
Applying Software Patterns in the
Design of a Table Framework

H. Conrad Cunningham
Dept. of Computer & Information Science

University of Mississippi

Jingyi Wang
Acxiom Corporation

9-Nov-2001 2

Project
Context: development of an instructional data and file

structures library
– artifacts for study of good design techniques
– system for use, extension, and modification

Motivation: study techniques for
– presenting important methods to students (frameworks, software

design patterns, design by contract, etc.)
– unifying related file and data structures in framework

9-Nov-2001 3

Table Abstract Data Type

• Collection of records
• One or more data fields per record
• Unique key value for each record
• Key-based access to record
• Many possible implementations

Key1 Data1
Key2 Data2
Key3 Data3
Key4 Data4

9-Nov-2001 4

Table Operations

• Insert new record
• Delete existing record given key
• Update existing record
• Retrieve existing record given key
• Get number of records
• Query whether contains given key
• Query whether empty
• Query whether full

9-Nov-2001 5

Framework

• Reusable object-oriented design
• Collection of abstract classes (and interfaces)
• Interactions among instances
• Skeleton that can be customized
• Inversion of control (upside-down library)

9-Nov-2001 6

Requirements for Table Framework

• Provide Table operations
• Support many implementations
• Separate key-based access mechanism from

storage mechanism
• Present coherent abstractions with well-defined

interfaces
• Use software design patterns

9-Nov-2001 7

Software Design Patterns

• Describe recurring design problems arising in
specific contexts

• Present well-proven generic solution schemes
• Describe solution’s components and their

responsibilities and relationships
• To use:

– select pattern that fits problem
– structure solution to follow pattern

9-Nov-2001 8

Layered Architecture Pattern

• Distinct groups of services
• Hierarchical arrangement of groups into layers
• Layer implemented with services of layer below
• Enables independent implementation of layers

Client Layer

Access Layer

Storage Layer

9-Nov-2001 9

Applying Layered Architecture Pattern

Client Layer
– client programs
– uses layer below to store and retrieve records

Access Layer
– table implementations
– provides key-based access to records for layer above
– uses physical storage in layer below

Storage Layer
– storage managers
– provides physical storage for records

9-Nov-2001 10

Access Layer Design
Challenges:

– support client-defined keys and records
– enable diverse implementations of the table

Pattern:
– Interface

9-Nov-2001 11

Access Layer Interfaces
Comparable interface for keys (in Java library)

– int compareTo(Object key) compares object
with argument

Keyed interface for records
– Comparable getKey() extracts key from record

Table

– table operations

9-Nov-2001 12

Table Interface

void insert(Keyed r) inserts r into table
void delete(Comparable key) removes record with key
void update(Keyed r)changes record with same key
Keyed retrieve(Comparable key) returns record with key
int getSize() returns size of table
boolean containsKey(Comparable key) searches for key
boolean isEmpty()checks whether table is empty
boolean isFull()checks whether table is full

– for unbounded, always returns false

9-Nov-2001 13

Client/Access Layer Interactions

• Client calls Access Layer class implementing
Table interface

• Access calls back to Client implementations of
Keyed and Comparable interfaces

9-Nov-2001 14

Storage Layer Design
Challenges:

– support diverse table implementations in Access Layer
(simple indexes, hashing, balanced trees, etc.)

– allow diverse physical media (in-memory, on-disk, etc.)
– enable persistence of table
– decouple implementations as much as possible
– support client-defined records

Patterns:
– Bridge
– Proxy

9-Nov-2001 15

Bridge Pattern
• Decouple “interface” from “implementation”

– table from storage in this case

• Allow them to vary independently
– plug any storage mechanism into table

Table RecordStore

Simple
Indexed

File

Hashed
File

Slotted
File

Store

Vector
Store

uses

9-Nov-2001 16

Proxy Pattern

• Transparently manage services of target object
– isolate Table implementation from nature/location of

record slots in RecordStore implementation

• Introduce proxy object as surrogate for target

 Table RecordSlot RecordStore

handle

9-Nov-2001 17

Storage Layer Interfaces

RecordStore

– operations to allocate and deallocate storage slots

RecordSlot

– operations to get and set records in slots
– operations to get handle and containing RecordStore

Record

– operations to read and write client records

9-Nov-2001 18

RecordStore Interface

RecordSlot getSlot()
allocates a new record slot

RecordSlot getSlot(int handle)
rebuilds record slot using given handle

void releaseSlot(RecordSlot slot)
deallocates record slot

9-Nov-2001 19

RecordSlot Interface
void setRecord(Object rec) stores rec in this slot

– allocation of handle done here or already done by getSlot

Object getRecord() returns record stored in this slot

int getHandle() returns handle of this slot

RecordStore getContainer() returns reference to
RecordStore holding this slot

boolean isEmpty() determines whether this slot empty

9-Nov-2001 20

Record Interface

Problem: how to write client’s record in generic way

Solution: call back to client’s record implementation

void writeRecord(DataOutput) writes the
client’s record to stream

void readRecord(DataInput) reads the
client’s record from stream

int getLength() returns number of bytes
written by writeRecord

9-Nov-2001 21

Abstraction Usage Relationships

Table Keyed

Comparable

RecordStore RecordSlot

Record

Access
Layer

Storage
Layer

9-Nov-2001 22

Other Design Patterns Used

• Null Object
• Iterator

– extended Table operations
– query mechanism
– utility classes

• Template Method
• Decorator
• Strategy

9-Nov-2001 23

Evolving Frameworks Patterns

• Generalizing from three examples
• Whitebox and blackbox frameworks
• Component library

– Wang prototype: two Tables and three
RecordStores

• Hot spots

9-Nov-2001 24

Conclusions

• Novel design achieved by separating access and
storage mechanisms

• Design patterns offered systematic way to
discover reliable designs

9-Nov-2001 25

Future Work

• Modify prototypes to match revised design
• Adapt earlier work of students on AVL and

B-Tree class libraries
• Study hot spots and build finer-grained component

library
• Study use of Schmid’s systematic generalization

methodology for this problem

