
 Applying Software Patterns
in the Design of a Table Framework

H. Conrad Cunningham Jingyi Wang
Department of Computer Science Data Products Division

University of Mississippi Acxiom Corporation
237 Kinard Hall 1001 Technology Drive

University, MS 38677 USA Little Rock, AR 72223 USA
(662) 915-5358 (501) 252-5781

cunningham@cs.olemiss.edu jwang@acxiom.com

ABSTRACT
This paper describes how software design patterns are applied to
advantage in the design of a small application framework for
building implementations of the Table Abstract Data Type (ADT).
The framework consists of a group of Java interfaces that
collaborate to define the structure and high-level interactions
among components of the Table implementations. The key feature
of the design is the separation of the Table’s key-based record
access mechanisms from the physical storage mechanisms. The
systematic application of the Layered Architecture, Interface,
Bridge, and Proxy patterns lead to a design that is sufficiently
flexible to support a wide range of client-defined records and
keys, indexing structures, and storage media. The use of the
Template Method, Strategy, and Decorator patterns also enables
variant components to be easily plugged into the framework. The
Evolving Frameworks patterns give guidance on how to modify
the framework as more is learned about the family of applications.
The conscious use of these software design patterns increases the
understandability and consistency of the framework’s design.

Keywords
Table ADT, application framework, software design pattern,
layered architecture.

1. INTRODUCTION
A central idea in contempborary software design is the concept of
a design pattern [Buschmann 1996]. When experts need to solve a
problem, they seldom invent a totally new solution. More often
they will recall a similar problem they have solved previously and
reuse the essential aspects of the old solution to solve the new
problem. They tend to think in problem-solution pairs.
Identifying the essential aspects of specific problem-solution pairs
leads to descriptions of general problem-solving patterns that can
be collected and reused. A design pattern thus documents "a
particular recurring design problem that arises in specific design
contexts and presents a well-proven generic scheme for its
solution" [Buschmann 1996].

This paper shows how software design patterns can be applied in
the design of a small application framework for building
implementations of the Table Abstract Data Type (ADT). In
general, a framework expresses a reusable design for a system as a
collection of abstract classes and the way that their instances
interact with one another. [Fayad 1999]. It represents a skeleton
of a system that can be customized for a particular purpose. To
customize the framework, a developer provides concrete
implementations of the abstract classes.
The Table ADT represents a collection of records that can be
accessed by the unique keys of the records. The design of the
Table framework consists of a group of Java interfaces that work
together in well-defined ways. The design encompasses a wide
range of possible implementations of the Table ADT—simple
array-based data structures in memory, B-tree file structures on
disk, perhaps even structures distributed across a network. The
key concept in the framework design is the separation of the key-
based record access mechanisms from the physical storage
mechanisms for the records.
The design takes advantage of several well-known software
design patterns. The need to decouple the access mechanism from
the storage mechanism suggests a hierarchical structure based on
the Layered Architecture [Buschmann 1996][Shaw 1996] and
Interface [Grand 1998] design patterns. Given the layered
architecture, the Bridge and Proxy patterns [Gamma 1995] [Grand
1998] then suggest how to organize the interactions among the
various layers. The Iterator pattern [Gamma 1995] [Grand 1998]
is also helpful; it provides a systematic mechanism for accessing
groups of records. The Template Method, Strategy, and
Decorator patterns [Gamma 1995] [Grand 1998] provide standard
structures for plugging variable components into the framework.
Furthermore, as the framework evolves, it follows the general
development path documented by the Evolving Frameworks
system of patterns [Roberts 1998].

2. TABLE ADT
The Table ADT is an abstraction of a widely used set of data and
file structures. It represents a collection of records, each of which
consists of a finite sequence of data fields. The value of one (or a
composite of several) of these fields uniquely identifies a record
within the collection; this field is called the key. For the purposes
here, the values of the keys are assumed to be elements of a totally
ordered set. The operations provided by the Table ADT allow a

mailto:cunningham@cs.olemiss.edu
mailto:jwang@acxiom.com

2

record to be stored and retrieved using its key to identify it within
the collection.
The Table framework has the following requirements:

1. It must provide the functionality of the Table ADT for a
large domain of client-defined records and keys.

2. It must support many possible representations of the
Table ADT, including both in-memory and on-disk
structures and a variety of indexing mechanisms.

