
A Reusable Software Framework
for Distributed Decision-Making Protocols

Sudharshan Vazhkudai H. Conrad Cunningham
Department of Computer and Information Science

University of Mississippi
University, MS 38677 USA

Abstract
Developers of programs for distributed systems spend considerable time designing solutions to

various complex decision-making problems. The work described in this paper applies the techniques of de-
sign patterns and software frameworks to the problem of designing decision-making protocols in distributed
systems. The goal is to reduce the time and effort involved in implementation.. The paper presents a reus-
able software- framework and applies it to a sender-initiated distributed scheduling protocol.

Keywords: Frameworks, Distributed Systems, Distributed Algorithms, Object Orientation, Patterns.

1.0 Introduction
Often the complexity of a distributed

system is a hindrance to the rapid development of
safe and effective software. Distributed systems
do not have a central point of control with direct
access to the states of all nodes, thus decisions
often require an exchange of state information
and a complex “negotiation” among the nodes.
The coordination of the distributed components
requires complex message-based protocols for
synchronization and communication. The basic
complexity is the same whether the system is a
multicomputer, a cluster of workstations or a
worldwide network.

Object-oriented techniques and technolo-
gies have opened up new approaches to the de-
sign of programs for distributed systems. Of
particular interest are design patterns and software
frameworks. According to Buschmann, a design
pattern “describes a particular recurring design
problem that arises in specific design contexts and
presents a well-proven generic scheme for its so-
lution.” [1] The application of patterns potentially
can reduce the complexity of the process of de-
signing and implementing distributed systems
software [2]. Whereas a pattern is a reusable de-
sign idea, a framework is a collection of software
entities. According to Johnson, “a framework is a
reusable design expressed as a set of abstract
classes and the way their instances collaborate”

[3]. Although construction of a software frame-
work may require a complex software develop-

ment effort, once developed and tested, a frame-
work reduces the complexity of developing soft-
ware within its domain.

The work described in this paper applies
the techniques of patterns and frameworks to the
problem of designing decision-making protocols
in distributed systems. The goal is to reduce the
time and effort involved in implementation. The
types of protocols covered include:

A mutual exclusion protocol, where a
node requests permission from all other nodes to
enter its critical section [4].

A consensus protocol, where nodes have
to agree upon certain issues. [5]

A leader election protocol, where nodes
are selected to coordinate certain tasks [4].

A sender or receiver initiated protocol for
distributed scheduling, where nodes advertise
their need/desire to schedule jobs and decide
based on the response to the advertisement [6].

A Byzantine protocol, where a faulty
node is detected based on recursive message
passing (announcing the status) and decision
making [7].

A distributed deadlock detection proto-
col, where messages are sent to nodes that hold
resources in an attempt to break a deadlock [8].

2.0 Framework Architecture
To build an object-oriented framework,

we must identify the common aspects of the pro-
tocols and design an appropriate abstraction. This
abstraction can then be expressed as a set of ab-
stract and concrete classes that collaborate to
form the basic structure upon which specific pro-
tocol implementations can be built. The first
choice in design is to select the architectural style
[9] that will guide the development. Then abstract
classes that capture the desired high-level behav-
iors can be defined. These abstract classes will
include certain abstract behaviors represented by
not-yet-defined operations that conform to the
specified interface. These operations can be de-
fined by building a class that inherits from the
abstract class or by delegating the operation to
other classes. In this work, we can be guided by
design patterns such as the Template Method
(which uses inheritance) or the Strategy pattern
(which uses delegation) [10].

2.1 Horizontal View
The framework consists of two pivotal

“horizontal” entities, an Initiator and a Listener.
Instances of these reside in each node in the dis-
tributed system and all instances execute concur-
rently. The Initiator and the Listener entities are
composed of several component objects. These
objects collaborate to perform the protocol-
specific and platform-dependent tasks.

The Listener entity launches at system
startup and listens for requests from other nodes.
It responds to each request by creating a separate
child process. This enables the parent to continue
listening for additional requests. Thus the Listener
behaves as a concurrent server.

A node launches its Initiator entity when
it must make a decision that requires coordination
with other nodes. This decision making might use
any of the above distributed protocols. Typically,
the Initiator entity at a node will collaborate with
the Listener entities in all the other nodes to arrive
at a decision. The Initiator and Listener execute
concurrently; while the Initiator at a node X is
interacting with the Listeners at other nodes, the
Listener entity at node X can interact with Initia-
tors at other nodes. This type of architecture sup-

ports the dynamic nature of a distributed system,
where any node can initiate a dialogue randomly.

