof of an
unless property, an assertion be proved for all possible transactions, i.e. over the set
TRS. On the other hand, this generalized logic requires the proof of an assertion for all
possible synchronic groups of the program, denoted by SG.

For the synchronic group logic, we define the logical relation unless with the following
rule:

〈∀S : S ∈ SG :: {p ∧ ¬q} S {p ∨ q}〉
p unless q

If synchronic groups are restricted to single transactions, this definition is the same as
the definition given for the earlier subset Swarm logic.

We define the ensures relation as follows:

p unless q ,
〈∃ t : t ∈ TRS :: (p ∧ ¬q ⇒ [t]) ∧ 〈∀S : S ∈ SG ∧ t ∈ S :: {p ∧ ¬q} S {q}〉〉

p ensures q

14

This definition requires that, when p ∧ ¬q is true, there exists a transaction t in the
transaction space such that all synchronic groups that can contain t will establish q
when executed from a state in which p ∧ ¬q holds. Because of the fairness criterion,
transaction t will eventually be chosen for execution, and hence one of the synchronic
groups containing t will be executed. In the logic for the Swarm subset, the ensures rule
requires that a single transaction be found that will establish the desired postcondition
when executed. In the synchronic group logic, on the other hand, instead of requiring
that a single synchronic group be found that will establish the desired state, the ensures
rule requires that a set of synchronic groups be identified such that any of the groups
will establish the desired state and that one of the groups will eventually be executed. If
synchronic groups are restricted to single transactions, this definition is the same as the
definition for the subset Swarm logic.

3.3 Example proof

In section 3.1 we derived a Swarm program for summing an array from a similar
program expressed in the UNITY notation. Figure 3 gives a Swarm program that uses
synchronic groups to compute the sum of an array. This section sketches a proof for this
array summation program.

The initial condition predicate for the program in Fig. 3 is similar to the initial
condition of the UNITY program given in Fig. 1. Of course, modifications are needed
to account for the differences in data and program representation. (As in the previous
sections, we assume that all assertions are universally quantified over all the values of the
free variables occurring in them.)

Using the predicates pow2 and node defined in section 2, the Swarm program’s pred-
icate Initial can be stated as follows:

pow2(N) ∧ (x(i, v) ≡ 1 ≤ i ≤ N ∧ v = A(i)) ∧
(Sum(i, j) ≡ node(i, 2∗j) ∧ j = 1) ∧
(Sum(i, j) ∼ Sum(k, l) ∧ i ≤ k ≡ node(i, 2∗j) ∧ k = N ∧ j = l = 1)

The second, third, and fourth conjuncts specify the structure of the tuple space, trans-
action space and synchrony relation, respectively. Here the tuple and transaction forms,
e.g. x(i, v) and Sum(i, j), represent predicates that are true when there is a matching
entity in the dataspace and false otherwise. Likewise, predicates using the ∼ and ≈ con-
nectives represent predicates over the synchrony relation. Note how the ≡ connective is
used in conjunction with the universal quantification of the free variables to specify the
exact structure of the dataspace.

The postcondition of the Swarm program is similar to the “postcondition” of the
UNITY program. Using the sumA expression defined in section 2, the Swarm program’s
predicate Post can be stated as

x(i, v) ≡ (i = N ∧ v = sumA(0, N)).

In terms of the general requirements stated in section 2.1, we use the tuple x(N, v) to
replace the variable result and the test for the presence of exactly one x-tuple to replace
the additions done predicate.

15

As with the UNITY program, to verify that the Swarm program satisfies this spec-
ification we must prove that, when the program begins execution in a state satisfying
Initial, it eventually reaches a state satisfying Post and, once such a state is reached, any
further execution must not falsify Post . That is, we must prove the Sum Completion and
Sum Stability properties as we did for the UNITY program.

Property 5 (Sum Completion) Initial 7−→ Post

Property 6 (Sum Stability) stable Post

To prove these properties, we must ultimately reduce them to simple unless and
ensures properties that must themselves be proved over all elements of the set SG. In
general, proofs over this set are quite difficult. Fortunately, the Invariant Substitution
Axiom can make these proofs easier. First we find and prove invariants that characterize
the unchanging structure of the transaction space and synchrony relation. Then we use
these invariants to simplify the proofs of other properties—we can ignore synchronic group
and transaction space configurations that do not satisfy the invariants.

