
Using Classic Problems to Teach Java

Framework Design

H. Conrad Cunningham a, Yi Liu a, Cuihua Zhang b

aDepartment of Computer and Information Science, University of Mississippi,

201 Weir Hall, University, MS 38677 USA

bDepartment of Computer and Information Systems, Northwest Vista College,

AB 135, San Antonio, TX 78251 USA

Abstract

All programmers should understand the concept of software families and know the
techniques for constructing them. This paper suggests that classic problems, such
as well-known algorithms and data structures, are good sources for examples to use
in a study of software family design. The paper describes two case studies that can
be used to introduce students in a Java software design course to the construction
of software families using software frameworks. The first is the family of programs
that use the well-known divide and conquer algorithmic strategy. The second is the
family of programs that carry out traversals of binary trees.

Key words: software family, software framework, hot spot, design pattern, divide
and conquer, tree traversal

1 Introduction

In a classic paper [1] David Parnas observes, “Variations in application de-
mands, variations in hardware configurations, and the ever-present opportu-
nity to improve a program means that software will inevitably exist in many
versions.” Parnas proposes that development of a program should therefore
be approached as the development of a whole family of related programs. He
defines a program family as a set of programs “whose common properties are
so extensive that it is advantageous to study the common properties of the
programs before analyzing individual members.” If programmers can recog-
nize and exploit these “common aspects and predicted variabilities” [2], the
resulting software can be constructed to reuse code for the common parts
and to enable convenient adaptation of the variable parts for specific circum-
stances. In a 2001 article [3], Parnas observes that there is “growing academic

Preprint submitted to Elsevier Science 14 March 2005

interest and some evidence of real industrial success in applying this idea,”
yet “the majority of industrial programmers seem to ignore it in their rush
to produce code.” He warns [3], “if you are developing a family of programs,
you must do so consciously, or you will incur unnecessary long-term costs.” If
software families are to become pervasive, future industrial programmers (i.e.,
students) need to learn to design and construct them effectively. This is an
important challenge for computing science and software engineering curricula.

How can we respond to this challenge within a college course? The general
form of software family is called a software product line. A software product
line is “a collection of systems sharing a managed set of features constructed
from a common set of core software assets” [4]. These assets include a common
software architecture shared by the products and a set of reusable software
components [5]. Software product lines in their full generality are difficult to
teach in the setting of a college course because their design may require exten-
sive knowledge of the application domain and use of special-purpose languages
and tools [2]. However, the form of software family called a software frame-

work is more accessible. A framework is essentially the reusable skeleton of a
software product line implemented entirely in an object-oriented programming
language. The common aspects are expressed by a set of abstract and concrete
“classes that cooperate closely with each other and together embody a reusable
solution” [6] to problems in the application domain. The framework can be
customized to a specific member of the family by “plugging in” appropriate
subclasses at the supported points of variability. Frameworks are more acces-
sible to students because the techniques build upon standard object-oriented
concepts that students are taught in undergraduate courses.

How can we introduce students to the concept of software frameworks? Some
advocate that teaching of frameworks be integrated into the introductory com-
puting science sequence. For example, they might be used to introduce a gener-
alization of sorting algorithms [7] or to provide a new approach to teaching the
standard introductory data structures material [8]. They might also provide
interesting programming examples and exercises to reinforce object-oriented
programming concepts and introduce design patterns into the introductory se-
quence [9–11]. Some textbooks use standard Java libraries such as the Collec-
tions, Swing, and input/output frameworks and case studies such as drawing
pads as examples to illustrate the concepts and techniques [12].

There are at least four levels of understanding of software frameworks that stu-
dents need to develop. First, because frameworks are normally implemented
in an object-oriented language such as Java, students must understand the
applicable language concepts, which include inheritance, polymorphism, en-
capsulation, and delegation. Second, they need to understand the framework
concepts and techniques sufficiently well to use frameworks to build their own
custom applications. Third, students should be able to do detailed design and

2

implementation of frameworks for which the common and variable aspects
are already known. Fourth, they need to learn to analyze a potential family,
identify its possible common and variable aspects, and evaluate alternative
framework architectures.

In teaching the framework concepts, instructors must devise appropriate case
studies. They wish to use several interesting and realistic, but well-focused,
examples and exercises to illustrate the framework techniques. However, build-
ing a good framework requires an extensive understanding of the application
domain addressed by the framework. Because students come to a course with
diverse backgrounds and experiences, it may take considerable time for stu-
dents to come to a sufficient understanding of an application domain to design
a framework. This paper takes the view that various classic problems, such as
standard algorithms and data structures, are useful in introducing framework
concepts and programming techniques when little time is available to spend
on the domain analysis. This approach might be used in a dedicated course
on software families [13,14] or in teaching modules within an advanced Java
programming or software design course.

Sections 2 and 3 of this paper seek to address aspects of the second and
third levels of understanding noted above—teaching the concepts so that stu-
dents can use an existing framework and so that they can develop their own
frameworks given an analysis of the points of commonality and variability
in the family. Section 2 introduces the technical concepts and techniques for
construction and use of frameworks. Section 3 illustrates these concepts and
techniques using a case study that develops a framework for the family of di-
vide and conquer algorithm and applies it to develop a quicksort application
[15]. The case study assumes that the students have a basic understanding
of object-oriented programming using Java and understand concepts such as
inheritance, polymorphism, delegation, recursion, and sorting.

Sections 4 and 5 seek to address aspects of the fourth level of framework
understanding—teaching students how to analyze potential families and iden-
tify the common and variable aspects. Section 4 introduces the techniques
for systematically generalizing an application to discover the points of vari-
ability. Section 5 illustrates these concepts using binary tree traversals as the
basis for a family [16]. This family of applications includes members ranging
from standard preorder, postorder, and in-order traversals to more compli-
cated computations carried out by navigating through binary tree structures
in a custom manner.

Section 6 discusses related work, and section 7 summarizes the paper and gives
a few observations about use of the techniques in a college course.

3

2 Framework Construction and Use

In beginning programming classes students are taught to focus on a specific
problem and write a program to solve that problem. This is appropriate be-
cause beginning students need to learn a particular programming language and
grasp specific, concrete programming skills. However, as students gain more
experience in programming, they should be taught to work at higher levels
of abstraction. Instructors need to shift the students’ focus to techniques for
building a software family.

