Automated Analysis and Construction of Feature Models in a
Relational Database Using Web Forms

Hazim Shatnawi”
University of Mississippi
University, Mississippi, USA
hhshatna@go.olemiss.edu

ABSTRACT

The Feature-Oriented Domain Analysis (FODA) approach intro-
duced the feature model abstraction to represent software product
lines. However, these abstractions are often difficult for mainstream
developers to specify and maintain because most tools rely on spe-
cialized theories, notations, or technologies. To address this issue,
we propose a design that uses mainstream Web technologies to
enable users to construct syntactically and semantically correct
feature models and mainstream relational database technologies to
encode the models as directed acyclic graphs. The Web interface
and relational database designs can form parts of a comprehensive,
interactive environment that enables mainstream developers to
specify, store, and update feature models and use them to configure
members of product families.

CCS CONCEPTS
« Software and its engineering — Software product lines.

KEYWORDS

Software product line, feature model, relational database, feature
model construction, automated analysis

ACM Reference Format:

Hazim Shatnawi and H. Conrad Cunningham. 2020. Automated Analysis
and Construction of Feature Models in a Relational Database Using Web
Forms. In 2020 ACM Southeast Conference (ACMSE 2020), April 2—4, 2020,
Tampa, FL, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3374135.3385312

1 INTRODUCTION

The feature modelling technique was first introduced in the Feature-
Oriented Domain Analysis (FODA) method [14]. Since its introduc-
tion, several extensions have been proposed that enable feature
models to represent larger systems with more complex relationships
between features than FODA allowed [8, 15, 22]. Several researchers
have proposed various ways to represent feature models, such as
by using domain specific languages (DSLs) [1], formal methods

*Also with National Center for Computational Hydroscience and Engineering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACMSE 2020, April 2—4, 2020, Tampa, FL, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7105-6/20/03.

https://doi.org/10.1145/3374135.3385312

H. Conrad Cunningham
University of Mississippi
University, Mississippi, USA
hcc@cs.olemiss.edu

[26], and propositional formulas for configuration using existing
logic-based tools [5].

However, when feature models grow large in size (i.e. in the num-
ber of features), they need to be represented in a way that makes
the variability management reliable and convenient. This includes
support for creating features, deleting features, defining relation-
ships between features, building up a feature model, and selecting a
valid set of features to form a specific product configuration. There
have been a few efforts to tackle these issues [7, 11, 19], but more
research is needed on the process of constructing a valid feature
model from scratch, building up the relations between features, and
presenting the evolving feature model in an understandable and
convenient manner.

We address this need by proposing a novel design based on
mainstream Web technologies. Our design uses a dynamic Web
interface with two parts:

o a Web form enabling the creation, modification, and deletion
of features and the definition of relationships and constraints
among the features

e alive-preview page showing the constructed feature model
represented as a directory structure

This Web-based user interface for product creation and configu-
ration extends our previous work [21], which presents a novel
approach to specification of feature models: encoding them in a
relational database (RDB). The RDB design uses three tables to store
the features and their hierarchical and cross-tree relationships. Us-
ing RDB tables in this way separates the concept of a feature from
its implementation, which makes the feature model easy for both
developers and end-users to understand.

The distinction between a feature and its implementation is
useful when performing automated analyses and when reasoning
about the set of different products that can be generated from the
SPL using the feature model’s configurations of products [23]. A
significant benefit is the ability to use the well-known database
query language (SQL) for reasoning about feature models. In this pa-
per, we exploit this distinction and design a dynamic user interface
that collects the needed information from the users and ensures
the resulting feature model is both syntactically and semantically
correct. The interface also interactively guides the user to configure
valid members of the product family represented by a feature model
stored in the database.

The remainder of the paper is structured as follows. Section 2
reviews the feature model concept. Section 3 presents our novel
approach to building feature models and configuring products using
dynamic Web forms. Section 4 discusses our work in relation to
existing work and Section 5 summarizes our contributions and
outlines possible future research.