Because this is a highly synchronous program, the elements of the tuple space, trans-
action space and synchrony relation are mutually dependent. Because of this mutual
dependency, we state the relationships among them with a single invariant called the
Structure Invariant. This invariant characterizes the unchanging relationships among the
elements of the dataspace in a manner similar to the way the four Phase Invariants did for
variables of the UNITY program. The statement of the Structure Invariant below uses
the function Wx, which is N divided by the number of x-tuples present in the dataspace,
i.e.

Wx =
N

〈# i, v :: x(i, v)〉
.

Wx represents the width of the segment of array A whose sum is in each x-tuple—a role
served by the variable j in the UNITY program.

Property 7 (Structure Invariant)

invariant
pow2(N) ∧ pow2(Wx) ∧ (x(i, v) ≡ node(i,Wx) ∧ v = sumA(i−Wx, i)) ∧
(Sum(i, j) ≡ node(i, 2∗j) ∧ j = Wx) ∧
(Sum(i, j) ∼ Sum(k, l) ∧ i ≤ k ≡ node(i, 2∗j) ∧ k = N ∧ j = l = Wx)

Proof of the Structure Invariant: Call this property I. To prove the invariance
of I, we have to show that I holds initially and that it is stable. Since initially Wx =
N/N = 1, Initial⇒ I. Hence, I holds initially.

To prove I is stable we must show that I is preserved by all possible synchronic groups
G, i.e. {I} G {I} is true for arbitrary G. For any synchronic group that does not satisfy
I, this predicate is trivially true. Thus, we only need to consider those synchronic groups
that satisfy I. Since the value of N is not altered by any transaction, the pow2(N) con-
junct is preserved trivially. We now must show that each of the remaining four conjuncts
is preserved.

16

To see that the second and third conjuncts are preserved, we note that each executing
transaction deletes two x-tuples and inserts back a single x-tuple. The “indexes” (first
components) of the deleted tuples are adjacent multiples of j (i.e. of Wx). The inserted
tuple is positioned at the index of the rightmost deleted tuple—at a multiple of 2 ∗ j.
The value (the second component) of the inserted tuple is equal to the sum of the values
of the two deleted tuples. Furthermore, the precondition I guarantees that each of the
transactions in the group operate upon different tuples.

We now consider the fourth conjunct. All transactions (allowed by I) have the same
“phase” parameter j. Furthermore, the values of the “index” parameter i for these
transactions are multiples of 2∗ j. Only half of the transactions, i.e. those whose index is
a multiple of 4∗j, insert successor transactions. The phase for all the inserted transactions
is 2 ∗ j (i.e. 2 ∗Wx). As argued above, Wx is also doubled in value by the synchronic
group’s execution. Thus the fourth conjunct is preserved.

The only synchrony relationship for a transaction Sum(i, j), for i < N , is with trans-
action Sum(N, j). Upon execution, a transaction deletes this relationship. For each
new transaction inserted (into phase 2 ∗ j), a synchrony relationship is created with
Sum(N, 2 ∗ j). Thus the fifth conjunct is also preserved.

Proof of Sum Stability: We must show that the predicate Post is preserved by all
synchronic groups allowed by the Structure Invariant I. We note that Post ∧ I ⇒Wx =
N . But Wx = N ∧ I ⇒ 〈∀ i :: ¬node(i, 2 ∗Wx)〉. Thus, when Post is true, because of
the fourth conjunct of I, the transaction space must be empty. Therefore, Post is clearly
stable.

Now we can turn our attention to the Sum Completion progress property. In a
manner similar to the UNITY program, we prove this large-grained progress property
by induction using a finer-grained progress property corresponding to the execution of a
single synchronic group.

Proof of Sum Completion: To prove Sum Completion, we must show that ¬Post 7−→
Post . We proceed by leads-to induction.

We note that ¬Post ∧ I ⇒ 1 < Wx < N , that Wx = N ∧ I ⇒ Post , and that Wx

increases upon the execution of a synchronic group. Thus we choose the well-founded
metric N

Wx
. (N

Wx
is the count of the x-tuples present in the dataspace. The metric is

similar to the one used in the UNITY program’s Sum Completion proof.)
Thus the remaining proof obligation is

¬Post ∧ Wx = k 7−→ (¬Post ∧Wx > k) ∨ Post .

Using the Invariant Substitution Axiom and the Structure Invariant, we see that this
follows from

Wx = k < N 7−→ Wx > k.