In building a software family, it is important to separate concerns. We must
separate the aspects of the design that are common to all family members
from those aspects that are specific to one family member. Furthermore, we
must separate the various common and variable aspects from each other and
consider them independently, one at a time. We use the terms frozen spot to
denote a common (or shared) aspect of the family and hot spot to denote a
variable aspect of the family [17].

A software framework is a generic application that allows the creation of dif-
ferent specific applications from a family [18]. It is an abstract design that
can be reused within a whole application domain. In a framework, the frozen
spots of the family are represented by a set of abstract and concrete base
classes that collaborate in some structure. A behavior that is common to all
members of the family is implemented by a fixed, concrete template method in
a base class. A hot spot is represented by a group of abstract hook methods.
A template method calls a hook method to invoke a function that is specific
to one family member.

A hot spot is realized in a framework as a hot spot subsystem. A hot spot
subsystem typically consists of an abstract base class, concrete subclasses of
that base class, and perhaps other related classes [17]. The hook methods of
the abstract base class define the interface to the alternative implementations
of the hot spot. The subclasses of the base class implement the hook methods
appropriately for a particular choice for a hot spot. Fig. 1 shows a UML class
diagram of a hot spot subsystem.

There are two principles for framework construction—unification and separa-
tion [19]. The unification principle uses inheritance to implement the hot spot
subsystem. Both the template methods and hook methods are defined in the
same abstract base class. The hook methods are implemented in subclasses of
the base class. In Fig. 1, the hot spot subsystem for the unification approach
consists of the abstract base class and its subclasses. The separation principle

uses delegation to implement the hot spot subsystem. The template methods
are implemented in a concrete context class; the hook methods are defined

4

Abstract Base Class

Hookmethod

Concrete Class1

Hookmethod

Concrete Class2

Hookmethod

Concrete Class3

Hookmethod

Client

Fig. 1. Hot spot subsystem

in a separate abstract class and implemented in its subclasses. The template
methods thus delegate work to an instance of the subclass that implements the
hook methods. In Fig. 1, the hot spot subsystem for the separation approach
consists of both the client (context) class and the abstract base class and its
subclasses.

A framework is a system that is designed with generality and reuse in mind;
and design patterns [20], which are well-established solutions to program de-
sign problems that commonly occur in practice, are the intellectual tools to
achieve the desired level of generality and reuse. Two design patterns, corre-
sponding to the two framework construction principles, are useful in imple-
mentation of the frameworks.

The Template Method pattern uses the unification principle. In using this pat-
tern, a designer should “define the skeleton of an algorithm in an operation,
deferring some steps to a subclass,” to allow a programmer to “redefine the
steps in an algorithm without changing the algorithm’s structure” [20]. It
captures the commonalities in the template method in a base class while en-
capsulating the differences as implementations of hook methods in subclasses,
thus ensuring that the basic structure of the algorithm remains the same [19].

The Strategy pattern uses the separation principle. In using this pattern, a
designer should “define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the algorithm vary independently
from the clients that use it” [20]. It extends the behavior of a client class by
calling methods in another class. The common aspects (template methods)
are captured in the concrete methods of the client; the variable aspects (hook
methods) are declared in the abstract Strategy class and implemented by its
subclasses. The behavior of the client class can thus be changed by supplying
it with instances of different Strategy subclasses.

What is the primary difference in the two construction principles in practice?
To introduce new behaviors for hook methods, the unification principle re-
quires programmers to implement a new subclass of the base class defining
the template methods. This kind of extension by overriding often requires
detailed knowledge of the base class, but it is otherwise relatively straightfor-
ward for programmers to understand and implement. The unification principle

5

results in efficient but inflexible execution. To introduce new hook method be-
havior in a framework that uses the separation principle, the client code needs
to instantiate an object from a class that has hook methods with the desired
behaviors and supply it to the class containing the template methods. If the
needed hook behaviors have been implemented previously, then the program-
mer must just choose an appropriate implementation from the component
library. If the needed hook behaviors have not been implemented, then the
programmer must implement an appropriate new class. This class is some-
times more difficult to implement than the equivalent unification solution,
but its implementation usually requires less knowledge of the internal details
of the class containing the template methods. An application of a framework
that uses the separation principle may execute slightly less efficiently than
a unification-based framework, but separation may enable the application to
adapt itself at runtime by merely changing object references [19]. In the next
section, we examine a simple software family and consider framework designs
based on each of these design principles.

3 Divide and Conquer Framework

To illustrate the construction and use of a framework, we can use the fam-
ily of divide and conquer algorithms as an example of a software family. The
divide and conquer technique solves a problem by recursively dividing it into
one or more subproblems of the same type, solving each subproblem indepen-
dently, and then combining the subproblem solutions to obtain a solution for
the original problem. Well-known algorithms that use this technique include
quicksort, mergesort, and binary search. Since this algorithmic strategy can
be applied to a whole set of problems of a similar type, divide and conquer,
in addition to its meaningful influence in algorithms, serves well the purpose
of examining a software family.

The pseudo-code for the divide and conquer technique for a problem p is shown
in Fig. 2, as it might be presented in an undergraduate algorithms textbook.
In this pseudo-code fragment, function solve() represents a template method
because its implementation is the same for all algorithms in the family. How-
ever, functions isSimple(), simplySolve(), decompose(), and combine()

represent hook methods because their implementations vary among the differ-
ent family members. For example, the simplySolve() function for quicksort is
quite different from that for mergesort. For mergesort, the combine() function
performs the major work while decompose() is simple. The opposite holds for
quicksort and binary search.

The remainder of this section illustrates the construction and use of a divide
and conquer framework. First, we examine how to construct a framework using

6

function solve (Problem p) returns Solution

{ if isSimple(p)

return simplySolve(p);

else

sp[] = decompose(p);

for (i= 0; i < sp.length; i = i+1)

sol[i] = solve(sp[i]);

return combine(sol);

}

Fig. 2. Divide and conquer pseudocode

the unification principle, then we apply this framework to develop an appli-
cation using the quicksort algorithm. Finally, we look at how the framework
can be implemented using the separation principle.