3. It must separate the key-based record access
mechanisms from the mechanisms for storing records
physically.

4. All interactions among its components should only be
through well-defined interfaces that represent coherent
abstractions.

5. Its design should use appropriate software design
patterns to increase reliability, understandability, and
consistency.

3. LAYERED ARCHITECTURE
The most significant aspect of this design problem is the
separation of the table's high-level, key-based access mechanisms
from the lower-level storage mechanisms for physical records.
This mix of high- and low-level issues suggests a hierarchical
architecture based on the Layered Architecture design pattern
[Buschmann 1996] [Shaw 1996]. When there are several distinct
groups of services that can be arranged hierarchically, this pattern
assigns each group to a layer. Each layer can then be developed
independently. A layer is implemented using the services of the
layer below and, in turn, provides services to the layer above.
As shown in Figure 1, we choose three layers in this design. From
the top to the bottom these include:
Client Layer. This layer consists of the client-level programs that

use the table implementation in the layer below to store and
retrieve records.

Access Layer. This layer provides client programs key-based
access to the records in the table. It uses the layer below to
store the records physically.

Storage Layer. This layer provides facilities to store and retrieve
the records from the chosen physical storage medium.

For example, suppose we want a simple indexed file structure
with an in-memory index that uses an array-like relative file to

store the records on disk [Folk 1998]. The implementation of the
index would be part of the Access Layer; the implementation of
the relative file would be in the Storage Layer. A program that
uses the simple indexed file structure would be in the Client
Layer.
The various layers need to be kept independent of one another.
Thus, following the fundamental Interface design pattern [Grand
1998], we define each layer in terms of a set of related Java
interfaces and require that interactions among the layers use these
interfaces.

4. ACCESS LAYER
The Access Layer provides the Client programs key-based access
to a collection of records. Its primary abstraction is the Table
ADT. Before we can define the Table interface, however, we
need to consider the characteristics of the records and their keys.

4.1 Keys and the Comparable Interface
As much as possible, we want to let clients (users) of the table
implementations define their own record and key structures.
However, any implementation of the Table ADT must be able to
extract the keys from the records and compare them with each
other. Thus we restrict the records to objects from which keys can
be extracted and compared using some client-defined total
ordering.
The built-in Java interface Comparable gives us what we need
for the keys. Any class that implements this interface must provide
the method:

• int compareTo(Object key) that compares the
associated object with argument key and returns -1 if key
is greater, 0 if they are equal, and 1 if key is less.

Table implementations can use this method to compare keys.
Clients can use any existing Comparable class for their keys or
implement their own.

4.2 Records and the Keyed Interface
We introduce the Java interface Keyed to represent the type of
objects that can be manipulated by a table. Any class that
implements this interface must implement the method:

• Comparable getKey() that extracts the key from the
associated record.

A table implementation can use this method to extract a key and
then use the key's compareTo method to do the comparison.

4.3 Table Interface
Now, given the above types for keys and records, we introduce the
Java interface Table to define the methods associated with the
Table ADT. The interface must enable the client to access the
table in the expected ways, e.g., to insert a new record or to delete
a record with a given key.
We define the Table ADT as a Java interface that includes the
following methods. A companion paper gives the formal
semantics of these operations [Cunningham 2001].

• void insert(Keyed rec) inserts the Keyed object
rec into the table.

Client Layer

Access Layer

Storage Layer

Figure 1. Layered Architecture

3

• void delete(Comparable key) deletes the Keyed
object with the given key from the table.

• void update(Keyed rec) updates the table by
replacing the existing entry having the same key as argument
rec with the argument object.

• Keyed retrieve(Comparable key) searches the
table for the argument key and returns the Keyed object
that contains this key.

• boolean containsKey(Comparable key) searches
the table for the argument key.

• boolean isEmpty() checks whether the table is empty.

• boolean isFull() checks whether the table is full.
(For unbounded tables, this method always returns false.)

• int getSize() returns the size of the table.

The Access Layer thus consists of the Table and Keyed
interfaces and concrete classes that implement Table. Concrete
classes that implement the Comparable and Keyed interfaces
are part of the Client Layer. The interactions between the
Client and Access Layer occurs as follows:

• The Client Layer calls the Access Layer using the Table
interface.

• The Access Layer calls back to the Client classes that
implement the Keyed and Comparable interfaces to do
part of its work.