Using the basis rule of the 7−→ definition, this property, in turn, follows from the Sum
Step property stated and proved below.

The Sum Step property is a fine-grained property corresponding to the execution of
a single synchronic group. We state it as an ensures relation.

Property 8 (Sum Step) Wx = k < N ensures Wx = 2 ∗ k

17

Proof of the Sum Step property: The proof of an ensures property has two
parts: an existential part and an unless part.

The existential part requires us to prove that, whenever Wx = k < N , there is
a transaction in the transaction space such that any synchronic group containing that
transaction will establish Wx = 2 ∗ k. But, in accordance with the Structure Invariant
I, at most one synchronic group exists at a time. (Particularly, Wx = k < N ∧ I ⇒
Sum(N,Wx).) As argued in the proof of the Structure Invariant, this synchronic group
will double Wx, i.e. decrease the number of x-tuples by half.

The unless part requires us to prove Wx = k < N unless Wx = 2 ∗ k. That is, we
must show for all synchronic groups G,

{Wx = k < N ∧ I ∧ Wx 6= 2 ∗ k } G {Wx = k ∨ Wx = 2 ∗ k }

is valid. As argued above, the only synchronic groups allowed by I will double Wx when
Wx < N . Therefore, the ensures property holds.

We have thus proved the Sum Stability and Sum Completion properties of the Swarm
program. Therefore, the program satisfies its specification. Also it is true that Post∧I ⇒
Termination (as we argued in the proof of Sum Stability). Thus the Swarm program
terminates immediately upon completing the computation of the desired sum.

Differences between the proofs for the UNITY and Swarm programs stem from three
principal sources. First, the dynamic nature of the Swarm data tuples leads to the inclu-
sion of invariant properties taken for granted in UNITY where variables cannot disappear
or acquire multiple values. Second, the Swarm program allows a termination proof. Third,
the dynamic nature of synchronic groups forced us to strengthen the invariant properties
in ways that relate the data state with the synchronic groups operating over it and limit
the set of synchronic groups one must consider during verification. Some of the additional
safety conditions are actually rather simple and could have been isolated from the main
body of the proof. Others have the effect of lengthening some of the invariants thus
adding to the complexity of the proofs.

4 Dynamic synchrony

4.1 Overview of DS

The ability to alter dynamically the structure of synchronous computations provides
an interesting modeling capability of potential import in specifying and reasoning about
a system that combines synchronous and asynchronous features—particularly when the
system may be subject to dynamic reconfiguration. However the Swarm mechanism for
specifying synchronic groups, the synchrony relation, proved to be less general than ex-
pected. Dynamic Synchrony (Roman and Plun 1993) is both more general and more
abstract than Swarm: actions (corresponding directly to Swarm transactions) may be
enabled and disabled freely; the choice of actions to be executed synchronously is de-
termined by the current state of the computation; the synchronization requirements are
expressed as predicates; and an enabled action may belong to zero or more synchronic
groups. In this section we introduce the basic computational model underlying Dynamic
Synchrony (DS), with the proof system and the sample proof following in subsequent
sections.

18

Consider a concurrent program P . In the absence of synchrony, its current state σ
consists of a finite set of data objects and program actions. The data state σ.d of P is
characterized by the set of data objects currently in existence and the control state σ.a
by the set of program actions currently enabled. The data objects come from a possibly
infinite universe of data objects D. The program actions come from a possibly infinite
universe of program actions A. Each action denotes a nondeterministic, terminating,
atomic transformation of the program state. In the case of a sequential program operating
over a set of simple variables, for instance, the data state may be viewed as a set of name-
value pairs and the control state consists of a single action, the statement indicated by
the program counter.

As in Swarm, synchrony is defined as the coordinated execution of two or more actions
of program P . The effect of executing a particular group (set) of actions is assumed to be
problem-specific but finite and atomic. The entire group is treated as a single action. If
individual actions are used to model assignment statements operating on simple variables,
for instance, a convention must be adopted to deal with the consequence of assigning
multiple distinct values to the same variable—a nondeterministic, minimum or null value
are all acceptable choices. As shown later in this section, the interpretation associated
with the execution of a (possibly singleton) group of actions is stated in terms of assertions
(Hoare triples) about changes in the program state caused by the group’s execution. DS
assumes that such assertions are available for the problem at hand.