Search Engine

Requires

Search
Languages

Excludes.-~

Figure 1: Feature Model for a Search Engine SPL

2 FEATURE MODELS

In the literature, the feature model is the most prominent technique
for representing a software product line (SPL) or family of related
systems [6, 10, 20]. Each choice in how to structure an individual
product is called a feature. A feature model aggregates all these
choices into one high-level descriptive model of the SPL. Some
features are common (i.e. those shared among all products) and
thus must always be included. Other features are variable and thus
can be selectively included or excluded from from a product.

A feature model is a tree-like structure with a single root repre-
senting the entire SPL. An edge links a parent feature with a child.
The parent represents a high-level design choice while the child
represents a more detailed choice. There may also be cross-tree
inclusion or exclusion constraints between features.

A feature model can be depicted using a feature diagram. Figure 1
shows a feature diagram for a simplified Search Engine product line
[17, 21]. As described in detail in a previous paper [21], a child has
one of four relationships with its parent: Mandatory (child must
be selected), Optional (child can be selected), Or group (one or
more in the group must be selected), and Alternative group (exactly
one in the group must be selected). A filled circle at the end of an
edge marks that child as Mandatory (e.g. HTML in Figure 1) and an
unfilled circle marks it as Optional (e.g. Video). A filled arc marks
an Or group (e.g. under Search Language) and an unfilled arc marks
an Alternative group (e.g. under Image). To simplify a model, we
restrict a parent to having one group of Alternative and OR children.

The Optional, Alternative, and OR features are considered vari-
abilities or product choices. By calculating the possible number of
each variability’s presence, analysts and developers can count the
number of different products generated from the SPL.

Cross-tree constraints between features are represented by dot-
ted edges. In Figure 1, feature Search Language requires feature
Page Translation, which is indicated by the arrow pointing to Page
Translation. Therefore, if feature Search Language is selected in the
configured product, then feature Page Translation must also be in-
cluded, regardless of whether it is an optional feature. The opposite
direction does not hold. The node to which the arrow points is the

feature that determines the choice. The requires relationship cannot
constrain ancestor or descendent features.

Figure 1 also shows that feature Page Preview excludes feature
SVG, which is indicated by the arrow pointing to SVG. This means
that regardless of the arrow direction, if one feature is present,
the other cannot be. Syntactically, our design treats the exclude
relationship as unidirectional. However, semantically, we treat it
as bidirectional. An exclude feature cannot constrain ancestor or
descendent features. Cross-tree constraints do not follow the hierar-
chical parent-child tree structure since they can relate features with
two different parents, which does not follow the feature model’s
hierarchy rules.

3 FEATURE MODEL INTERFACE

In our previous work [21], we propose a novel approach that con-
ceptualizes a feature model as a graph, represents the graph as
an adjacency matrix, and encodes the matrix in three relational
database tables. As the tables are populated, care must taken to
ensure that the model stays syntactically and semantically correct.

In this paper, we extend the previous work by focusing on how
to construct correct feature models systematically and use them
effectively. We design a dynamic, Web-based user interface with two
phases. The first phase gathers the feature model data interactively,
verifies its syntactic and semantic correctness, builds the database,
and enables the on-going evolution of the model. The second phase
enables the user to interactively configure valid products from the
feature model. We want to enable mainstream users to construct,
modify, and use feature models without having to learn specialized
theories, notations, or technologies.

In the literature, we know of little work with similar goals. The
first feature model editor supporting abstract features is FeatureIDE
[2]. To use FeatureIDE effectively, developers and users must famil-
iarize themselves with the Feature-Oriented Programming [3] and
Aspect-Oriented Programming [16] paradigms.

Our work represents feature models in a generic way. It is not
bound to any programming language or mathematical model. It can
be used with any general or domain-specific programming language.
Our research targets development of SPLs on the Web, where several
programming languages can be deployed to generate a product. In
our approach, features can be client-side (i.e., JavaScript, HTML,
CSS) or server-side (i.e., PHP, Python) software assets.

3.1 Feature Creation

Figure 2 shows the user interface’s Feature Creation tab. It consists
of a Web form with components requiring entry of the new feature’s
name, its parent, the type of its relationship with its parent, and its
requires and excludes relationships with other features.