5. STORAGE LAYER
The Storage Layer provides facilities to store and retrieve records
on a physical storage medium. To define the interfaces between
the Access and Storage layers, we adopt a structure motivated by
the Bridge and Proxy design patterns [Gamma 1995][Grand 1998]
to achieve the desired degree of decoupling and collaboration. We
also take into account both the expected characteristics of the
storage media and the expected needs of the Table
implementations.

5.1 Bridge Pattern
The Bridge pattern is useful when we wish to decouple the
“interface” of an abstraction from its "implementation" so that the
two can vary independently [Gamma 1995] [Grand 1998]. In this
design (as shown in Figure 2), the "interface" is the Table
abstraction in the Access Layer, which provides key-based access
to a collection of records; the "implementation" is the
RecordStore abstraction in the Storage Layer, which provides
a physical storage mechanism for records. These two hierarchies
of abstractions collaborate to provide the table functionality. At
the time a table is created, any concrete Table-implementing
class can be combined with any concrete RecordStore-
implementing class.
We assume that a storage medium abstracted into the
RecordStore ADT consists of a set of physical "slots". Each
slot has a unique "address", the exact nature of which is
dependent upon the medium. A program may allocate slots from

this set and release allocated slots for reuse. There may, however,
be restrictions upon the characteristics of the records acceptable to
the storage medium. For example, if a random-access disk file is
used, it may be necessary to restrict the record to data that can be
written into a fixed-length block of bytes.
There are many possible implementations of Table in the Access
Layer--such as simple indexes, balanced trees, and hash tables.
Any Table implementation must be able to allocate a new slot,
store a record into it, retrieve the record from it, and then
deallocate the slot when it is no longer needed. The Table must
be able to refer to slots in a medium-independent manner.
Moreover, most implementations will need to treat these slot
references as data that can be stored in records and written to a
slot. For example, the nodes of a tree-structured table are
"records" that may be stored in a RecordStore; these nodes
must include "pointers" to other nodes, that is, references to other
slots.

5.2 Proxy Pattern
Since we do not wish to expose the internal details of the
RecordStore to the Access Layer, we need a medium-
independent means for addressing the records in the
RecordStore. The approach we take is a variation of the Proxy
pattern [Gamma 1995] [Grand 1998].
The idea of the Proxy pattern is to use a proxy object that acts as a
surrogate for a target object. When a client wants to access the
target object, it does so indirectly via the proxy object. Since the
target object is not accessed directly by the client, the exact nature
and location, even the existence, of the target object is not directly
visible to the client. The proxy object serves as a "smart pointer"
to the target object, allowing the target’s location and access
method to vary.
In this design, we define the RecordSlot abstraction to
represent the proxies for the slots within a RecordStore. As
shown in Figure 3, these two abstractions collaborate to enable
the Access Layer to store and retrieve records in a uniform way,
no matter which storage medium is used. Because of the need to
write the slot references themselves into records as data, we also
assign an integer "handle" to uniquely identify each physical slot
in a RecordStore. Since multiple RecordStore instances
may be in use at a time, each RecordSlot also needs a
reference to the RecordStore instance to which it refers.

Table RecordStore

Simple
Indexed

File

Hashed
File

Slotted
File

Store

Vector
Store

Figure 2. Bridge Pattern

uses

4

5.3 RecordStore Interface
Now we can specify the RecordStore and RecordSlot
interfaces. We define the RecordStore ADT as a Java interface
that includes the following methods:

• RecordSlot getSlot() allocates a new record slot and
returns the RecordSlot object.

• RecordSlot getSlot(int handle) rebuilds a
record slot using the given handle and returns the
RecordSlot.

• void releaseSlot(RecordSlot slot) deallocates
the allocated record slot.

In the getSlot() method the framework design allows lazy
allocation of the handle and, hence, of the associated physical
slot. That is, the handle may be allocated by getSlot() or later
upon its first use to store a record in the RecordStore.

5.4 RecordSlot Interface
The RecordSlot interface represents a proxy for the physical
record "slots" within a RecordStore. The RecordSlot
interface includes the following methods:

• void setRecord(Object rec) stores the argument
object rec into this RecordSlot.
The allocation of the handle can be done here or already
done by the getSlot() method of RecordStore.

• Object getRecord() returns the record stored in this
RecordSlot.

• int getHandle() returns the handle of this
RecordSlot.

• RecordStore getContainer() returns a reference to
the RecordStore with which this RecordSlot is
associated.