As in Swarm, a set of actions that is executed synchronously is called a synchronic
group and includes only enabled actions. The composition of synchronic groups may
change with each state transition even if the set of enabled actions is constant. While
in Swarm every enabled action (i.e. transaction) belongs to precisely one synchronic
group, in DS an enabled action may belong to several synchronic groups or to none.
Furthermore, in DS the set of synchronic groups associated with a given program state
can be any desired subset of the powerset of enabled actions while in Swarm they are
restricted to a partition.

Given an arbitrary group of actions γ and the current state σ of a program P , we
use the predicate Ξ(γ, σ) to state that γ is a synchronic group (i.e. executable) in state
σ. However, in DS we find it convenient to specify executability indirectly in terms of
another predicate which identifies all the synchronic groups that might feasibly exist in
a state σ. Φ(γ, σ), a problem specific predicate, states that the actions in γ may be
executed synchronously, i.e. γ is said to be feasible but not necessarily executable since it
may be outside the powerset of enabled actions. To state the requirement that all actions
in γ are also enabled, we use the notation E(γ, σ), i.e. E(γ, σ) ≡ γ ⊆ σ.a. This leads
to the defining executability as Ξ(γ, σ) ≡ Φ(γ, σ) ∧ E(γ, σ). For the sake of brevity, we
overload the notation by omitting the state σ whenever the state may be deduced from
the context. Finally, we often use the notation α in place of { α } for sets consisting of
single actions.

Starting from some valid initial state σ0, an execution of a program P is an alternating
sequence of program states and synchronic groups:

σ0 γ0 σ1 γ1 σ2 γ2 σ3 γ3 σ4 · · ·

Each subsequence of the form σ γ σ′, also called a step, corresponds to the selection of
a (non-empty) synchronic group in the state σ and its execution resulting in the state

19

σ′. At each step, any enabled action is selected and some synchronic group to which
it belongs is executed. By convention, the selection of an enabled action that does not
belong to any synchronic group has no effect on the computation. A computation is
considered terminated once no more synchronic groups can be selected. All executions
are considered infinite by extending finite ones with pairs consisting of an empty set
of actions and the final state of the finite execution. An execution is said to be fair if
any continuously enabled action is eventually selected for execution. Only fair execution
sequences are considered when proving a program correct. Hence, some action that is
continuously enabled may never be executed, because it may not belong to any synchronic
group.

All existing programming languages and models include notation and constructs that
specify which actions are enabled. Flow-of-control constructs serve this purpose in im-
perative languages. The availability of input identifies enabled functions in dataflow
languages. The mere presence of a statement indicates enablement in UNITY. The pred-
icate E (enabled) is simply an abstraction for any such mechanism used to specify which
actions are enabled in the current state.

Similarly, the predicate Φ (feasible) is an abstraction for mechanisms used to specify
that two or more actions must be executed synchronously. When modeling UNITY,
the predicate Φ has to capture the ‖ construct. In the case of CSP (Hoare 1978),
Φ must express the fact that matching pairs of input/output commands must execute
synchronously—since an input/output command may have several acceptable matches,
all possible combinations must be feasible. When modeling an SIMD machine, Φ must
state that all enabled statements are executed synchronously and every processor exe-
cutes the same statement. To fully appreciate the power of this model one must note
that most models (with the notable exception of Swarm) do not allow the programmer to
change dynamically the specification of which actions are in synchrony with which other
actions. Given the fact that Φ is state-dependent, rather than merely action dependent,
DS is fully capable of capturing arbitrary dynamic changes in the type of synchrony em-
ployed by programs. This, together with the fact that actions may be disabled at any
time, makes DS much more general that Swarm.

4.2 Proof logic

Next we consider the DS programming logic. As in UNITY and Swarm, properties
of individual actions and groups can be characterized using Hoare triples. As before, an
assertion of the form

{p} γ {q}

states that the execution of a synchronic group γ in a state satisfying p always results
in a state satisfying predicate q. Since actions that are not part of any synchronic group
may be selected for execution we assume, by definition, that their execution leaves the
program state unchanged. Because of the fairness requirement, if the action remains
continuously enabled it will eventually be reselected for execution. An action may be
selected infinitely often but still have no effect on the computation if every time it is
selected the action happens not to belong to any synchronic group. While in UNITY and
Swarm fair selection translates into fair execution, in DS this is not the case.