The Feature Name component uses an HTML input field to
get the information about a feature to be added. This component
enables users to define features and add them to the database tables
encoding the feature model. Each feature’s name must be unique
within the model. The system ensures the uniqueness by performing
checks on both the client-side (using JavaScript, HTML, and CSS)
and the server-side (using PHP and MySQL). To create an SPL
feature model, the user first adds the SPL’s concept feature and
then recursively adds children to previously created features.

Feature Name

[]

Feature Parent

-- select a feature --

Feature Type

Mandatory Optional OR 'at least one'

Alternative 'exactly one'

Feature Requires

-- select one or more features -- A

Feature Excludes

-- select one or more features -- A

Create Feature

Figure 2: Feature Creation Tab

The Feature Parent component uses an HTML select tag to asso-
ciate a feature with its parent. This tag displays a drop-down list
from which the user selects the parent feature. This part works as
a decision-choice that affects the information supported in the Fea-
ture Type component’s form (described below). The system allows
each feature to have the following groups of children: Mandatory or
Optional (which fall into their own group), OR (at least one feature
selected), and Alternative (exactly one feature selected).

If the parent feature already has children, then the system iden-
tifies the types of the existing relationships between the parent
and its children. It then activates or deactivates the checkboxes
and radio buttons in the Feature Type component accordingly. If
the parent feature does not have children, then all checkboxes and
radio buttons in the Feature Type’s component are activated.

The Feature Type (Relationships) component uses an HTML list
with two radio buttons and two checkboxes to assign the relation-
ship between the newly inserted feature and its parent. The user
can always choose between Mandatory and Optional for a feature.

Once the user selects the parent feature (in the Feature Parent
component described above), the system identifies the existing
relationships between the parent and its children. If the existing
relationships include an OR, then the OR radio button is activated
and the Alternative one is deactivated because a feature cannot have
two groups of OR/Alternative relationships. If the relationships in-
clude an Alternative, the OR radio button is similarly deactivated. If
the relationship between the parent and children is only Mandatory
or Optional, then both the OR and Alternative radio buttons are
deactivated while activating Mandatory and Optional checkboxes.

The Feature Requires and Feature Excludes component uses
an HTML selecting-multiple-options list to define Requires and
Excludes between features. The user can select 0-N features in both
fields (requires and excludes). Requires and Excludes relationships
must obey the following rules:

Feature Name

incognito-Mode

Feature Parent

Search Engine

Feature Type
Mandatory v/ Optional. OR 'at least one'
. Alternative 'exactly one'

Feature Requires

English A
File
GIF
Image v

Feature Excludes

Page Preview A
Spanish

Video

PDF v

Create Feature

Figure 3: Creating a New Feature incognito-Mode

e A mandatory feature cannot be excluded or included. It must
be independent from all other features, except its parent.
Therefore, if the user chooses Mandatory as the relationship
between a newly created feature and its parent, then the
require/exclude options are disabled. Since the new feature
is mandatory, it cannot require or exclude other features. If
the user chooses a relationship other than mandatory, then
the list of possible required/excluded features cannot include
any mandatory features.

o A feature cannot require or include an ancestor. The sys-
tem checks this by recursively constructing the path from a
feature to the root (i.e. concept feature) of the feature model.

o A feature cannot require or exclude a sibling. The system
performs this check in order to remove the siblings from the
lists of possible components to require/exclude.

o Requires and Excludes relationships are mutually exclusive.
If a user selects feature B to be required by feature A, then
feature B cannot subsequently be chosen to be excluded by
feature A. Similarly, if feature A excludes feature B, then B
cannot later be required. This is to ensure correct choices
when the user constructs cross-constraints relationships.