• boolean isEmpty() determines whether the
RecordSlot is empty (i.e., does not hold a record).

Method getRecord() returns the NULLRECORD
object if no record has been stored in the slot. This denotes an
inert, empty record implemented according to the Null Object
design pattern [Grand 1998].

5.5 Record Interface
One issue we have not addressed is how the RecordSlot
mechanism can store the records on and retrieve them from the

physical slots on the storage medium. This is an issue because the
records themselves are defined in the Client Layer and their
internal details are, hence, hidden from the RecordStore. For
in-memory implementations of RecordStore this is not a
problem; the RecordStore can simply clone the record (or
perhaps copy a reference to it). However, disk-based
implementations must write the record to a (random-access) file
and reconstruct the record when it is read.
The solution taken here is similar to what is done with the Keyed
interface. We introduce a Record interface with three user-
defined methods:

• writeRecord(DataOutput) that writes the record to a
DataOutput stream,

• readRecord(DataInput) that reads the record from a
DataInput stream,

• getLength() that returns the number of bytes that will be
written by writeRecord.

The Record interface is defined in the Storage Layer. However,
the concrete implementations of the interface appear in either the
Client Layer for client-defined records or the Access Layer for
“records” used internally within a Table implementation The
RecordStore calls the Record methods when it needs to read
or write the physical record. The code in the Record-
implementing class does the conversion of the internal record data
to and from a stream of bytes. The RecordStore
implementation is responsible for routing the stream of bytes to
and from the physical storage medium.

5.6 Discussion
In summary, the Storage Layer consists of the RecordStore,
RecordSlot, and Record interfaces and concrete classes that
implement RecordStore and RecordSlot. Figure 4 shows
the use relationships among the Access and Storage layer
abstractions.

The key goal in the framework design is the separation of the key-
based access mechanisms, represented by the Table interface,

 Table RecordSlot RecordStore

handle

Figure 3. Proxy Pattern

Table Keyed

Comparable

RecordStore RecordSlot

Record

Figure 4. Abstraction Usage Relationships

Access
Layer

Storage
Layer

5

from the physical storage mechanisms for the records, represented
by the RecordStore interface. This approach is inspired, in
part, by Sridhar's YACL C++ library's approach to B-trees
[Sridhar 1996], which separates the B-tree implementation from
the NodeSpace that supports storage for the B-tree nodes. The
design extends Sridhar's concept with the RecordSlot
abstraction, which is inspired, in part, by Goodrich and Tamassia's
Position ADT [Goodrich 1998]. The Position ADT abstracts the
concept of "place" within a sequence so that the element at that
place can be accessed uniformly regardless of the actual
implementation of the sequence.
This paper’s approach generalizes the NodeSpace and Position
concepts and systematizes their design by using standard design
patterns. The Layered Architecture and Bridge patterns motivate
the design of the RecordStore abstraction and the Proxy
pattern motivates the design of the RecordSlot mechanism.
The result is a clean structure that can be described and
understood in terms of standard patterns concepts and
terminology. Careful attention to the semantics of the abstract
methods in the various interfaces helps us allocate responsibility
among the various abstractions in the framework and helps us
decide what functionality can be supported across many possible
implementations [Cunningham 2001].

6. ITERATORS
The Iterator design pattern documents a systematic way for client
code to access the elements of a collection sequentially without
exposing the internal details of the collection’s implementation
[Gamma 1995] [Grand 1998]. The interface Iterator, defined
in the Java API, provides a standard means for Java programs to
support iterators. It includes method hasNext() to check for
the existence of another element and next() to return the next
element. We can add several useful iterators and iterator-
manipulating methods to the framework design.

6.1 Table Iterator Methods
As a convenience for clients of the table implementations, we add
two iterator methods to the Table interface:

• Iterator getKeys() returns an iterator that enables the
client to access all the keys in the table one by one.

• Iterator getRecords() returns an iterator that
enables the client to access all the records in the table one by
one.

Similarly, we can add overloaded versions of the insert and
delete methods that take appropriate iterators as arguments.

• void insert(Iterator iter) inserts the Keyed
objects denoted by the iterator iter into the table.

• void delete(Iterator iter) deletes the objects
from the table whose keys match those returned by iterator
iter.