20

Given two predicates p and q, p unless q specifies that, whenever the program is
in a state satisfying p but not q, any state change will result in a state still satisfying
either p or q. In UNITY, this has to be proven solely for every possible statement of
the program taken individually, while in Swarm over the universe of possible synchronic
groups. In DS, as any group of actions can potentially be executed together, we need to
prove that any subset of the universe A of actions will either maintain p or establish q.
More formally, the inference rule needed to establish p unless q has the form:

〈∀ γ : γ ⊆ A :: { p ∧ ¬q } γ { p ∨ q }〉
p unless q

It should be obvious that any set of actions that is not executable in any state satisfying
p, trivially preserves p. Given the unless relation, the definitions of stable, invariant
and constant remain unchanged.

Given two predicates p and q, p ensures q is true if (1) p unless q holds and (2) q
is eventually established. In UNITY, this is the case if there exists at least one statement
that, executed in a state in which p∧¬q is true, always establishes q; Swarm requires that
(1) some action α be enabled in the dataspace satisfying p∧¬q, and (2) every synchronic
group containing α will, if executed, establish q. In DS, we need to further expand this
definition to take into account that an action can be removed before being executed and
an enabled action need not be a member of any synchronic group. Thus, we define the
ensures relation as follows: Given two predicates p and q, p ensures q is true if (1)
p unless q holds, (2) there exists an action α that remains part of some synchronic group
until q is established and (3) any executable synchronic group containing α establishes q
upon execution in a state satisfying p ∧ ¬q:

p unless q,
〈∃α : α ∈ A :: (p ∧ ¬q ⇒ 〈∃ γ : γ ⊆ A ∧ α ∈ γ :: Ξ(γ)〉)∧

〈∀ γ : γ ⊆ A ∧ α ∈ γ ∧ Ξ(γ) :: {p ∧ ¬q} γ {q}〉〉
p ensures q

The definition of the leads-to relation remains unchanged.

4.3 Example proof

Since no concrete syntax has been developed yet for DS, the DS program discussed in
this section is given using the basic Swarm notation except that the query and manipula-
tion of synchrony relation entries are disallowed and a section that defines the feasibility
function Φ is added. The resulting program is shown in Fig. 4. While the transactions
Sum(k, j) no longer create and delete synchrony relation entries, the synchronic groups
are the same as in the Swarm version of the program. All the transactions participating in
the phase j of the summation form a feasible group γj and each feasible group is enabled
precisely when the computation reaches that phase. In the remainder of this section we
consider the implications of these program changes on its correctness proof.

If we can show that corresponding data states in the Swarm and the DS programs
have the same synchronic groups, the correctness of the DS program follows from the
proof in section 3. Formally, we have to revisit the Property 7 (Structure Invariant) and
to show that it holds in the DS program. This condition can be restated as follows:

21

program DS Sum(N,A : [∃p : p ≥ 0 :: N = 2p], A(i : 1 ≤ i ≤ N))
tuple types

[i, s : 1 ≤ i ≤ N :: x(i, s)]
transaction types

[k, j : 1 ≤ k ≤ N, 1 ≤ j < N ::
Sum(k, j) ≡

v1, v2 : x(k−j, v1)†, x(k, v2)† → x(k, v1+v2)
‖ j < N, kmod (j ∗ 4) = 0 → Sum(k, j ∗ 2)

]
initialization

[i : 1 ≤ i ≤ N :: x(i, A(i))]
[k : 1 ≤ k ≤ N, kmod 2 = 0 :: Sum(k, 1)]

synchronization
γj ≡ [set k : 1 ≤ k ≤ N, kmod (2 ∗ j) = 0 :: Sum(k, j)]
Φ(γ) ≡ [∃ j :: γ = γj]

end

Figure 4: Array summation in DS using a Swarm-like notation

Property 9 (Modified Structure Invariant)

invariant
pow2(N) ∧ pow2(Wx) ∧
(x(i, v) ≡ node(i,Wx) ∧ v = sumA(i−Wx, i)) ∧
(Sum(i, j) ≡ node(i, 2∗j) ∧ j = Wx) ∧
(Ξ(γj) ≡ j = Wx)

Proof of the Modified Structure Invariant: In the initial state there is only one
synchronic group, γ1, and the metric Wx assumes the value 1. The synchronic group γ1

contains a Sum transaction for each even position in the array. For any j less than N/2,
the execution of the synchronic group γj leads to the creation of all and only transactions
that are part of γ2∗j , itself a feasible group. For j equal to N/2, the execution of the
synchronic group γj leads to an empty transaction space, i.e. no synchronic group to
continue the execution. γN is empty by definition. The impact on array elements and
transactions is the same as in the Swarm program.