3.1 Constructing a Framework Using Unification

If the unification principle and Template Method pattern are used to structure
the divide and conquer framework, then the template method solve() is a
concrete method defined in an abstract class; the definitions of the four hook
methods are deferred to a concrete subclass whose purpose is to implement a
specific algorithm.

Fig. 3 shows a design for a divide and conquer framework expressed as a Uni-
fied Modeling Language (UML) class diagram. The family includes three mem-
bers: QuickSort, MergeSort, and BinarySearch. Method solve() is a final
method in the base class DivConqTemplate. It is shared among all the classes.
Hook methods isSimple(), simplySolve(), decompose(), and combine()

are abstract methods in the base class; they are overridden in each concrete
subclass (Quicksort, MergeSort, and BinarySearch).

To generalize the divide and conquer framework, we introduce the two aux-
iliary types Problem and Solution. Problem is a type that represents the
problem to be solved by the algorithm. Solution is a type that represents
the result returned by the algorithm. In Java, we define these types using tag
interfaces (i.e., interfaces without any methods) as follows:

public interface Problem {};

public interface Solution {};

Given the auxiliary types above, we define the abstract Template Method class
DivConqTemplate as shown in Fig. 4. We generalize the combine() method
to take both the description of the problem and the subproblem solution ar-
ray as arguments. The divide and conquer framework thus consists of the

7

MergeSort

isSimple()
simplySolve()
decompose()
combine()

BinarySearch

isSimple()
simplySolve()
decompose()
combine()

Quicksort

isSimple()
simplySolve()
decompose()
combine()

DivConqTemplate

final solve()
abstract isSimple()
abstract simpySolve()
abstract decompose()
abstract combine()

Divide Conquer

Abstract
Class

Concrete
Class

Fig. 3. Template method for divide and conquer

abstract public class DivConqTemplate

{ public final Solution solve(Problem p)

{ Problem[] pp;

if (isSimple(p)){ return simplySolve(p); }

else { pp = decompose(p); }

Solution[] ss = new Solution[pp.length];

for(int i=0; i < pp.length; i++)

{ ss[i] = solve(pp[i]); }

return combine(p,ss);

}

abstract protected boolean isSimple (Problem p);

abstract protected Solution simplySolve (Problem p);

abstract protected Problem[] decompose (Problem p);

abstract protected Solution combine(Problem p,Solution[] ss);

}

Fig. 4. Template method framework implementation

DivConqTemplate class and the Problem and Solution interfaces. We can
now consider an application built using this framework library.

3.2 Building an Application of the Framework

In using a traditional procedure or class library, a client’s program is in con-
trol of the computation; it “calls down” to code from the library. However,
frameworks usually exhibit an inversion of control. The framework’s code is in
control of the computation; it’s template methods “call down” to the client-
supplied hook methods. This section illustrates the use of the divide and con-
quer framework to build a quicksort application.

8

public class QuickSortDesc implements Problem, Solution

{ public QuickSortDesc(int[]arr, int first, int last)

{ this.arr = arr; this.first = first; this.last = last; }

public int getFirst () { return first; }

public int getLast () { return last; }

private int[] arr; // instance data

private int first, last;

}

Fig. 5. Quicksort Problem and Solution implementation

Quicksort is an in-place sort of a sequence of values. The description of a
problem consists of the sequence of values and designators for the beginning
and ending elements of the segment to be sorted. To simplify the presenta-
tion, we limit its scope to integer arrays. Therefore, it is sufficient to identify
a problem by the array and the beginning and ending indices of the unsorted
segment. Similarly, a solution can be identified by the array and the begin-
ning and ending indices of the sorted segment. This similarity between the
Problem and Solution descriptions enables us to use the same object to de-
scribe both a problem and its corresponding solution. Thus, we introduce
the class QuickSortDesc to define the needed descriptor objects as shown
in Fig. 5 Given the definitions for base class DivConqTemplate and auxiliary
class QuickSortDesc, we can implement the concrete subclass QuickSort as
shown in Fig. 6.

In a teaching module using this case study, both the framework (i.e., the ab-
stract class) and the framework application (i.e., the implementation of quick-
sort) can be presented to the students so that they can discern the collabora-
tions and relationships among the classes clearly. However, a clear distinction
must be made between the framework and its application. As an exercise, the
students can be assigned the task of modifying the quicksort application to
handle more general kinds of objects. Other algorithms such as mergesort and
binary search should also be assigned as exercises. The amount of work that
each hook method has to do differs from one specific algorithm to another. In
the quicksort implementation, most of the work is done in the decompose()

method, which implements the splitting or pivoting operation of quicksort.
In mergesort, however, more work will be done in the combine() operation
because it must carry out the merge phase of the mergesort algorithm.

3.3 Constructing a Framework Using Separation

As an alternative to the above design, we can use the separation principle and
Strategy pattern to implement a divide-and-conquer framework. The UML
class diagram for this approach is shown in Fig. 7. The template method
is implemented in the (concrete) context class DivConqContext as shown

9

public class QuickSort extends DivConqTemplate

{ protected boolean isSimple (Problem p)

{ return (((QuickSortDesc)p).getFirst() >=

((QuickSortDesc)p).getLast());

}

protected Solution simplySolve (Problem p)

{ return (Solution) p ; }

protected Problem[] decompose (Problem p)

{ int first = ((QuickSortDesc)p).getFirst();

int last = ((QuickSortDesc)p).getLast();

int[] a = ((QuickSortDesc)p).getArr ();

int x = a[first]; // pivot value

int sp = first;

for (int i = first + 1; i <= last; i++)

{ if (a[i] < x) { swap (a, ++sp, i); } }

swap (a, first, sp);

Problem[] ps = new QuickSortDesc[2];

ps[0] = new QuickSortDesc(a,first,sp-1);

ps[1] = new QuickSortDesc(a,sp+1,last);

return ps;

}

protected Solution combine (Problem p, Solution[] ss)

{ return (Solution) p; }

private void swap (int [] a, int first, int last)

{ int temp = a[first];

a[first] = a[last];

a[last] = temp;

}

}

Fig. 6. Quicksort application

DivConqContext

solve()
setAlgorithm()

DivConqStrategy

abstract isSimple()
abstract simplySolve()
abstract decompose()
abstract combine()