Figures 2 and 3 illustrate how a user can add feature Incognito-
Mode to the feature model using the Web interface. The system
guides the user to construct a syntactically and semantically correct
(i.e. valid) feature model, going through the following steps:

o The user enters the new feature’s name Incognito-Mode. The
system checks to ensure that name is not already defined.

o The system lists all available parent features including the
root. The user selects the new feature’s parent from the list.

e Once the user selects the feature’s parent, the system checks

that parent’s relationships with its children. If the relation-
ship is Mandatory or Optional, the user can choose any of the
relationships available, as all of them are activated. Note that
the Mandatory and Optional relationships are represented
by checkboxes while OR and Alternative are represented by
radio buttons. This to allow the user to select an OR or Alter-
native relationship while identifying whether the feature is
Mandatory or Optional.
In Figure 3, since the user selects Search Engine as the parent
feature, its relationship with children is either Mandatory
or Optional. Therefore, the system deactivates the Alterna-
tive and OR relationships and activates the Mandatory and
Optional. Although they are represented as checkboxes, the
system ensures that the user does not select both Mandatory
and Optional. If one is selected, the other is deactivated.

o After the user identifies the new feature’s parent, the sys-
tem lists all other features in the feature model that can be
required by that feature and enables the user to select one or
more for the Requires relationship. The system does not list
any ancestors of the new feature.

It also ensures that the selections obey the rules given above
for the Requires and Excludes relationships.

e Once the user identifies which features are required by the
new feature, the system lists all other features in the feature
model that can be excluded and enables the user to select
one or more for the Excludes relationship. The system does
not list any features that were selected to be required as
possibilities for Excludes. It also ensures that the selections
obey the rules given above for the Requires and Excludes
relationships. Figure 4 shows an algorithm to validate these
cross-tree constraints.

Although the system checks for mutual exclusivity, it does not
prevent the user from making incorrect decisions in some cases.
An example would be a feature which is required by one feature
and excluded by a different feature. This issue can arise during the
product configuration phase, when the user selects the features
from the feature model to include in a particular product. When
this issue occurs, the system notifies the user in order to modify
the relations again during the feature model’s construction phase.

3.2 Feature Modification and Deletion

The user interface’s Feature Modification tab enables a previously
defined feature to be changed. It displays a radio button for each
feature defined in the SPL. When the user selects a radio button,
the system fetches the information about the corresponding feature
and populates the Feature Creation form accordingly. The user can
then modify the feature’s name, parent, type, and cross-constraints
relationships as needed. The same validation rules applied to these
values during feature creation apply during feature modification.

The user interface’s Feature Deletion tab enables a previously
defined feature to be removed from the SPL. It operates similarly to
the Feature Modification tab by displaying a radio button for each
feature in the SPL. The system allows any feature to be deleted,
even a mandatory feature.

Algorithm: Requires/Excludes

Data: AJAX call to requires.php file, posting feature parent,
selected at feature-Parent web component form
Output: Listing both requires and excludes in requires
components in the web form and handle their
selections
Define arrays used in the algorithm (allFeaturesArr, ..etc) if

[

parent exists in the feature model then
2 if parent is select in feature Parent Component then
3 allFeaturesArr « array that holds all features in
the feature model except the root;
4 ascendantsArr « fetchAscendants(parent);
// Recursive function to get parent’s
ascendants up to the root
5 descendantsArr «fetchDescendants(parent);
// Recursive function to get parent’s
children and their descendants traversing
the leaf nodes (features)
6 mandatoryArr « list all mandatory arrays in the
feature model; // Mandatory features cannot
be excluded since they appear in every
different final product
7 notTolncludeExcludeArr « [created feature,
parent, ascendantsArr and descendantsArr items,
mandatoryArr items J;

8 requiresArr « Filter notToIncludeExcludeArr
and allFeaturesArr arrays and remove duplicates;
9 | LIST requiresArr items in requires drop-down list
10 if feature(s) is selected from Requires list then
1 selectedRequired « array holding features

selected by user as required features;

12 excludesArr «— Compare requiresArr and
selectedRequired arrays and remove all
matching elements; // feature cannot be
required and excluded at the same time

13 LIST excludesArr items in excludes drop-down list

14 SAVE user selections and update the database tables that

encode the feature model
15 else

16 Invalid POST variable; // Check AJAX post again
(front-end) or how POST being handled
(back-end)

Figure 4: Requires/Excludes Algorithm

If the deleted feature has no children, the system just deletes the
feature and updates the feature model to reflect the change.