2.2 Vertical View
Since this problem domain involves a

mix of high- and low-level issues, it seems natural
to employ the Layered Architecture pattern in
building the framework [1]. We identify three
“vertical” layers as shown in Figure 1: an Appli-
cation Layer, a Protocol-Specific Layer, and a
Platform-Dependent Layer. The horizontal enti-
ties are themselves layered, with their constituent
objects distributed across the three layers with
interaction only on the lowest layer. The Layered
Architecture specifies the responsibilities of each
layer and defines the interlayer collaborations.

2.2.1 Application Layer
The top layer of the architecture is the

Application Layer. Component objects at this
layer are aware of the needs of the user’s applica-
tion. The primary task is to configure the Proto-
col-Specific Layer below. Since a group of
compatible objects must be created together, this
is an opportunity to use the Abstract Factory pat-
tern [10]. Thus, the algorithm that needs to make
a decision and the abstract factory are both part of
the Application layer.

2.2.2 Protocol-Specific Layer
The middle layer of the three-tiered ar-

chitecture is the Protocol-Specific Layer. The ab-
stract classes provide a generic framework from
which protocol- specific classes can be derived.

To define the appropriate abstract struc-
ture, we first analyze typical protocols from the
domain and identify the “hot spots” and “frozen
spots” [11]. That is, we identify the points at
which the protocols are different and at which
they are the same. We define concrete classes
and operations to implement the shared function-
ality of the frozen spots. We then specify the be-
havior at the hot spots as abstract operations and
classes. We encapsulate the differences among
the protocols inside the abstract operations.

The Template Method pattern [10] helps
us structure the abstract classes so that we can use
inheritance to provide the needed concrete defini-
tions for a specific protocol [10]. We express the

high-level protocol-independent aspects of the
algorithm in concretely defined operations of a
class. These concrete operations call the abstract
operations to carry out the protocol-specific tasks.
To implement a new decision-making protocol,
we provide appropriate new concrete definitions
of the abstract operations.

The Strategy pattern [10], can provide
delegation-based plug-points in the framework
corresponding to the hot spots. In this approach,
we capture the high-level, protocol-independent
aspects of the algorithm in the specification of an
abstract class. We then define a concrete class
that implements the abstract class for a specific
protocol and plug an instance into the framework.
The overall framework then delegates the proto-
col-specific details to the instance.

In the decision-making framework, this
layer consists of the DispCol and the Decision-
Maker classes in the Initiator (i.e., at the client
end) and the MsgMgr and the MsgProc classes in
the Listener (i.e., at the remote end).

2.2.3 Platform-Dependent Layer
The bottom layer of the architecture is the

Platform-Dependent Layer. This layer consists of
components that are not affected by the specifics
of a protocol. For example, a change in protocol
will likely require recompilation of the code for
the top two layers but will not require recompila-
tion of this layer.

This layer is, however, dependent upon
the computing platform (hardware, operating
system, and network) upon which it executes.
This layer must be changed when the platform
changes. The layer consists of objects that main-
tain the system state. It encapsulates the mecha-
nisms for gathering the relevant information
about a node for sending this information to other
nodes, and for receiving similar information from
other nodes. The layer maintains this information
in the Comm and SST objects.

2.3 Framework Components
The hot spots in the framework appear in

the Protocol-Specific Layer. Thus we concentrate
our attention on the classes in that layer, begin-
ning with the Initiator component (Figure 2).

2.3.1 Components of the Initiator
The Dispatcher/Collector class DispCol is

the main entity in the Protocol-Specific Layer.
The responsibilities of this class are as follows:
1. Construct a Message from the information

provided by the Application Layer.
2. Contact the Platform-Dependent Layer to fill

in details such as to whom to send, how long
to wait after dispatching the message, etc.