MergeSort

isSimple()
simplySolve()
decompose()
combine()

BinarySearch

isSimple()
simplySolve()
decompose()
combine()

QuickSort

isSimple()
simplySolve()
decompose()
combine()

Concrete
Strategy

Abstract
Strategy

Context

Fig. 7. Strategy pattern for divide and conquer framework

10

public final class DivConqContext

{ public DivConqContext (DivConqStrategy dc)

{ this.dc = dc; }

public Solution solve (Problem p)

{ Problem[] pp;

if (dc.isSimple(p)) { return dc.simplySolve(p); }

else { pp = dc.decompose(p); }

Solution[] ss = new Solution[pp.length];

for (int i = 0; i < pp.length; i++)

{ ss[i] = solve(pp[i]); }

return dc.combine(p, ss);

}

public void setAlgorithm (DivConqStrategy dc)

{ this.dc = dc; }

private DivConqStrategy dc;

}

Fig. 8. Strategy context class implementation

abstract public class DivConqStrategy

{ abstract public boolean isSimple (Problem p);

abstract public Solution simplySolve (Problem p);

abstract public Problem[] decompose (Problem p);

abstract public Solution combine(Problem p, Solution[] ss);

}

Fig. 9. Strategy object abstract class

in Fig. 8. The hook methods are defined in the (abstract) Strategy class
DivConqStrategy as shown in Fig. 9. The context class delegates the hook
method calls to a reference to the instance of the Strategy class that it stores
internally. Note that the Strategy approach is more flexible than the Template
Method approach in that it is possible to switch Strategy objects dynamically
by using the setAlgorithm() method of the context class. To construct an
application of the Strategy-based framework for Quicksort requires that we
implement a subclass of the abstract class DivConqStrategy that is quite
similar to the QuickSort class used in the unification framework (shown in
Fig. 6).

The divide and conquer family of algorithms is a simple example that can be
used to illustrate both approaches to framework design. It consists of a set
of algorithms that should be known to the students. Hence, the application
domain should be easy to explain. In the associated project, students can be
given the framework and asked to construct applications. This requires an
understanding of the framework’s design at a level sufficient to use it, without
requiring the students to develop their own framework abstractions. However,
the students also need experience in identifying the hot spots and developing
the needed framework abstractions. We consider those generalization steps in
the following sections.

11

4 Framework Development by Generalization

Framework design involves incrementally evolving a design rather than discov-
ering it in one single step. Typically, this evolution is a process of examining
existing designs for family members, identifying the frozen spots and hot spots
of the family, and generalizing the program structure to enable reuse of the
code for frozen spots and use of different implementations for each hot spot.
This generalization may be done in an informal, organic manner as codified
by Roberts and Johnson in the Patterns for Evolving Frameworks [21] or it
may be done using more systematic techniques.

Schmid’s systematic generalization methodology is one technique [17] that
seeks to identify the hot spots a priori and construct a framework system-
atically. This methodology identifies the following steps for construction of a
framework [17]:

• creation of a fixed application model
• hot spot analysis and specification
• hot spot high-level design
• generalization transformation

In Schmid’s approach, the fixed application model is an object-oriented design
for a specific application within the family. Once a complete model exists,
the framework designer analyzes the model and the domain to discover and
specify the hot spots. The designer begins by asking which of the features
of the application are characteristic of all applications in the domain (i.e.,
frozen spots) and which need to be made flexible (i.e., hot spots). Guided by
appropriate design patterns [20], the designer then replaces a fixed, specialized
class at a hot spot by an abstract base class. The hot spot’s features are
accessed through the common interface of the abstract class. However, the
design of the hot spot subsystem enables different concrete subclasses of the
base class to be used to provide the variant behaviors.

Another systematic approach is function generalization [22]. Where Schmid’s
methodology generalizes the class structure of the design for an application,
the function generalization approach generalizes the functional structure of
a prototype application to produce a generic application [23]. It introduces
the hot spot abstractions into the design by replacing concrete operations
by more general abstract operations or perhaps by replacing concrete data
types by more abstract types. These abstract entities become “parameters” of
the generalized functions. That is, the generalized functions are higher-order,
having explicit or implicit parameters that are themselves functions. After
generalizing the various hot spots of the application, the resulting generalized
functions are used to generate a framework in an object-oriented language

12

such as Java.

The case study in the next section explains the thinking process that a de-
signer may use in analyzing and designing a framework. It uses an informal
technique motivated by Schmid’s systematic generalization and by function
generalization.

5 Binary Tree Traversal Framework

As a case study on framework generalization, consider another classic problem,
a binary tree traversal [16]. This case study seeks to address aspects of the
fourth level of framework understanding described in Section 1—learning to
analyze potential software families to identify the frozen and hot spots—as well
as reinforcing and extending the students’ understanding of the principles and
techniques for constructing frameworks.

A binary tree is a hierarchical structure that is commonly taught in a lower-
level undergraduate data structures course in a computing science curriculum.
In this case study, we implement the binary tree with the BinTree class hier-
archy, which is a structure designed according to the Composite design pattern

[20] as shown in Fig 10. The Composite pattern “lets clients treat individual
objects and compositions of objects uniformly” [20]. Class BinTree has the
Component base-class role in the pattern implementation, subclass Node has
the Composite role, and subclass Nil has the Leaf role. Nil is also imple-
mented according to the Singleton pattern [20], which guarantees exactly one
instance exists. Fig. 11 shows the Java code for the BinTree class hierarchy.

A traversal is a systematic technique for “visiting” all the nodes in a tree. One
common traversal technique for a binary tree is the preorder traversal. This is
a depth-first traversal, that is, it accesses a node’s children before it accesses
the node’s siblings. The preorder traversal can be expressed by a recursive
procedure as follows:

procedure preorder(t)

{ if t null, then return;

perform visit action for root node of tree t;

preorder(left subtree of t);

preorder(right subtree of t);

}

The visit action varies from application to another. The BinTree hierarchy
in Fig. 11 supports a simple preorder traversal operation preorder() that
merely prints a node’s value when it is visited.