6.2 Query Iterator Methods
The Table abstraction defined in a previous section only
provides access based on the unique, primary key of the record.
Sometimes a client may want to access records based on the

values of other fields. Unlike the primary key, these secondary
key fields may not uniquely identify the record within the
collection.
The framework can be readily extended to accommodate access
on secondary keys as well as the primary key. We can, for
example, define a MultiKeyed interface in the Access Layer
that extends the Keyed interface with additional methods:

• int getNumOfKeys() that returns the number keys
supported by the associated record implementation,

• Comparable getKey(int k) that extracts a
secondary key k from the record. Key 0 is the primary
key.

While it is sufficient for the basic Table mechanism to have a
simple method retrieve(Comparable), a table that
supports access on multiple keys needs to allow a variable
number of items to be retrieved for each secondary key value. As
a convenience, it is also useful to allow a query to be done with a
combination of various primary and secondary key values. We
can define a QueryTable interface that extends Table and
adds two new iterator methods:

• Iterator selectKeys(query) evaluates the query
and returns the sequence of keys of all records that satisfy the
query.

• Iterator selectRecords(query) evaluates the
query and returns the sequence of all records that satisfy
the query.

6.3 Input Iterators
The method insert(Iterator) is a convenient
mechanism for loading a table with a sequence of items that come
from a different format. We add the abstract base class
InputIterator to enable users to conveniently create a class
to read records from from external files. The design of this class
takes advantage of the Template Method design pattern.
The Template Method pattern [Gamma 1995] [Grand 1998] is a
quite useful pattern for building frameworks. Central to this
pattern is an abstract class that provides a skeleton of the needed
behaviors. The class consists of two kinds of methods:
Template methods. These are concrete classes that implement the

shared functionality of the class hierarchy. They are not
intended to be overridden by subclasses

Hook methods. These are abstract methods that provide “hooks”
for attaching the functionality that varies among applications.
Although hook methods may have a default definition in the
abstract class, in general they are intended to be overridden
by subclasses. A template method calls a hook method to
carry out application-dependent operations.

The InputIterator class implements the Java Iterator
interface, providing the required Iterator methods as template
methods. It also include two abstract hook methods that are
called by the template methods:

• boolean atEnd() that returns true when the end of the
input has been reached.

6

• Object readNext() that returns the next object in the
input stream.

A client who wishes to use this class must extend the
InputIterator class, providing appropriate concrete
definitions for the abstract methods.

6.4 Filtering Iterators
Sometimes users need to transform the elements of one sequence
into another. Some elements may need to be deleted and others
kept. Sometimes a conversion operation needs to be applied to
every element of a sequence. We can support these operations on
iterators by introducing the FilterIterator class.
The FilterIterator class is a concrete class that implements
the Iterator interface. It’s constructor takes three arguments:
an iterator, a selector, and a converter. Its implementation takes
advantage of the Decorator and Strategy design patterns.
The Decorator pattern extends the functionality of an object in a
way that is transparent to the users of that object [Gamma
1995][Grand 1998]. A Decorator object is of the same type as the
original object. It serves as a wrapper around the original object
that provides enhanced functionality but delegates part of its work
to the original object. The FilterIterator is an iterator
whose constructor takes another iterator as an argument; it uses
the argument iterator as its source of data but selects and
transforms the data that is returned by its next() method. The
use of the Decorator pattern thus allows a FilterIterator to
provide enhanced functionality at any place that an Iterator is
used.
The Strategy pattern abstracts a family of related algorithms
behind an interface [Gamma 1995][Grand 1998]. The desired
algorithm can be selected at runtime and plugged into the object
that uses the algorithm. The selector and converter arguments of
the FilterIterator are Strategy objects that encapsulate the
selection and conversion algorithms, respectively. For example,
the selector is an object of a class that implements the Selector
interface. This interface requires that the class implement the
method:

• boolean selects(Object obj) that returns true if
and only if obj satisfies the chosen criteria.

The FilterIterator delegates the choice of which objects
from its input sequence to keep to the selects() method of the
selector object. The use of the Strategy pattern enables the same
FilterIterator object to be configured flexibly to have
different behaviors as needed.

7. EVOLVING FRAMEWORKS
Framework designs tend to evolve as their usage grows and the
developers learn more about the application domain. This
evolution often follows the steps documented in the Evolving
Frameworks system of patterns [Roberts 1998]. The Table
Framework is being developed according to several of these
patterns.