If the deleted feature has children, the system determines what
other features can be assigned as their new parent. It then prompts
the user to select the new parent. If the user decides not to select
a new parent, then all the children and their descendants are also
deleted from the SPL. If the deleted feature is the root of the feature
model, the system asks the user whether to delete the entire SPL.

3.3 Product Configuration

The second phase of the user interface consists of the Product Con-
figuration interface. It enables the user to configure a product from
the family of possible products defined by the feature model. This
phase is a dynamic enhancement of a phase in our previous work
[21]. As the feature model is being defined, the system interprets
the syntax and semantics of the stored model and displays a hi-
erarchical list. Whenever the user changes the feature model, the
system dynamically updates this "live preview" of the model.

The Product Configuration interface enables the user to select
a set of features for a complete product that satisfies the feature
model’s constraints [21]. It indicates Optional features and features
within an Alternative group using checkboxes and indicates features
within an OR group with radio buttons. Mandatory features are
represented as radio buttons which are selected by default and
cannot be modified. The system indicates the cross-tree Requires
and Excludes relationships, which cannot be shown directly in the
hierarchy, as warning messages under the determined features.
When the user selects a feature, the system updates the display to
show what features have been selected and which are still available
to be selected according to the semantics of the feature model. When
a feature involved in a Requires or Excludes relationship is selected,
then the related feature is selected or deselected as required by
the semantics. When product configuration is complete, the user
clicks the Submit button. If no feature has been selected, the system
displays a warning message.

As future work, we plan a third phase of system that will generate
a product from the selected configuration of a feature model. This
process will not be tied to any specific programming language. As
much as feasible, the system design will enable use of a wide range
of programming languages, general-purpose or domain-specific.

4 DISCUSSION

In the literature, we find considerable work on the representation
of feature models. Van Deursen and Klint [24] propose the Feature
Description Language (FDL), a textual language to describe fea-
tures that can be mapped to UML diagrams. Cechticky et al. [9] and
Ge and Whitehead [12] propose XML-based approaches to feature
modeling and configuration. White et al. [25] propose the trans-
formation of feature models into constraint satisfaction problems
to automatically diagnose errors. However, none of these provides
an automated way for creating or configuring feature models for
non-developers. Users also need to be familiar with complex topics
such as propositional formulas and constraint satisfaction or need
to learn a new programming language in order to work with fea-
ture models. Our system does not require specialized programming
knowledge to create, modify, and delete features in feature models
or to configure a product. In addition, our system guides the user
into making correct decisions.

Gunther and Sunkle [13] encode the feature model as an object in
Ruby, which allows the feature model to be modified and products
configured dynamically. Our approach allows feature models to be
created and modified dynamically without being tied to a specific
programming language.

Researchers have introduced tools such as pure::variants [19],
staged configuration [11], FAMA [7], and FeatureIDE [2] to guide

developers in configuring a feature model. However, they also re-
quire considerable software expertise to use effectively. In addition,
they do not help users discover created feature models with incor-
rect configurations. Our system checks the validity of the feature
model at every step of its creation, modification, and use.

5 CONCLUSION AND FUTURE WORK

In 1990, Kang et al. [14] introduced feature modeling as a part of
the Feature-Oriented Domain Analysis (FODA) approach. For the
past three decades, feature models have been regarded as useful
abstractions for representing the common and variable parts of
software product lines. Various researchers have put forward a
number of extensions, specification languages, and tools for work-
ing with feature models. However, feature models are often difficult
for mainstream developers to specify and maintain because most
tools rely on specialized theories, notations, or technologies.

In our previous work [21], we addressed this issue by proposing
a design that uses mainstream relational database technologies to
encode feature models as directed acyclic graphs. This paper ex-
tends that work and proposes a design that uses mainstream Web
technologies to construct feature models and store them in the
database. To demonstrate our design, we developed a proof of con-
cept system. The first phase of our system leverages the dynamic
capabilities of Web forms to collect the needed information from
the users and ensure the resulting feature model is both syntac-
tically and semantically correct. The system interactively guides
the user to construct a valid feature model. Using a similar Web
form, the second phase of our system interactively guides the user
to configure valid members of the product family represented by a
stored feature model.