13

BinTree

abstract accept()
abstract getValue()
abstract getLeft()
abstract getRight()
abstract setValue()
abstract setLeft()
anstract setRight()

1

*

Nil Node

Component

Leaf

Composite

Fig. 10. Binary tree using Composite design pattern

abstract public class BinTree

{ public void setValue(Object v) { } // mutators

public void setLeft(BinTree l) { } // default

public void setRight(BinTree r) { }

abstract public void preorder(); // traversal

public Object getValue() { return null; } // accessors

public BinTree getLeft() { return null; } // default

public BinTree getRight() { return null; }

}

public class Node extends BinTree

{ public Node(Object v, BinTree l, BinTree r)

{ value = v; left = l; right = r; }

public void setValue(Object v) { value = v; } // mutators

public void setLeft(BinTree l) { left = l; }

public void setRight(BinTree r) { right = r; }

public void preorder() // traversal

{ System.out.println("Visit node with value: " + value);

left.preorder(); right.preorder();

}

public Object getValue() { return value; } // accessors

public BinTree getLeft() { return left; }

public BinTree getRight() { return right; }

private Object value; // instance data

private BinTree left, right;

}

public class Nil extends BinTree

{ private Nil() { } // private to require use of getNil()

public void preorder() { }; // traversal

static public BinTree getNil() { return theNil; } // Singleton

static public BinTree theNil = new Nil();

}

Fig. 11. Binary tree class hierarchy

14

Building a software framework for binary tree traversals involves the general
principles for framework design. We begin with the simple preorder operation
and tree structure given in Fig. 11 and consider the domain of the family and
identify the frozen spots and hot spots.

What is the scope of the family of binary tree traversals? The family should
include at least the standard kinds of depth-first traversals (e.g., preorder,
postorder, and in-order) and allow flexible visit actions on the nodes. In gen-
eral, the visit action will be a function on the node’s attributes and on the
accumulated state of the traversal computed along the sequence of all the
nodes accessed to that point in the computation. The framework should en-
able traversal orders other than the depth first. The framework should also
support binary search trees, but it is not necessary that it support multiway
trees or general graphs.

What, then, are the commonalities, that is, frozen spots, that all members
of the family exhibit? Considering the scope and examining the prototype
application, we choose the following frozen spots:

(1) The structure of the tree, as defined by the BinTree hierarchy, cannot be
redefined by clients of the framework.

(2) A traversal accesses every element of the tree once, unless the computa-
tion determines that it can stop before it completes the traversal.

(3) A traversal performs one or more visit actions associated with an access
to an element of the tree.

What are the variabilities—the hot spots—that exist among members of the
family of binary tree traversals? Again considering the scope and examining
the prototype application, we identify the primary hot spots to be the follow-
ing:

(1) Variability in the visit operation’s action. It should be a function of the
current node’s value and the accumulated result of the visits to the pre-
vious nodes in the traversal.

(2) Variability in ordering of the visit action with respect to subtree traver-
sals. That is, the client should be able to select preorder, postorder, in-
order, etc.

(3) Variability in the tree navigation technique. That is, the client should be
able to select node access orders other than left-to-right, depth-first, total
traversals.

Now, given these variabilities, we examine how it can be introduced into a
framework by generalizing the prototype application.

15

5.1 Generalizing the Visit Action

In this case study, hot spot #1 requires making the visit action a feature
that can be customized by the client of the framework to meet the specific
application’s needs. The visit action, in general, varies from one application to
another. The fact that there are visit actions associated with the access to an
element is a common behavior of the framework. The visit action itself is the
variable behavior that is to be captured in a hot spot subsystem. As we see in
Section 2, we can introduce the variable behavior into a framework using either
the unification principle (e.g., using the Template method pattern) or the
separation principle (e.g., using the Strategy pattern). Because the BinTree

structure is a frozen spot (i.e., cannot be changed by the framework user), we
choose to use the Strategy pattern to implement variable visit behavior. This
allows different visit actions to be used with the same tree structure.

We introduce this hot spot into the traversal program by generalizing the
classes in the BinTree hierarchy to have the Context role in the Strategy pat-
tern. We generalize the BinTree method preorder to be a template method
and define a Strategy interface PreorderStrategy for objects that implement
the hook methods. The new implementation of preorder must capture the
general concept of a preorder traversal but delegate the specific preorder visit
action to a method in a Strategy object. We specify method visitPre on
interface PreorderStrategy as the hook method to encapsulate the preorder
visit action. Furthermore, we define the preorder method (which had no ar-
guments in the prototype program) to take two arguments: a “state” object
that accumulates the relevant aspects of the traversal as the nodes are accessed
and an instance of the PreorderStrategy Strategy object. Fig. 12 shows the
changes made to the code in Fig. 11 for this generalization step.

5.2 Generalizing the Visit Order

In this case study, hot spot #2 requires making the “order” of the visit actions
a feature that can be customized for a specific application. That is, it must be
possible to vary the order of a node’s visit action with respect to the traversals
of its children. The framework should support preorder, postorder, and in-
order traversals and perhaps combinations of those. A good generalization of
the three standard traversals is one that potentially performs a visit action
on the node at any of three different points—on first arrival (i.e., a “left”
visit), between the subtree traversals (i.e., a “bottom” visit), and just before
departure from the node (i.e., a “right” visit). This is sometimes called an
Euler tour traversal [16].

16

abstract public class BinTree

{ ...

abstract public Object preorder(Object ts, PreorderStrategy v);

...

}

public class Node extends BinTree

{ ...

public Object preorder(Object ts,PreorderStrategy v) //traversal

{ ts = v.visitPre(ts, this);

ts = left.preorder(ts, v);

ts = right.preorder(ts, v);

return ts;

}

...

}

public class Nil extends BinTree

{ ...

public Object preorder(Object ts, PreorderStrategy v)

{ return ts; }

...

}

public interface PreorderStrategy

{ abstract public Object visitPre(Object ts, BinTree t); }

Fig. 12. Binary tree with generalized visit action

We enable the needed variability for this hot spot by generalizing the hot spot
subsystem introduced in the previous step instead of introducing a new hot
spot subsystem. We generalize the behavior of the preorder method in the
BinTree hierarchy and replace it by a method traverse that encodes the
common features of all Euler tour traversals but delegates the visit actions at
the three possible visit points to hook methods defined on the Strategy object.
We also observe that there was no visit action associated with a Nil subtree in
the previous versions of the program. In some applications, it might be useful
to have some action associated with a visit to a Nil subtree. So we add a
fourth hook method for handling this as a special case. In the framework, we
thus replace the PreorderStrategy interface from the previous program with
a new EulerStrategy interface that defines the new hook methods. Fig. 13
shows the changes made to the code in Fig. 11 to incorporate the Euler tour
traversal order for the visit actions.