3. Dispatch the Message built to the Comm ob-
ject of the Platform-Dependent Layer.

4. Collect responses from the Platform-
Dependent Layer and wait for responses.

5. Tabulate the responses.
6. Invoke the DMM (Decision-Maker) object to

make the needed decision.
7. Convey the decision to the client.
A fragment of the C++ class definition of Disp-
Col class is shown below.
class DispCol {
protected:

Message *msg;
Comm *tpg;
int timer_has_expired;
int timeout_replies;
int no_replies_xptd;
int no_arrived;
Message **response_list;
………………

public:
virtual int ComposeMesg() = 0;
virtual int Tabulate(Message *msg) = 0;
virtual int InitResponseList() = 0;
int Dispatch();
void doit(DecisionMaker *dmm);
int StartTimer();
int EnterWaitLoop();
void DispColTimeOut(int sig);
……………………………..

};
Let us look at code fragments for a few of the
member functions to illustrate the functionality.
void DispCol::doit (DecisionMaker *dmm) {

………………………
this->ComposeMesg();
this->InitResponseList();
this->Dispatch();
dmm->Decide(response_list, no_arrived);

}
We define the behavior of the hot spots

using abstract operations. In the code above, the

methods defined as virtual are identified as por-
tions of the framework that vary between proto-
cols. These methods include the ComposeMesg(),
Tabulate(), and InitResponseList() operations.
Similarly, examples of the frozen portions of the
framework are the Dispatch() and EnterWait-

Loop() operations.
The DispCol object combines these

methods to provide a template (using the Tem-
plate method pattern) that is inherited by concrete
protocol implementations. The doit() method is a
template for specific protocol implementations.
The DispCol class also delegates the actual deci-
sion making to the DecisionMaker object, dmm.
This delegation of responsibility for a protocol-
specific algorithm to another object is an applica-
tion of the Strategy pattern. The Dispatch()
method is a concrete method that uses the Comm
object to send and receive messages.
int DispCol::Dispatch() {

……………………
this->tpg = new Comm(this->msg);
……………………
this->tpg->Send();
……………………
StartTimer();
EnterWaitLoop();

…………………….
}
The EnterWaitLoop() method is a concrete
method that waits either for all messages to arrive
or for the timer to expire.
int DispCol::EnterWaitLoop() {

 …………..
while((no_arrived != no_replies_xptd) &&
! timer_has_expired) {

msg = this->tpg->Receive();
no_arrived++;
Tabulate(msg);
………………..

}
}
Other methods such as StartTimer() and Disp-
ColTimeOut() are concerned with setting up tim-
ers and time-out values.

Note that a Message class is used in the
DispCol class. The Message Class is the basic
message entity that is passed back and forth be-
tween various component objects and nodes.
class Message {
protected:

int protocol_id; // MutExcl, Scheduling, etc.
int from; // from id
int whom2send; // could be ID of a group
……………….

};
The above framework elements are the most
common among protocols. Specific protocols
would inherit from this class to add other ele-
ments. It is the responsibility of the DispCol ob-
ject to fill in a Message object. It achieves this by
contacting the SST object, which is described
later.

The DecisionMaker class is strictly con-
cerned with arriving at a decision based on the
responses collected; it is invoked by the DispCol
object. The C++ class definition is shown below.
class DecisionMaker {
public:

DecisionMaker();
…………………
virtual int Decide(Message **res,int arrv)=0;

};
The abstract method Decide() is the most impor-
tant element. Specific protocols could implement
different types of algorithms. Specific imple-
mentations apply different algorithms to the re-
sponse list as part of the Decide() method. For

APPLICATION LAYER

PROTOCOL-SPECIFIC LAYER

DISPCOL, MSGMGR,
DECISION-MAKER MSGPROC

PLATFORM-DEPENDENT LAYER

COMM,
SST

INITIATOR LISTENER

Figure 1

example, the Decide() method could perform a
sort on process and memory values for a sched-
uling protocol and then decide the validity of the
token for a mutual exclusion protocol.

2.3.2 Components of the Listener
Figure 3 shows the components of the

Listener entity.
The MsgMgr class is the DispCol equivalent

of the Listener. Its responsibilities include:

1. Composing a message from the arrived data.
2. Invoking the MsgProc object with the mes-

sage.
3. Composing a message for reply.
4. Replying to the Initiator, using the Comm

object.
The C++ class definition is shown below.
class MsgMgr {
protected:

Message *msg;
Comm *tpg;
………………..

public:
………………..
virtual int ComposeMesg() = 0;
void doit(MsgProc *mproc);
int Reply();

};
The concrete Reply() and doit() methods are quite
similar to the methods in DispCol class, except
there is no timer involved. The ComposeMesg()

abstract method must be specialized by different
protocols to build protocol specific messages.