Thus, our Web interface design, combined with the relational
database design, can form parts of a comprehensive environment
that enables mainstream developers to specify, store, and update
feature models and use them to configure and generate members of
product families. Figure 5 shows our overall system workflow from
user registration through feature model creation, product config-
uration, and final product generation. We are currently designing
the product generation phase of the system.

We are exploring ways to make our system more modular, flexi-
ble, and extensible, while still relying on technologies commonly
used by mainstream developers. One novel approach we are in-
vestigating is the addition of a specification language based on
JavaScript Object Notation (JSON) [4] to provide an alternative
encoding of feature models. We propose to define a JSON dialect
and use a JSON Schema [18] to specify its syntax and (as much as
possible) its semantics. This potentially allows the evolving JSON
validation tools to handle most of the rules enforcement we de-
scribed in Section 3. We also propose to design a programmatic
interface to handle other aspects of the creation and manipulation
of valid feature models encoded in our specification language.

This JSON-based specification language can serve as a precise
medium for communication among loosely coupled modules. This
language can allow parts of a system to work in isolation from other
parts and to communicate feature models among themselves using
a portable, text-based format. It can make extending the system
with future tools convenient and provide a system-independent

Option 1
—
-
Option 2
Records users'
iy 3 selections
Uption 3 - z
m Linked with actual

. features'

Option 4

H %
LI kleep t.rack L pr— Dacision Support System
users’ projects
Create New Feature Creation Form
Featura Dalation Form
% Featuras Modification Form
Register Continue
User Login
feature table
——
p— featuresRelation table
Controls user's
Collaborate activites
—

implementation

Product Configuration

Landing Page

Figure 5: Overall System Workflow

format for archiving feature models. Although a realistic feature
model description will be verbose, it can be read by human users as
well as machines. We do not expect the specification language to
supplant the use of the database, but the language potentially adds
novel capabilities to our evolving feature modeling environment.

ACKNOWLEDGMENTS

We thank the anonymous referees for their helpful comments. We
improved the paper in several ways as a result.

REFERENCES

(1]

(2]

(71

(8]

[9

=

[10]

M. Acher, P. Collet, P. Lahire, and R. France. 2011. A Domain-Specific Language
for Managing Feature Models. In Proceedings of the ACM Symposium on Applied
Computing (SAC). ACM, Taichung, Taiwan, 1333—-1340.

M. Alam, A. Khan, and A. Zafar. 2018. Implementing Variability in SPL Using Fea-
tureIDE: A Case Study. In Proceedings of the International Conference on Electrical,
Electronics, Computers, Communication, Mechanical and Computing (EECCMC).
IEEE Madras Section, Tamil Nadu, India, 584-593.

S. Apel, D. Batory, C. Kastner, and G. Saake. 2013. Feature-Oriented Software
Product Lines. Springer, Berlin.

L. Bassett. 2015. Introduction to JavaScript Object Notation: A To-the-Point Guide
to JSON. O’Reilly Media, Sebastopol, CA.

D. Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In
International Conference on Software Product Lines. Springer, Rennes, France,
7-20.

G. Bécan, M. Acher, B. Baudry, and S. Ben Nasr. 2016. Breathing Ontological
Knowledge Into Feature Model Synthesis: An Empirical Study. Empirical Software
Engineering 21, 4 (2016), 1794-1841.

D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. 2007. FAMA: Tooling a
Framework for the Automated Analysis of Feature Models.. In Proceeding of the
First International Workshop on Variability Modelling of Software-intensive Systems
(VaMoS). VaMoS, Limerick, Ireland, 129-134. http://www.vamos-workshop.net/
proceedings/VaMoS_2007_Proceedings.pdf.

J. Biirdek, S. Lity, M. Lochau, M. Berens, U. Goltz, and A. Schiirr. 2014. Staged
Configuration of Dynamic Software Product Lines with Complex Binding Time
Constraints. In Proceedings of the Eighth International Workshop on Variability
Modelling of Software-Intensive Systems. ACM, Magdeburg, Germany, 16.