17

abstract public class BinTree

{ ...

abstract public Object traverse(Object ts, EulerStrategy v);

...

}

public class Node extends BinTree

{ ...

public Object traverse(Object ts, EulerStrategy v) // traversal

{ ts = v.visitLeft(ts,this); // upon arrival from above

ts = left.traverse(ts,v);

ts = v.visitBottom(ts,this); // upon return from left

ts = right.traverse(ts,v);

ts = v.visitRight(ts,this); // upon completion

return ts;

}

...

}

public class Nil extends BinTree

{ ...

public Object traverse(Object ts, EulerStrategy v)

{ return v.visitNil(ts,this); }

...

}

public interface EulerStrategy

{ abstract public Object visitLeft(Object ts, BinTree t);

abstract public Object visitBottom(Object ts, BinTree t);

abstract public Object visitRight(Object ts, BinTree t);

abstract public Object visitNil(Object ts, BinTree t);

}

Fig. 13. Binary tree with Euler traversal

5.3 Generalizing the Tree Navigation

In this case study, hot spot #3 requires making the navigation of the tree
structure a feature that can be customized to meet the needs of a specific ap-
plication. In particular, it should enable variability in the order that nodes are
accessed. For example, the framework should support breadth-first traversals
as well as depth-first traversals. As we consider this generalization step, two
of the frozen spots are of relevance:

(1) The BinTree hierarchy cannot be modified by clients of the framework.
(2) A traversal must access every element of the tree once, unless the com-

putation determines that it can stop before it completes the traversal.

18

In the previous version of the binary tree traversal framework, the traversal
technique is implemented directly by the traverse method of the BinTree

hierarchy. The navigation technique implemented by this method must be
made a customizable feature of the framework. However, because a client of
the framework cannot modify the BinTree class or its subclasses, we must
use the separation principle to implement the tree navigation subsystem. We
could again use the Strategy pattern. However, another design pattern is more
applicable to this situation—the Visitor pattern [20].

The intent of the Visitor pattern is to enable the functionality of an object
structure to be extended without modifying the structure’s code. The Visitor
pattern does this by putting the new functionality in a separate class. Objects
of this Visitor class access the elements of the object structure to carry out the
desired new computation. An element of the object structure then calls back
to the Visitor’s method corresponding to the element’s type. This “double-
dispatching” uses polymorphism to avoid explicit checks on the type of an
object. The Visitor pattern is quite compatible with object structures designed
according to the Composite design pattern.

In the binary tree traversal framework design, we assign the BinTree class hi-
erarchy the role of the Element hierarchy in the Visitor pattern’s description
[20], and we introduce a BinTreeVisitor interface to take on the role of the
Visitor class in the description. We also generalize the traverse method of the
BinTree hierarchy and replace it by the accept method for the Visitor pattern.
The accept method of a BinTree element takes a BinTreeVisitor object and
delegates the work of the traversal back to an appropriate method of that vis-
itor object. This method applies the appropriate binary tree visit actions and
navigates through the tree as needed for the application. The BinTreeVisitor
interface has methods named visit with overloaded implementations for each
subclass in the BinTree hierarchy. The constraint on the framework given by
frozen spot #2 (i.e., to access each node once) becomes a requirement upon
the designer of the visitor classes that implement BinTreeVisitor. Fig. 14 il-
lustrates the class structure of a traversal program based on the Visitor design
pattern. Fig. 15 shows the Java code for the traversal program.

The Visitor framework has two levels. The upper level of the framework is
characterized by the Visitor pattern as described above. However, the specific
designs for the Visitor objects themselves may be small frameworks. Consider
a program to carry out an Euler tour traversal. We can choose to design a con-
crete class EulerTourVisitor that implements the BinTreeVisitor interface.
Similar to the design for hot spot #2’s traverse method, this class delegates
the specific traversal visit actions to a Strategy object of type EulerStrategy.
Fig. 16 illustrates the class structure of this lower-level design. Fig. 17 shows
its implementation in Java.

19

Client

MappingVisitor

BinTreeVisitorTest

Visitor

Concrete
Visitor

Concrete
Visitor

Bread FirstVisitorEulerTourVisitor

Concrete
Element

BinTree (Element)

abstract accept()
abstract getValue()
abstract getLeft()
abstract getRight()
abstract setValue()
abstract setLeft()
abstract setRight()

BinTreeVisitor

abstract visit()

<<abstract Interface>>

uses

NodeNil

th

Fig. 14. Binary tree Visitor framework

The binary tree traversal framework is quite general. It supports a large set
of binary tree algorithms. For example, it is possible using this framework to
implement a “mapping” operation on trees. That is, it is feasible to implement
a program that changes the value stored at every node of a tree by applying a
mapping function to the previous value. Such a program can either be imple-
mented directly as a BinTreeVisitor or as a customization of the Euler tour
traversal framework. It is also possible to implement a breadth-first traver-
sal operation by implementing an appropriate BinTreeVisitor class. Other
interesting applications of the framework might be to use it to implement
programs for binary search trees.

Programming projects accompanying use of this case study in a course can
require development of various applications or require the design of new kinds
of BinTreeVisitor subsystems. Instructors can also ask the students to apply
the analysis and design techniques to other possible families.

As with the divide and conquer algorithms, binary tree structures and algo-
rithms are well known to computing science and software engineering students.
Use of this case study in an upper-level undergraduate course should not re-
quire an extensive explanation of the domain of the framework. However, this
case study, and the application of the techniques to other problems, does re-
quire considerable thought and analysis on the part of the students. It is not
a trivial activity for students to discover a sequence of generalization steps
and effective hot spot abstractions that are appropriate for a large family of
programs.

