
Using the Divide and Conquer Strategy to Teach Java Framework Design

H. Conrad Cunningham1, Yi Liu1, Cuihua Zhang2

1 Computer & Information Science, University of Mississippi
2 Computer & Information Systems, Northwest Vista College

cunningham@cs.olemiss.edu

ABSTRACT
All programmers should understand the concept of program families and know the

techniques for constructing them. This paper describes a case study that can be used to
introduce students in a Java software design course to the construction of program families
using software frameworks. The example is the family of programs that use the well-known
divide and conquer algorithmic strategy.

1. INTRODUCTION
Parnas noted that a “software designer should be aware that he is not designing a

single program but a family of programs.” [8] Therefore, it is desirable to have future
programmers, i.e. students, develop this awareness early, e.g., in advanced programming or
software design courses.

A program family is a set of programs with so many common properties that it is
worthwhile to study the set as a group [7]. Object-oriented frameworks form a foundation
upon which members of program families can be built [1]. This paper describes one way to
introduce students to software frameworks by using the commonly known divide and conquer
algorithmic strategy as the basis for a family.

In an advanced Java programming or software design course, this topic can be
organized as a few lectures followed by a programming assignment. The lectures assume that
the students have completed an introductory computing science sequence using Java and
understand concepts such as inheritance, delegation, recursion, and sorting. They do not
assume prior study of frameworks.

2. FRAMEWORKS
In beginning programming classes students are taught to focus on a specific problem

and write a program to solve that problem. This is appropriate because beginning students
need to learn a particular programming language and grasp specific, concrete programming
skills. However, as students gain more experience in programming, they should be taught to
work at higher levels of abstraction. We need to shift their focus to techniques for building a
program family. Since a program family is a set of programs that have many common
properties, “it is advantageous to study the common properties of the programs before
analyzing individual members.” [7] To design and implement a program family, we first find
the properties that are common to all programs; and then, based on the characteristics of these
commonalities, we make certain design decisions to realize software reuse.

A framework is a generic application that allows the creation of different specific
applications from a family [9]. It is an abstract design that can be reused within a whole
application domain. In a framework the common aspects of the family are represented by a set
of abstract classes that collaborate in some structure. Common behaviors are implemented by
concrete template methods in a base class. A variable aspect of the system, sometimes called
a hot spot [9], is represented by a group of abstract hook methods. The hook methods are
realized by concrete methods in a hot spot subsystem in an application of the family. Figure 1
shows a framework with a hot spot.

There are two principles for framework construction—unification and separation [2].
The unification principle uses inheritance to implement the hot spot subsystem. Both the
template methods and hook methods are defined in the same abstract base class. The hook
methods are implemented in subclasses of the base class. The separation principle uses
delegation to implement the hot spot subsystem. The template methods are implemented in a
concrete client class; the hook methods are defined in a separate abstract class and
implemented in its subclasses. The template methods thus delegate work to an instance of the
subclass that implements the hook methods.

Figure 1. Framework with a hot spot
A framework is a system that is designed with generality and reuse in mind; and

design patterns, which are well-established solutions to program design problems that
commonly occur in practice, are the intellectual tools to achieve the desired level of generality
and reuse. In our lectures, two patterns, corresponding to the two framework construction
principles, are used to implement the frameworks. The Template Method pattern uses the
unification principle. In using this pattern, a designer should “define the skeleton of an
algorithm in an operation, deferring some steps to a subclass,” to allow a programmer to
“redefine the steps in an algorithm without changing the algorithm’s structure.” [3] It captures
the commonalities in the template method in a base class while encapsulating the differences
as implementations of hook methods in subclasses, thus ensuring that the basic structure of
the algorithm remains the same [2]. We also structure a framework with the Strategy pattern,
which uses the separation principle. That approach is not shown here because of limitations
on the length.

3. DIVIDE AND CONQUER FRAMEWORK
To illustrate the design of a framework, we use the family of divide and conquer

algorithms as an example of a program family. The divide and conquer technique solves a
problem by recursively dividing it into one or more subproblems of the same type, solving
each subproblem independently, and then combining the subproblem solutions to obtain a
solution for the original problem. Well-known algorithms that use this technique include
quicksort, mergesort, and binary search. Since this algorithmic strategy can be applied to a
whole set of problems of a similar type, divide and conquer, in addition to its meaningful
influence in algorithms, serves well the purpose of examining a program family.

The pseudo-code for the divide and conquer technique for a problem p is as follows:
function solve (Problem p) returns Solution

{ if isSimple(p)
 return simplySolve(p);
 else
 sp[] = decompose(p);
 for (i= 0; i < sp.length; i = i+1)
 sol[i] = solve(sp[i]);
 return combine(sol);
}

Abstract Base Class

Hookmethod

Concrete Class1

Hookmethod

Concrete Class2

Hookmethod

Concrete Class3

Hookmethod

In this pseudo-code fragment, function solve() represents a template method because its
implementation is the same for all algorithms in the family. However, functions
isSimple(), simplySolve(), decompose(), and combine() represent hook methods
because their implementations vary among the different family members. For example, the
simplySolve() function for quicksort is quite different from that for mergesort. For
mergesort, the combine() function performs the major work while decompose() is simple.
The opposite holds for quicksort and binary search.