The changes to the section 3 proof are minimal because the programs appearing
in Fig. 3 and Fig. 4 are operationally similar. A small change to the program in Fig. 4,
however, provides a more dramatic illustration of the expressive power of DS. Rather than
create all the Sum transactions in a single step, we introduce an intermediary MakeSum
transaction that simply forces the creation of the Sum transactions to be asynchronous.
The synchronization section is also modified to ensure that the only feasible transaction

22

program DS Sum V ariant
(N,A : [∃p : p ≥ 0 :: N = 2p], A(i : 1 ≤ i ≤ N))

tuple types
[i, s : 1 ≤ i ≤ N :: x(i, s)]

transaction types
[k, j : 0 ≤ k ≤ N, 1 ≤ j < N ::

Sum(k, j) ≡
v1, v2 : x(k−j, v1)†, x(k, v2)† → x(k, v1+v2)

‖ j < N, kmod (j ∗ 4) = 0 → MakeSum(k, j ∗ 2)

MakeSum(k, j) ≡
true → Sum(k, j)

]
initialization

[i : 1 ≤ i ≤ N :: x(i, A(i))]
[k : 1 ≤ k ≤ N, kmod 2 = 0 :: MakeSum(k, 1)]

synchronization
γj ≡ [set k : 1 ≤ k ≤ N, kmod (2 ∗ j) = 0 :: Sum(k, j)]
Φ(γ) ≡ [∃ j :: γ = γj] ∨ [∃ k, j :: γ = [set :: MakeSum(k, j)]]

end

Figure 5: Partially asynchronous array summation in DS

groups are either individual MakeSum transactions or complete sets of Sum transactions
corresponding to instances of γj . Individual Sum transactions may be present in the
dataspace but even if executed they have no effect until the full set is created. This
modified program is shown in Fig. 5.

This time both Property 7 (Structure Invariant) and Property 8 (Sum Step) are
affected by this program change. The Structure Invariant must accommodate the fact
that a MakeSum transaction may be substituting for a corresponding Sum transaction
and that γj is not executable as long as there are still MakeSum transactions around. In
the Sum Step the ensures changes to a leads-to.

Property 10 (Revisited Structure Invariant)

invariant
pow2(N) ∧ pow2(Wx)∧
(x(i, v) ≡ node(i,Wx) ∧ v = sumA(i−Wx, i))∧
(MakeSum(i, j)⇒ ¬Sum(i, j))∧
(Sum(i, j) ∨MakeSum(i, j) ≡ node(i, 2 ∗ j) ∧ j = Wx)∧
(Ξ(γj) ≡ j = Wx ∧ 〈∀i :: ¬MakeSum(i, j)〉)

23

Property 11 (Revisited Sum Step) Wx = k < N 7−→ Wx = 2 ∗ k

The proof of Property 10 is not fundamentally different from the earlier version. The
proof of Property 11 requires one to show that the number of MakeSum transactions
decreases to zero (due to the fact that they are the only transactions that can execute)
at which point the appropriate γj is formed and the summation step actually takes place.
We omit the actual proof.

5 Conclusions

The starting point for this work was UNITY and its proof logic. Swarm and DS
represent two progressively more radical and dynamic departures from the basic UNITY
model. Nevertheless, most of the structure of the UNITY proof logic carried over. Only
the proof obligations for the unless and ensures relations have been affected by the new
features. In retrospect, this can be easily explained by the fact that these relations are
the only ones to be defined in terms of properties of individual program actions. Even
though Swarm and DS provide novel mechanisms for determining what an action is, they
preserve the basic notion of atomic action. For static problems, the use of Swarm or DS
incurs only minor increases in verification complexity. For problems that involve dynamic
data and action creation, Swarm provides a convenient notation and the simplicity of the
UNITY-like proof logic. DS does the same thing for problems that involve reasoning
about synchrony.

Because the three models share a common proof logic, program derivation techniques
based on specification refinement often need not worry about which of the three models
is ultimately used to describe the resulting program. This may not be the case in the
future as program derivation techniques that exploit features specific to Swarm and DS
are developed. To date, Swarm has been used already in program derivation efforts
that involve a combination of UNITY-style specification refinements followed by Swarm-
specific program refinements targeted to achieving executability on specific architectures.
DS has not been employed in any research on formal derivation. Its most interesting
application to date has been in showing that it can be useful in constructing UNITY-like
assertional proofs for models completely unrelated to UNITY. The key here has been the
DS ability to formalize their particular synchronization mechanisms.