20

abstract public class BinTree

{ public void setValue(Object v) { } // mutators

public void setLeft(BinTree l) { } // default

public void setRight(BinTree r) { }

abstract public void accept(BinTreeVisitor v); // accept Visitor

public Object getValue() { return null; } // accessors

public BinTree getLeft() { return null; } // default

public BinTree getRight() { return null; }

}

public class Node extends BinTree

{ public Node(Object v, BinTree l, BinTree r)

{ value = v; left = l; right = r; }

public void setValue(Object v) { value = v; } // mutators

public void setLeft(BinTree l) { left = l; }

public void setRight(BinTree r) { right = r; }

// accept a Visitor object

public void accept(BinTreeVisitor v) { v.visit(this); }

public Object getValue() { return value; } // accessors

public BinTree getLeft() { return left; }

public BinTree getRight() { return right; }

private Object value; // instance data

private BinTree left, right;

}

public class Nil extends BinTree

{ private Nil() { } // private to require use of getNil()

// accept a Visitor object

public void accept(BinTreeVisitor v) { v.visit(this); }

static public BinTree getNil() { return theNil; } // Singleton

static public BinTree theNil = new Nil();

}

public interface BinTreeVisitor

{ abstract void visit(Node t);

abstract void visit(Nil t);

}

Fig. 15. Binary tree using Visitor pattern

6 Related Work

The thesis of this paper is that classic problems, such as those related to classic
algorithms and data structures, are helpful examples for instructors to use in
teaching computing science and software engineering students techniques for
the design of software families. This paper describes two relatively simple
examples designed to help teach both the use and construction of the type

21

EulerTourVisitor

EulerStrategy

abstract visitLeft()
abstract visirBottom()
abstract visitRight()
abstract visitNil()

<<abstract Interface>>

VisitParen

Strategy

Concrete
Strategy

Context

Fig. 16. Euler tour traversal Visitor framework

public class EulerTourVisitor implements BinTreeVisitor

{ public EulerTourVisitor(EulerStrategy es, Object ts)

{ this.es = es; this.ts = ts; }

public void setVisitStrategy(EulerStrategy es) // mutators

{ this.es = es; }

public void setResult(Object r) { ts = r; }

public void visit(Node t) // Visitor hookimplementations

{ ts = es.visitLeft(ts,t); // upon first arrival from above

t.getLeft().accept(this);

ts = es.visitBottom(ts,t); // upon return from left

t.getRight().accept(this);

ts = es.visitRight(ts,t); // upon completion of this node

}

public void visit(Nil t) { ts = es.visitNil(ts,t); }

public Object getResult(){ return ts; } // accessor

private EulerStrategy es; // encapsulates state changing ops

private Object ts; // traversal state

}

public interface EulerStrategy

{ abstract public Object visitLeft(Object ts, BinTree t);

abstract public Object visitBottom(Object ts, BinTree t);

abstract public Object visitRight(Object ts, BinTree t);

abstract public Object visitNil(Object ts, BinTree t);

}

Fig. 17. Euler Tour traversal Visitor

of software family called a software framework. The examples are aimed at
advanced Java programming or software design courses in which students have
not been previously exposed to frameworks in a significant way. The goal is to
improve the students’ abilities to construct and use abstractions in the design
of software families.

Some advocate that use of frameworks be integrated into the introductory
computing science sequence, e.g., into the data structures course [8]. In this
approach, the understanding and use of standard data structure frameworks

22

replace many of the traditional topics, which focus on the construction of
data structures and algorithms. The availability of standard libraries such as
the Java Collections framework makes this a viable approach. The argument is
that when students enter the workplace, they more often face the task of using
standard components to build systems than of writing programs in which they
re-implement basic data structures and algorithms. Although it is appropriate
that we cultivate the use of high-level abstractions, we should be careful not
to abandon teaching of the intellectual fundamentals of computing science in
a desire to train better technicians.

Others have constructed small software frameworks that are useful in peda-
gogical settings. Of particular interest is the work by Nguyen and Wong. In
work similar to the divide and conquer example in this paper, they use the
Template Method and Strategy patterns and the divide and conquer algo-
rithmic approach to develop a generalized sorting framework [7]. They believe
that their design not only gives students “a concrete way of unifying seemingly
disparate sorting algorithms but also” helps them understand the algorithms
“at the proper level of abstraction.” In an interesting design, they extend their
framework to measure algorithm performance in a non-intrusive way by using
the Decorator design pattern.

The goal of the divide and conquer framework in this paper differs from the
goal of Nguyen and Wong’s sorting framework. This paper focuses on teaching
framework use and construction. The case study seeks to support any divide
and conquer algorithm, not just sorting. The use of sorting algorithms to
demonstrate the framework was incidental. However, future development of
the divide and conquer framework can benefit from the design techniques
illustrated by Nguyen and Wong.

In [9], Nguyen and Wong describe an interesting framework design that decou-
ples recursive data structures from the algorithms that manipulate them. The
design uses the State and Visitor design patterns to achieve the separation.
In subsequent work, using the Strategy and Factory Method patterns, they
extend this framework to enable lazy evaluation of the linear structures [10].

Nguyen and Wong’s binary search tree framework in [9] has some similarities
to the binary tree traversal framework in this paper. Their work seeks to teach
students in introductory data structures courses to encapsulate “variant and
invariant behaviors” in separate classes and use well-defined “communication
protocols” to combine them into an application program. The use of design
patterns, such as Visitor and State, is central to their design technique. The
binary tree traversal case study in this paper has a similar goal in the con-
text of teaching students how to design and construct frameworks in general.
However, this paper approaches the design as the systematic application of
a sequence of generalizing transformations to a prototype application. This

23

systematic technique first identifies a point of variation and then chooses a
design pattern that is effective in providing the needed flexibility.

Where this paper uses design patterns in teaching the construction of frame-
works, Christensen approaches the task from the other side [24]. He expresses
concern that the conventional “catalogue-like” approaches to teaching design
patterns “leave the impression that they are isolated solutions to indepen-
dent problems.” To overcome this misconception, he advocates the use of
well-designed frameworks to teach the effective use of design patterns. He em-
phasizes that “a framework makes it clear that design patterns work together,
and that patterns really define roles” rather than classes. He laments that
“the subject of frameworks is sadly overlooked in teaching.” The work in this
paper seeks to help remedy that situation.