If the Template Method pattern is used to structure the divide and conquer framework,
then the template method solve() is a concrete method defined in an abstract class; the
definitions of the four hook methods are deferred to a concrete subclass whose purpose is to
implement a specific algorithm.

Figure 2 shows a design for a divide and conquer program family expressed as a
Unified Modeling Language (UML) diagram. The family includes three members:
QuickSort, MergeSort, and BinarySearch. Method solve() is a final method in the
base class DivConqTemplate. It is shared among all the classes. Hook methods
isSimple(), simplySolve(), decompose(), and combine() are abstract methods in
the base class; they are overridden in each concrete subclass (Quicksort, MergeSort, and
BinarySearch).

Divide and Conquer

DivConqTemplate

final solve()
abstract isSimple()
abstract simplySolve()
abstract decompose()
abstract combine()

MergeSort

isSimple()
simplySolve()
decompose()
combine()

QuickSort

isSimple()
simplySolve()
decompose()
combine()

BinarySearch

isSimple()
simplySolve()
decompose()
combine()

To generalize the divide and conquer framework, we introduce the two auxiliary types
Problem and Solution. Problem is a type that represents the problem to be solved by the
algorithm. Solution is a type that represents the result returned by the algorithm. In Java,
we define these types using tag interfaces (i.e., interfaces without any methods) as follows:

public interface Problem {};
public interface Solution {};
Given the auxiliary types above, we define the abstract Template Method class

DivConqTemplate below. We generalize the combine() method to take both the
description of the problem and the subproblem solution array as arguments.

abstract public class DivConqTemplate
{ final public Solution solve(Problem p)

 { Problem[] pp;
if (isSimple(p)){ return simplySolve(p); }
else { pp = decompose(p); }
Solution[] ss = new Solution[pp.length];
for(int i=0; i < pp.length; i++)
{ ss[i] = solve(pp[i]); }
return combine(p,ss);

}
abstract protected boolean isSimple (Problem p);

Figure 2. Template Method for divide
and conquer

abstract protected Solution simplySolve (Problem p);
abstract protected Problem[] decompose (Problem p);
abstract protected Solution
 combine(Problem p, Solution[] ss);

}
The divide and conquer framework thus consists of the DivConqTemplate class and the
Problem and Solution interfaces. We can now consider an application built using the
framework.

Quicksort is an in-place sort of a sequence of values. The description of a problem
consists of the sequence of values and designators for the beginning and ending elements of
the segment to be sorted. To simplify the presentation, we limit its scope to integer arrays.
Therefore, it is sufficient to identify a problem by the array and the beginning and ending
indices of the unsorted segment. Similarly, a solution can be identified by the array and the
beginning and ending indices of the sorted segment. This similarity between the Problem
and Solution descriptions enables us to use the same object to describe both a problem and
its corresponding solution. Thus, we introduce the class QuickSortDesc to define the
needed descriptor objects as follows:

public class QuickSortDesc implements Problem, Solution

{ public QuickSortDesc(int[]arr, int first, int last)
 { this.arr = arr;
 this.first = first; this.last = last;
 }
 public int getFirst () { return first; }
 public int getLast () { return last; }

 private int[] arr;
 private int first, last;

}
Given the definitions for base class DivConqTemplate and auxiliary class

QuickSortDesc, we can implement the concrete subclass QuickSort as shown below:
public class QuickSort extends DivConqTemplate
{ protected boolean isSimple (Problem p)

 { return (((QuickSortDesc)p).getFirst()
 >= ((QuickSortDesc)p).getLast());
 }
 protected Solution simplySolve (Problem p)
 { return (Solution) p ; }

 protected Problem[] decompose (Problem p)
 { int first = ((QuickSortDesc)p).getFirst();
 int last = ((QuickSortDesc)p).getLast();
 int[] a = ((QuickSortDesc)p).getArr ();
 int x = a[first]; // pivot value
 int sp = first;
 for (int i = first + 1; i <= last; i++)
 { if (a[i] < x) { swap (a, ++sp, i); } }
 swap (a, first, sp);
 Problem[] ps = new QuickSortDesc[2];
 ps[0] = new QuickSortDesc(a,first,sp-1);

ps[1] = new QuickSortDesc(a,sp+1,last);
 return ps;

}
 protected Solution combine (Problem p, Solution[] ss)
 { return (Solution) p; }

 private void swap (int [] a, int first, int last)
 { int temp = a[first];

a[first] = a[last];
 a[last] = temp;
 }

}
In lectures on this case study, both the framework (i.e., the abstract class) and the

framework application (i.e., the implementation of quicksort) can be presented to the students
so that they can discern the collaborations and relationships among the classes more clearly.
However, a clear distinction must be made between the framework and its application. As an
exercise, the students can be assigned the task of modifying the quicksort application to
handle more general kinds of objects. Other algorithms such as mergesort and binary search
should also be assigned as exercises.