The MsgProc class is similar to the Deci-
sionMaker class. The MsgProc also has an ab-
stract Decide() method. The Decide() method is
specialized by the specific implementation.

2.3.3 Common Components
The classes in the Platform-Dependent

Layer, Comm and SST, are two components that
are common to both the Initiator and the Listener.

The Comm class is a generalization of the
communication aspects of distributed systems. It
encapsulates the architecture (multiprocessors,
etc), communication media (shared memory, etc),
topology (bus, ring, tree, etc), header and packet
building mechanisms, time-out mechanism, and
packet transmission, re-transmission, reception
and synchronization issues [6, 8].

The SST is the System State Table [4].
Each node maintains a copy of the SST; it holds
the necessary information about the machines in
the distributed system. Thus, all nodes communi-
cate among themselves to update their SST’s.
Listed below are a few elements of the SST.
class SST {
private:

int whoami, cluster_size, whoiswho;
int do_I_have_token;
int nrprocs, freemem, netreqs;
………………………

};

3.0 An Implementation
We have implemented two protocols, a

Machine Election for Sender-Initiated Distributed
Scheduling [6] and Mutual Exclusion [4]. Here
we look at the scheduling protocol.

3.1 Sender-Initiated Scheduling
A sender-initiated scheduling protocol is

a load-sharing process initiated by a heavily
loaded node that attempts to send a task to a
lightly loaded node. The overloaded node, X,
queries all other nodes to determine whether they
have enough resources to take on a task from the
overloaded node. The requirements for the proc-
ess (say a node with available memory >= M and
with processes < P) are encapsulated in the mes-

uses

uses
has-a

uses
COMMSST

uses

DISPCOL
DECISION
MAKER

INITIATORCLIENT
FACTORY

Figure 2

sage sent to a group of nodes in the system. Other
nodes reply (along with their memory and proc-
esses values) if they have enough resources. Node
X then selects the optimal one [6, 8].

Let us discuss a few important methods.
We name the derived classes with the suffix
MCELE (machine election). Thus we have Disp-
ColMCELE, DecisionMakerMCELE, and so
forth. This implementation has a MessageM-
CELE class that inherits from the Message class.
It has the following elements.

class MessageMCELE : public Message {
private:

int proc_req, mem_req;
……………………….

};

The Tabulate() virtual method creates a list of all
the responses. A variation could be a hashing
function that hashes responses into the list based
on their process and memory values.
int DispColMCELE::Tabulate(Message *msg) {

MessageMCELE *msgmc = new MessageM-
CELE(msg);

this->response_list[no_arrived-1]= (Mes-
sageMCELE *)msgmc;
…………………………….

}
The Decide() method finds the optimal response
(the node with the most memory and fewest proc-
esses) from the list of responses.

int DecisionMakerMCELE::Decide
(Message **response_list, int noarr) {
for(i = 0; i < noarr; i++) {
// A simple sort on response_list[i]
}

}
The Decide() method of the MsgProcMCELE
class queries the SST object to find the number of
processes currently running and the amount of
memory available. It compares these values with
the proc_req and the mem_req in the message. If
the condition is satisfied, it copies the values into
the message. Thus, using the framework, we
could develop efficient protocols easily, thereby
minimizing the effort required otherwise.
virtual int MsgProcMCELE::Decide(Message *msg)
{

SST *sst = new SST();
int p, m;

sst->GetProcMem(&p, &m);
if((p <= msg->GetProc() &&

(m >= msg->GetMem())) {
msg->SetProcMem(p, m);
return 1;

}
else

return 0;
}

}

3.2 Application Layer Issues
The Application Layer uses a structure

based on the Abstract Factory pattern [10] to
manage the different protocols. Given a set of
related abstract classes, this pattern enables us to
create compatible groups of objects drawn from
the concrete subclasses without the user knowing
the specific subclasses being instantiated. The
need for the pattern stems from our desire to sup-
port multiple protocols in each node. All these
protocols have a common set of abstract classes.
We employ the pattern to create concrete facto-
ries, which handle specific protocol requests.