7 Conclusion

The first author has used the divide and conquer example and related pro-
gramming exercises three times in Java-based courses on software architecture.
They are effective in introducing students to the basic principles of framework
construction and use if care is taken to distinguish the framework from its
application. However, other exercises are needed to help students learn to sep-
arate the variable and common aspects of a program family and to define
appropriate abstract interfaces for the variable aspects.

The binary tree traversal framework case study and a similar case study on a
cosequential processing framework [23,22] are designed to illustrate techniques
that can help expand the ability of students to discover appropriate framework
abstractions. The first author has used the cosequential processing problem
(but not the case study) as the basis for a term project in a Java-based course
on software engineering [13,14]. It proved to be a problem that challenged the
students. However, the students’ feedback indicated that more explicit atten-
tion should be paid to teaching systematic techniques for hot spot analysis
and design.

In summary, software frameworks and design patterns are important concepts
that students should learn in an advanced programming or software design
course. These concepts may seem very abstract to the students, and, therefore,
we need to start with familiar, non-daunting problems. This paper suggests
the use of classic problems such as divide and conquer algorithms and binary
tree traversals as examples to provide a familiar, simple and understandable
environment in which students can better understand the framework concepts.
Design patterns, such as the Template Method pattern and the Strategy pat-
tern, are illustrated through the design of these simple frameworks. Since

24

students are familiar with the algorithms and data structures and may have
implemented them, they can concentrate on the design process more instead of
the coding process and thus learn more effectively how to design a framework
and build a program family.

Acknowledgements

The work of Cunningham and Liu was supported, in part, by a grant from
Acxiom Corporation titled “The Acxiom Laboratory for Software Architec-
ture and Component Engineering (ALSACE).” Liu’s work was also supported
by University of Mississippi Graduate School Summer Research and Disser-
tation Fellowships. The authors thank Will Vaughan, Pallavi Tadepalli, and
anonymous referee #1 for making several comments and suggestions that led
to improvements in this paper.

References

[1] D. L. Parnas, On the design and development of program families, IEEE
Transactions on Software Engineering SE-2 (1) (1976) 1–9.

[2] D. M. Weiss, C. T. R. Lai, Software Product-Line Engineering: A Family-Based
Software Development Process, Addision-Wesley, 1999.

[3] D. Parnas, Software design, in: D. M. Hoffman, D. M. Weiss (Eds.), Software
Fundamentals: Collected Papers by David L. Parnas, Addison-Wesley, 2001, pp.
137–142.

[4] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, Addison-
Wesley, 1998.

[5] G. C. Gannod, R. R. Lutz, An approach to architectural analysis of product
lines, in: Proceedings of the 22nd International Conference on Software
Engineering (ICSE 00), 2000, pp. 548–557.

[6] T. Budd, An Introduction Object-Oriented Programming, 3rd Edition,
Addison-Wesley, 2002.

[7] D. Nguyen, S. B. Wong, Design patterns for sorting, in: Proceedings of ACM
SIGCSE Technical Symposium, 2001, pp. 263–267.

[8] J. Tenenberg, A framework approach to teaching data structures, in:
Proceedings of ACM SIGCSE Technical Symposium, 2003, pp. 210–214.

[9] D. Nguyen, S. B. Wong, Patterns for decoupling data structures and algorithms,
in: Proceedings of ACM SIGCSE Technical Symposium, 1999, pp. 87–91.

25

[10] D. Nguyen, S. B. Wong, Design patterns for lazy evaluation, in: Proceedings of
ACM SIGCSE Technical Symposium, 2000, pp. 21–25.

[11] D. Nguyen, S. B. Wong, Design patterns for games, in: Proceedings of ACM
SIGCSE Technical Symposium, 2002, pp. 126–130.

[12] X. Jia, Object-Oriented Software Development using Java: Principles, Patterns,
and Frameworks, Addison-Wesley, 2000.

[13] H. C. Cunningham, P. Tadepalli, Y. Liu, Secrets, hot spots, and generalization:
Preparing students to design software families, Journal of Computing Sciences
in Colleges 20 (6) (2005) 74–82.

[14] H. C. Cunningham, Y. Liu, C. Zhang, Keeping secrets within a family:
Rediscovering Parnas, in: Proceedings of the Software Engineering Research
and Practice (SERP) Conference, CSREA Press, 2004, pp. 712–718.

[15] H. C. Cunningham, Y. Liu, C. Zhang, Using the divide and conquer strategy to
teach Java framework design, in: Proceedings of the International Conference on
the Principles and Practice of Programming in Java (PPPJ), 2004, pp. 40–45.

[16] M. T. Goodrich, R. Tamassia, Data Structures and Algorithms in Java, 3rd
Edition, Wiley, 2004.

[17] H. A. Schmid, Framework design by systematic generalization, in: M. E. Fayad,
D. C. Schmidt, R. E. Johnson (Eds.), Building Application Frameworks: Object-
Oriented Foundations of Framework Design, Wiley, 1999, pp. 353–378.

[18] H. A. Schmid, Systematic framework design by generalization, Communications
of the ACM 40 (10) (1997) 48–51.

[19] M. Fontoura, W. Pree, B. Rumpe, The UML Profile for Framework
Architectures, Addison-Wesley, 2002.

[20] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

[21] D. Roberts, R. Johnson, Patterns for evolving frameworks, in: R. Martin,
D. Riehle, F. Buschmann (Eds.), Pattern Languages of Program Design 3,
Addison-Wesley, 1998, pp. 471–486.

[22] P. Tadepalli, H. C. Cunningham, Using function generalization with Java to
design a cosequential framework, in: Proceedings of the Conference on Applied
Research in Information Technology, Acxiom Laboratory for Applied Research,
2005, pp. 95–101.

[23] H. C. Cunningham, P. Tadepalli, Using function generalization to design a
cosequential processing framework, Tech. Rep. UMCIS-2004-22, University
of Mississippi, Department of Computer and Information Science (December
2004).

[24] H. B. Christensen, Frameworks: Putting design patterns into perspective, in:
Proceedings of the SIGCSE Conference on Innovation and Technology in
Computer Science Education (ITiCSE), ACM, 2004, pp. 142–145.

26