4. DISCUSSION
This paper describes a simple example designed to help teach computing science

students both the use and construction of software frameworks. The example is aimed at
advanced Java programming or software design courses in which students have not been
previously exposed to frameworks in a significant way. The goal is to improve the students’
abilities to construct and use abstractions in the design of program families.

Some advocate that use of frameworks be integrated into the introductory computing
science sequence, e.g., into the data structures course [10]. In this approach, the
understanding and use of standard data structure frameworks replace many of the traditional
topics, which focus on the construction of data structures and algorithms. The availability of
standard libraries such as the Java Collections framework makes this a viable approach. The
argument is that when students enter the workplace, they more often face the task of using
standard components to build systems than of writing programs in which they re-implement
basic data structures and algorithms. Although it is appropriate that we cultivate the use of
high-level abstractions, we should be careful not to abandon teaching of the intellectual
fundamentals of computing science in a desire to train better technicians.

Others have constructed small software frameworks that are useful in pedagogical
settings. Of particular interest is the work by Nguyen and Wong. In [4], they describe a
framework design that decouples recursive data structures from the algorithms that
manipulate them. The design uses the State and Visitor design patterns to achieve the
separation. In subsequent work, using the Strategy and Factory Methods patterns, they extend
this framework to enable lazy evaluation of the linear structures [5]. In work similar to the
example in this paper, Nguyen and Wong use the Template Method and Strategy patterns and
the divide and conquer algorithmic approach to develop a generalized sorting framework [6].
They believe that their design not only gives students “a concrete way of unifying seemingly
disparate sorting algorithms but also” helps them understand the algorithms “at the proper
level of abstraction.”

The goal of the divide and conquer framework described in this paper differs from the
goal of Nguyen and Wong’s sorting framework. This paper focuses on teaching framework
use and construction. It seeks to support any divide and conquer algorithm, not just sorting.
The use of sorting algorithms to demonstrate the framework was incidental. However, future
development of the divide and conquer framework can benefit from the techniques illustrated
by Nguyen and Wong.

The first author has used the divide and conquer example and related programming
exercises three times in Java-based courses on software architecture. They are effective in
introducing students to the basic principles of framework construction and use if care is taken

to distinguish the framework from its application. However, other exercises are needed to
help students learn to separate the variable and common aspects of a program family and to
define appropriate abstract interfaces for the variable aspects.

5. CONCLUSION
Software frameworks and design patterns are important concepts that students should

learn in a Java software design course. These concepts may seem very abstract to the
students, and therefore we need to start with familiar, non-daunting problems. This paper
shows that the divide and conquer algorithmic strategy can be used as an example to provide
a familiar, simple and understandable environment in which students can better understand
these concepts. The Template Method pattern is illustrated through the design of this simple
framework. Since students are familiar with the algorithms and may have implemented them,
they can concentrate on the design process more instead of the coding process and thus learn
more effectively how to design a framework and build a program family.

6. ACKNOWLEDGEMENTS
 The work of Cunningham and Liu was supported, in part, by a grant from Acxiom
Corporation titled “The Acxiom Laboratory for Software Architecture and Component
Engineering (ALSACE).”

7. REFERENCES
[1] M. E. Fayad, D. C. Schmidt, and R. E. Johnson. Building Application Frameworks:

Object-Oriented Foundations of Framework Design, Wiley, 1999.
[2] M. Fontoura, W. Pree, and B. Rumpe. The UML Profile for Framework Architectures.

Addison-Wesley, 2002.
[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.
[4] D. Nguyen and S. B. Wong. “Patterns for Decoupling Data Structures and

Algorithms,” In Proceedings of ACM SIGCSE Technical Symposium, pp. 87-91, March
1999.

[5] D. Nguyen and S. B. Wong. “Design Patterns for Lazy Evaluation,” In Proceedings of
ACM SIGCSE Technical Symposium, pp. 21-25, March 2000.

[6] D. Nguyen and S. B. Wong. “Design Patterns for Sorting,” In Proceedings of ACM
SIGCSE Technical Symposium, pp. 263-267, February 2001.

[7] D. L. Parnas. “On the Design and Development of Program Families,” IEEE
Transactions on Software Engineering, Vol. SE-2, pp. 1-9, March 1976.

[8] D. L. Parnas. “Designing Software for Ease of Extension and Contraction,” IEEE
Transactions on Software Engineering, Vol. SE-5, pp. 128-138, March 1979.

[9] H. A. Schmid. “Systematic Framework Design by Generalization,” Communications of
the ACM, Vol. 40, No. 10, pp. 48-51, October 1997.

[10] J. Tenenberg. “A Framework Approach to Teaching Data Structures,” Proceedings of
the ACM SIGCSE Technical Symposium, pp. 210-214, February 2003.