7.1 Generalizing from Three Examples
In most nontrivial frameworks, it is not possible to come up with
the right abstractions just by thinking about the problem. Domain
experts typically do not know how to express the abstractions in

their heads in ways that can be turned into designs for abstract
classes; programmers typically do not have a sufficient
understanding of the domain to derive the proper abstractions
immediately [Roberts 1998].
Typically, three implementation cycles are needed to develop a
sufficient understanding of the application to construct good
abstractions [Roberts 1998]. Design of the Table framework was
no different despite the simplicity of the problem. In the
exploration of the design, we constructed three prototype
implementations of the RecordStore and two implementations
of the Table [Wang 2000]. Earlier work designing similar Table
libraries also yielded insight. Each implementation effort gave
new insights into what an appropriate set of abstractions were and
uncovered potential problems.

7.2 Whitebox and Blackbox Frameworks
As this framework is defined so far, it is a pure whitebox
framework [Fayad 1999]. In general, a whitebox framework
consists of a set of interrelated abstract base classes. Developers
implement new applications by extending these base classes and
overriding methods to achieve the desired new functionality. The
implementers must understand the intended functionality and
interactions of the various classes and methods. Such frameworks
are flexible, extensible and easy to build, but they are difficult to
learn and use.
While whitebox frameworks rely upon inheritance to achieve
extensibility, blackbox frameworks use object composition to
support extensible systems [Fayad 1999]. Such frameworks
define interfaces for components and allow existing components
to be plugged into these interfaces. Appropriate components that
conform to these interfaces are collected in a component library
for ready reuse. Such frameworks can be easy to use and extend.
However, they tend to be difficult to develop because they require
the developers to provide appropriate interfaces for a wide range
of potential uses.

7.3 Component Library
Once a basic whitebox framework is in place, the design usually
evolves toward a blackbox framework by the addition of useful
concrete classes to a component library [Roberts 1997]. The
addition of concrete implementations of the Table and
RecordStore abstractions thus is a natural next step in the
evolution of the Table framework.
A prototype component library has been developed for an earlier
version of Table framework design [Wang 2000]. This component
library provides three different implementations of the Storage
Layer, in particular of the RecordStore interface:

• VectorStore, an implementation that stores the records in
a Java Vector;

• LinkedMemoryStore, an implementation that stores the
records in a linked list;

• SlottedFileStore, an implementation that stores the
records in a relative file of fixed length blocks on disk and
uses a bit-map to manage the blocks.

The component library also provides two implementations of the

7

Access Layer, in particular of the Table interface:

• SimpleIndexedFile, an implementation that uses a
simple sorted index in memory to support the location of
records using keys [Folk 1998];

• HashedFileClass, an implementation that uses a hash
table to support the key-based access.

In the prototype component library, the component
SimpleIndexedFile actually implements the QueryTable
interface.

7.4 Hot Spots
Experience in developing applications with a framework helps
identify shared functionality and points of variability. The shared
functionality, often called frozen spots [Pree 1995][Schmid 1999],
can be incorporated into the framework as concrete classes or as
concrete methods of abstract classes. The Template Method
pattern is one common technique for implementing the frozen
spots. The points of variability, often called hot spots, can be
incorporated into the framework as abstract hook methods that are
refined via inheritance. Alternatively, hot spots can be
implemented by delegation to classes that encapsulate the required
functionality (e.g., using the Strategy and Decorator patterns).
This evolutionary step has not occurred in the simple Table
framework, but should occur as additional implementations and
analyses are done
Schmid has proposed an approach to framework design that
promises to systematize the process of constructing frameworks
[Schmid 1999]. In his Systematic Generalization methodology,
framework designers take a specific application within the
framework's domain and then convert it into a framework by a
sequence of generalizing transformations. Each transformation
introduces a hot spot into the structure. The methodology then
proposes techniques for analyzing the hot spot and constructing
an appropriate hot-spot subsystem to plug into that hot spot.
Future work on the Table framework should use this approach to
seek further generalizations.