In the Initiator, the concrete factory re-
ceives a request from the client and instantiates
the protocol-specific classes such as Disp-
ColMCELE and DecisionMakerMCELE. Like-
wise, in the Listener, the concrete factory receives
a message from the Comm object and instantiates
the MsgMgrMCELE and MsgProcMCELE

uses

uses
has-a

uses
COMMSST

uses

MSGMGR
MSGPROC

LISTENERREMOTE
FACTORY

Figure 3

classes. The Comm object delivers messages to
the factories for different protocols. The factory
would typically create a separate thread of execu-
tion for each request.

4.0 Discussion
System developers must invest significant

effort in design and implementation of decision-
making protocols. To decrease the needed in-
vestment, we developed a reusable software
framework for distributed decision-making proto-
cols. We organized the framework using a layered
architecture and presented two complementary
views, horizontal and vertical.

The horizontal view consists of two types
of entities, Initiators and Listeners. They repre-
sent the high-level, inter-node collaborations nec-
essary to make the decisions. An Initiator and a
Listener execute concurrently on each node. Each
entity consists of component objects spread
across the various layers of the architecture.

The vertical view is of three interacting
layers, organized according to the information
"hidden" inside each. At the top, the Application
Layer encapsulates the details of the user's com-
putation. In the middle, the Protocol-Specific
layer encapsulates the specific details of a deci-
sion-making protocol. At the bottom, the Plat-
form-Dependent layer encapsulates the details of
the hardware/software infrastructure.

We focussed was on the Protocol-
Specific Layer. We factored it into generic as-
pects that are the same for all protocols in the
domain (i.e., frozen spots) and aspects that vary
among the protocols (i.e., hot spots).

The simple framework described here is a
white-box framework [12]. That is, its design and
implementation must be understood before it can
be used. We applied the Template Method pattern
to structure the generic algorithms for distributed
decision making. The framework includes sev-
eral abstract classes that encapsulate these algo-
rithms. In these algorithms, certain key
operations are left abstract. For a specific appli-
cation users must subclass the abstract classes,
providing appropriate concrete definitions for the
abstract operations. As more implementations are
done using the framework, it may be possible to
evolve it toward a black-box framework. A

black-box framework [12] includes a library of
concrete, application-specific components that
can be plugged into hot spots in the generic appli-
cation. The components for a particular hot spot
must adhere to the given abstract interface and
have the required behaviors. However, these
components can be used without the user under-
standing the details of their internal construction;
the users only need to understand the external
interfaces of the components.

References
[1] F. Buschmann, R. Meunier, H. Rohnert,

P. Sommelad, M. Stal, Pattern-Oriented
Software Architecture, A System of Pat-
terns, Wiley, 1996.

[2] D.C. Schmidt, “ASX: An Object Oriented
Framework for Developing Distributed
Applications,” Proceedings of the 6th

USENIX C++ Conference, Cambridge,
MA, April 1994.

[3] R. Johnson, “Frameworks Home Page,”
Dept of Computer Science, University of
Illinois,1997.http://st-
www.cs.uiuc.edu/users/ johnson/ frame-
works.html

[4] N.A. Lynch, Distributed Algorithms,
Morgan Kaufmann, 1996.

[5] D. Dolev, R. Strong, "Distributed Com-
mit with Bounded Waiting," Proceedings
of the 2nd IEEE Symposium on Reliability
in Distributed Software and Database
Systems, July 1982.

[6] M. Singhal, N.G. Shivaratri, Advanced
Concepts in Operating Systems, McGraw
Hill, 1994.

[7] L. Lamport, "The Weak Byzantine Gen-
erals Problem," Journal of the ACM, vol.
30, no. 3, July 1983, pp. 669-676.

[8] A.S. Tanenbaum, Distributed Operating
Systems, Prentice Hall, 1995.

[9] M. Shaw, D. Garlan, Software Architec-
ture. Perspectives on an Emerging Disci-
pline, Prentice Hall, 1996.

[10] E. Gamma, R. Helm, R. Johnson, J. Vlis-
sides, Design Patterns, Elements of Reus-

http://stwww.cs.uiuc.edu/users/johnson/frameworks.html
http://stwww.cs.uiuc.edu/users/johnson/frameworks.html
http://stwww.cs.uiuc.edu/users/johnson/frameworks.html

able Object-Oriented Software, Addison-
Wesley, 1995.

[11] W. Pree, Design Patterns for Object-
Oriented Software Development,
Addison-Wesley, 1995.

[12] R. Johnson, B. Foote, "Designing Re-
susable Classes," Journal of Object-
Oriented Programming, 1988.