Acknowledgements

This work was supported, in part, by the National Science Foundation (USA) under
grants CCR-9210342 (first author) and CCR-9015677 (second and third authors).

References

Andrews, G. R. and Reitman, R. P. (1980). Axiomatic approach to information flow in
programs, ACM Transactions on Programming Languages and Systems 2(1): 56–76.

24

Apt, K. R., Francez, N. and de Roever, W. P. (1980). A proof system for Communicating
Sequential Processes, ACM Transactions on Programming Languages and Systems
2(3): 359–385.

Brownston, L., Farrell, R., Kant, E. and Martin, N. (1985). Programming Expert Systems
in OPS5: An Introduction to Rule-Based Programming, Addison-Wesley, Reading,
Massachusetts, USA.

Chandy, K. M. and Misra, J. (1988). Parallel Program Design: A Foundation, Addison-
Wesley, Reading, Massachusetts, USA.

Cunningham, H. C. and Roman, G.-C. (1990). A UNITY-style programming logic for
shared dataspace programs, IEEE Transactions on Parallel and Distributed Systems
1(3): 365–376.

Dijkstra, E. W. (1976). A Discipline of Programming, Prentice-Hall, Englewood Cliffs,
New Jersey, USA.

Floyd, R. (1967). Assigning meaning to programs, in J. T. Schwartz (ed.), Mathematical
Aspects of Computer Science, American Mathematical Society, Providence, Rhode
Island, USA, pp. 19–32.

Francez, N. (1986). Fairness, Springer-Verlag, New York.

Gamble, R. F., Roman, G.-C., Ball, W. E. and Cunningham, H. C. (in press). Applying
formal verification methods to rule-based programs, International Journal of Expert
Systems Research and Applications.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming, Communications
of the ACM 12(10): 576–580.

Hoare, C. A. R. (1978). Communicating sequential processes, Communications of the
ACM 21(8): 666–677.

Lamport, L. (1977). Proving the correctness of multiprocess programs, IEEE Transactions
on Software Engineering 3(2): 125–143.

Lamport, L. (1980). The Hoare logic of concurrent programming, Acta Informatica
14(1): 21–37.

Lynch, N. A. and Tuttle, M. R. (1989). An introduction to input/output automata, CWI
Quarterly 2(3): 219–246.

Manna, Z. and Pnueli, A. (1974). Axiomatic approach to total correctness of programs,
Acta Informatica 3: 243–264.

Manna, Z. and Pnueli, A. (1992). The Temporal Logic of Reactive and Concurrent Sys-
tems, Springer-Verlag, New York.

Milne, G. and Milner, R. (1979). Concurrent processes and their syntax, Journal of the
ACM 26(2): 302–321.

25

Misra, J. (1990). Soundness of the substitution axiom, Notes on UNITY 14–90, Depart-
ment of Computer Sciences, University of Texas at Austin, Austin, Texas, USA.

Morris, J. M. (1989). Laws of data refinement, Acta Informatica 26: 287–308.

Owicki, S. and Gries, D. (1976). Verifying properties of parallel programs: An axiomatic
approach, Communications of the ACM 19(5): 279–285.

Roman, G.-C. and Cunningham, H. C. (1990). Mixed programming metaphors in a
shared dataspace model of concurrency, IEEE Transactions on Software Engineering
16(12): 1361–1373.

Roman, G.-C. and Cunningham, H. C. (1992). Reasoning about synchronic groups, in
J. P. Banâtre and D. Le Métayer (eds), Research Directions in High-level Parallel
Programming Languages, LNCS #574, Springer-Verlag, New York, pp. 21–38.

Roman, G.-C. and Plun, J. (1993). Reasoning about synchrony illustrated on three
models of concurrency, Technical Report WUCS–93–4, Department of Computer
Science, Washington University, St. Louis, Missouri, USA.

Sanders, B. (1991). Eliminating the substitution axiom from UNITY logic, Formal As-
pects of Computing 3(2): 189–205.

Sterling, L. and Shapiro, E. (1986). The Art of Prolog, MIT Press, Cambridge, Mas-
sachusetts, USA.

26