V. Cechticky, A. Pasetti, O. Rohlik, and W. Schaufelberger. 2004. XML-based Fea-
ture Modelling. In International Conference on Software Reuse, Vol. 3107. Springer,
Madrid, Spain, 101-114.

K. Czarnecki and U. Eisenecker. 2000. Generative Programming: Methods, Tech-
niques, and Applications. Addison-Wesley Professional, Boston.

(1]

(12]

[13]

(14]

[15]

[16]
(17]

(18

[19

™
=2

[21]

[22]

[25]

[26]

K. Czarnecki, S. Helsen, and U. Eisenecker. 2005. Staged Configuration through

Specialization and Multilevel Configuration of Feature Models. Software Process:
Improvement and Practice 10 (04 2005), 143-169.

G. Ge and E. Whitehead. 2008. Rhizome: A Feature Modeling and Generation
Platform. In Proceedings of the International Conference on Automated Software
Engineering. IEEE, L’Aquila, Italy, 375-378.

S. Giinther and S. Sunkle. 2012. rbFeatures: Feature-Oriented Programming with
Ruby. Science of Computer Programming 77, 3 (2012), 152-173.

K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. 1990. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21.
Software Engineering Institute, Carnegie Mellon University.

K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. 1998. FORM: A Feature-
Oriented Reuse Method with Domain-Specific Reference Architectures. Annals
of Software Engineering 5, 1 (1998), 143-168.

H. Kurdi. 2013. Review on Aspect Oriented Programming. International Journal
of Advanced Computer Science and Applications 4, 9 (2013), 22-27.

M. Mendonga. 2009. Efficient Reasoning Techniques for Large Scale Feature Models.
Ph.D. Dissertation. University of Waterloo.

F. Pezoa, J. Reutter, F. Suarez, M. Ugarte, and D. Vrgo¢. 2016. Foundations of
JSON Schema. In Proceedings of the 25th International Conference on World Wide
Web. International World Wide Web Conferences Steering Committee, Montreal,
Canada, 263-273.

pure-systems GmbH 2019. pure::variants User’s Guide. pure-systems GmbH,
Magdeburg, Germany. https://www.pure-systems.com/fileadmin/downloads/
pure-variants/doc/pv-user-manual.pdf.

S. Sepulveda, A. Cravero, and C. Cachero. 2016. Requirements Modelling Lan-
guages for Software Product Lines: A Systematic Literature Review. Information
and Software Technology 69 (2016), 16-36.

H. Shatnawi and H. Cunningham. 2017. Mapping SPL Feature Models to a Rela-
tional Database. In Proceedings of the ACM SouthEast Conference. ACM, Kennesaw,
GA, USA, 42-49.

A. Sree-Kumar, E. Planas, and R. Claris6. 2016. Analysis of Feature Models
Using Alloy: A Survey. In Proceedings of the 7th International Workshop on Formal
Methods and Analysis in Software Product Line Engineering (FMSPLE’16). EPTCS,
Eindhoven, The Netherlands, 45-60.

T. Thiim, C. Kastner, S. Erdweg, and N. Siegmund. 2011. Abstract Features in
Feature Modeling. In Proceedings of the 15th International Software Product Line
Conference SPLC 2011. IEEE, Munich, Germany, 191-200.

A. Van Deursen and P. Klint. 2002. Domain-Specific Language Design Requires
Feature Descriptions. Journal of Computing and Information Technology 10, 1
(2002), 1-17.

J. White, D. Benavides, D. Schmidt, P. Trinidad, B Dougherty, and A. Ruiz-Cortés.
2010. Automated Diagnosis of Feature Model Configurations. Journal of Systems
and Software 83, 7 (2010), 1094-1107.

J. White, J. Galindo, T. Saxena, B. Dougherty, D. Benavides, and D. Schmidt. 2014.
Evolving Feature Model Configurations in Software Product Lines. Journal of
Systems and Software 87 (2014), 119-136.