8. CONCLUSION
This paper describes how software design patterns are applied
advantageously in the design of a small application framework for
building implementations of the Table ADT. The framework
consists of a group of Java interfaces that collaborate to define
the structure and high-level interactions among components of the
Table implementations. The key feature of the design is the
separation of the Table’s key-based record access mechanisms
from the physical storage mechanisms. The systematic application
of the Layered Architecture, Interface, Bridge, and Proxy patterns
lead to a design that is sufficiently flexible to support a wide range
of client-defined records and keys, indexing structures, and
storage media. The use of the Template Method, Strategy, and
Decorator patterns also enables variant components to be easily
plugged into the framework. The Evolving Frameworks patterns
give guidance on how to modify the framework as more is learned
about the family of applications. The conscious use of these
software design patterns increases the understandability and
consistency of the framework’s design.

9. ACKNOWLEDGEMENTS
The authors thank Robert Cook and “Jennifer” Jie Xu for their
suggestions concerning this work. This work also benefited from
insights provided by projects completed by the first author’s
former students Wei Feng on relative files, Jian Hu on Table
libraries, and Deep Sharma on B-tree libraries. The preparation of
the final version of this paper was supported, in part, by a grant
from Acxiom Corporation titled “An Acxiom Laboratory for
Software Architecture and Component Engineering (ALSACE)”.

10. REFERENCES
1. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,

and Stal, M. Pattern-Oriented Software Architecture, A
System of Patterns, Wiley, 1996.

2. Cunningham, H. C., and Wang, J. Building a layered
framework for the table abstraction, In Proceedings of the
ACM Symposium on Applied Computing, March 2001.

3. Fayad, M. E., Schmidt, D. C., and Johnson, R. E.
Application frameworks, In. Fayad, M. E., Schmidt, D. C.,
and Johnson, R. E., editors, Building Application
Frameworks: Object-Oriented Foundations of Framework
Design, Wiley, 1999.

4. Folk, M. J., Zoellick, B., and Riccardi, G. File Structures: An
Object-Oriented Approach with C++, Addison Wesley,
1998.

5. Gamma, R., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, 1995.

6. Goodrich, M. T. and Tomassia, R. Data Structures and
Algorithms in Java, Wiley, 1998.

7. Grand, M. Patterns in Java, Volume 1, Wiley, 1998.

8. Pree, W. Design Patterns for Object-Oriented Software
Development, Addison-Wesley, 1995.

9. Roberts, D. and Johnson, R. Patterns for evolving
frameworks, In Martin, R., Riehle, D., and Buschmann, F.,
editors, Pattern Languages of Program Design 3, Addison-
Wesley, 1998.

10. Schmid, H. A. Framework design by systematic
generalization, In Fayad, M. E., Schmidt, D. C., and
Johnson, R. E., editors, Building Application Frameworks:
Object-Oriented Foundations of Framework Design, Wiley,
1999.

11. Shaw, M. Some patterns for software architecture, In
Vlissides, J. M., Coplien, J. O., and Kerth, N. L., editors,
Pattern Languages of Program Design 2, Addison Wesley,
1996.

12. Sridhar, M. A. Building Portable C++ Applications with
YACL, Addison-Wesley, 1996.

13. Wang, J. A Flexible Java Library for Table Data and File
Structures, Technical Report UMCIS-2000-07, Department
of Computer and Information Science, University of
Mississippi, May 2000.

8

11. BIOGRAPHIES
H. Conrad Cunningham is Associate Professor and Interim Chair
of the Department of Computer and Information Science at the
University of Mississippi. His professional interests include
concurrent and distributed computing, programming
methodology, and software architecture. He has a BS degree in
mathematics from Arkansas State University and MS and DSc
degrees in computer science from Washington University in St.
Louis, Missouri.

Jingyi Wang is a Software Developer at Acxiom Corporation in
Little Rock, Arkansas. Her professional interests include the
design of enterprise computing applications. She has a BA degree
in economics from Fudan University in Shanghai, China, and an
MA in economics and an MS in computer science from the
University of Mississippi.

	Keywords
	INTRODUCTION
	TABLE ADT
	LAYERED ARCHITECTURE
	ACCESS LAYER
	Keys and the Comparable Interface
	Records and the Keyed Interface
	Table Interface

	STORAGE LAYER
	Bridge Pattern
	Proxy Pattern
	RecordStore Interface
	RecordSlot Interface
	Record Interface
	Discussion

	ITERATORS
	Table Iterator Methods
	Query Iterator Methods
	Input Iterators
	Filtering Iterators

	EVOLVING FRAMEWORKS
	Generalizing from Three Examples
	Whitebox and Blackbox Frameworks
	Component Library
	Hot Spots

	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES
	BIOGRAPHIES

